
sensors

Article

NLOS Identification in WLANs Using Deep LSTM
with CNN Features

Viet-Hung Nguyen 1, Minh-Tuan Nguyen 1 , Jeongsik Choi 2 and Yong-Hwa Kim 1,*
1 Department of Electronic Engineering, Myongji University, Yongin 449-728, Korea;

nguyenviethunghc2@gmail.com(V.-H.N.); tuannguyen091095@gmail.com(M.-T.N.)
2 Intel Labs, Intel Corporation, Santa Clara, CA 95054, USA; jeongsik.choi@intel.com
* Correspondence: yongkim@mju.ac.kr; Tel.: +82-31-330-6370

Received: 12 October 2018; Accepted: 13 November 2018; Published: 20 November 2018
����������
�������

Abstract: Identifying channel states as line-of-sight or non-line-of-sight helps to optimize
location-based services in wireless communications. The received signal strength identification
and channel state information are used to estimate channel conditions for orthogonal frequency
division multiplexing systems in indoor wireless local area networks. This paper proposes a joint
convolutional neural network and recurrent neural network architecture to classify channel conditions.
Convolutional neural networks extract the feature from frequency-domain characteristics of channel
state information data and recurrent neural networks extract the feature from time-varying
characteristics of received signal strength identification and channel state information between packet
transmissions. The performance of the proposed methods is verified under indoor propagation
environments. Experimental results show that the proposed method has a 2% improvement in
classification performance over the conventional recurrent neural network model.

Keywords: line-of-sight identification; channel state information; deep learning; convolutional neural
network; long-short term memory model

1. Introduction

Recently, location-based services such as real-time tracking, security alerts, informational
services, and entertainment applications are becoming important in wireless communication
infrastructures. Global positioning systems (GPSs) are the most commonly used outdoor location
sensing technology [1]. However, GPSs are not suitable for indoor positioning systems due to
line-of-sight (LOS) requests between the satellites and the receivers [2]. Ultra-wideband (UWB) and
wireless local area network (WLAN) technologies are two major candidates for the implementation of
accurate indoor positioning systems.

UWB systems use an exceedingly wide band of the radio frequency (RF) spectrum to achieve
higher temporal resolution and robustness to multipath fading [3,4]. Although UWBs are expected
to provide higher accuracy in indoor positioning systems than WLANs, they have the disadvantage
that new communication infrastructure must be established for UWB systems [4]. WLANs are
cost-efficient as they can use existing communication infrastructure. Hence, they are widely used in
communication infrastructures [3].

Received signal strength indicator (RSSI)-based techniques for WLANs have been proposed
for localization services [5,6]. RSSI-based systems have the advantage of using existing WLAN
infrastructure. To improve localization accuracy, channel state information (CSI) is used to estimate
location in WLANs. However, the reliability of communication and localization accuracy in WLANs
can be seriously affected by non-line-of-sight (NLOS) propagation [7–10].
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To improve WLAN localization performance, several studies have, over time, investigated how to
distinguish between LOS and NLOS using handcrafted features by a series of CSI [11–15]. Skewness
and kurtosis from CSI are used to classify LOS and NLOS environments [13–15]. A recurrent neural
network (RNN) model with long-short term memory (LSTM) one of a deep models using RSSI and
CSI has been proposed to improve the classification performance of LOS and NLOS classification [16].
However, the RNN model with LSTMs in [16] only focuses on the temporal structure of CSI data and
does not contain the frequency characteristics of CSIs.

In this paper, we propose a new LOS and NLOS classification method for WLANs based on
RSSI and CSI. The proposed convolutional neural network LSTM (CNNLSTM) model combines
the advantages of a CNN by reducing the variance of CSI data and the ability of LSTM in modeling
long-range dependencies of sequential data in a unified framework. Compared to the LSTM model [16],
the proposed CNNLSTM exploits the non-temporal structure from the input by using the CNN before
LSTM to learn the frequency characteristics of CSIs. The main contributions are summarized as follows.
First, we introduce a state-of-the-art CNNLSTM model that provides a 2% relative improvement in
classification performance over the LSTM method. Second, the proposed model achieves the highest
accuracy of 96.53% compared to the CNN and LSTM models. Finally, we propose a new model that
exploits absolute values of CSI data instead of using complex values of CSI so as to reduce complexity.

The rest of this paper is structured as follows. In Section 2 we briefly discuss the related works
of some general deep learning models. Section 3 introduces characteristics of CSI and RSSI data
from experiments. In Section 4 we describe the proposed CNNLSTM architecture to classify channel
conditions. Section 5 presents the performance evaluation and network visualization. Finally, Section 6
concludes the paper and discusses future work.

2. Related Works

Deep learning was constituted by neural network models with deep hidden layer
architectures [17]. A deep learning model produces a chain of layers that can build up increasing ranks
of abstract information from the input variables to the output variables. Compared to other machine
learning algorithms [18–20], deep learning models try to capture potential features using hidden layers
automatically. In recent years, many different types of deep learning models have been introduced.
This paper describes three main models: CNN, LSTM, and CNNLSTM.

A CNN was developed by preserving the spatial structure of the input data for object recognition
tasks such as handwritten digit recognition [21], computer vision [22], and natural language
processing [23] through the use of convolutional layers. These layers can automatically identify
and generalize essential local features at varied positions in the input maps using learnable kernels;
hence, it can noticeably reduce the number of parameters compared to a fully connected layer by using
local connectivity and weight sharing. A CNN model extracts features with several filters in wireless
communication fields such as automatic modulation classification for wireless localization [24].

An RNN is specially developed to solve problems related to sequential data such as language
modeling [23] and speech recognition [25]. Compared to the fully connected neural network and CNN,
RNN models have recurrence connection between time steps to consider sequential information [23–26].
An LSTM model, which is one of the most widely used RNN models, avoids the long-term dependency
problem in typical RNN structures caused by the vanishing gradient with four gates to adjust
information flow [27]. LSTMs were used to extract temporal features from packet transmissions
of CSIs and RSSIs [16]. However, input with spatial structure cannot be well modeled using only the
standard LSTM [28].

A CNNLSTM model is designed with both spatial and temporal features in mind by combining
convolutional layers for latent feature extraction on input data and LSTM layers to support sequence
prediction [28–30]. In our input data, CSIs have not only time-varying characteristics between packet
transmissions but also frequency characteristics of CSI at each transmission [24]. Therefore, we consider
the CNNLSTM model to use both time-varying and frequency characteristics of CSIs.
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3. Preliminaries

In this section, we consider a system model and experimental data for commodity WLANs,
where a receiver obtains the RSSI at each transmission and estimates the frequency-domain CSI of
the subcarriers.

3.1. System Model

Let h = [h(0), h(1), ..., h(L− 1)]T be the time-domain channel impulse response (CIR), where L is
the number of multipath taps. The frequency- domain CIR for the kth subcarrier can be modeled as [16]

H(k) =
L−1

∑
l=0

h(l)e−j 2πkl
N , (1)

where N is the fast Fourier transform (FFT) size, k ∈ K and K is the fast Fourier transform (FFT)
size, N − K− 1 subcarriers at the edges of the spectrum are not used and the used subcarriers can be
indexed by K = −K/2, ...,−1, 1, ..., K/2, where K is the number of used subcarriers. At the receiver,
the channel state information (CSI) for the kth subcarrier is estimated as

Ĥ(k) = H(k) + n(k) (2)

where n(k) is complex Gaussian noise for the kth subcarrier with zero-mean and variance of N0 [16].
In IEEE 802.11 WLANs, RSSI is provided for upper layer information. At each transmission,

the RSSI is used as an indication of the received power level. RSSIs for the LOS condition are
concentrated at a high value, while RSSIs for the NLOS condition are distributed over a wide range [16].

3.2. Experimental Data

For performance comparison with the previous result, we exploited data collected at Seoul
National University [16]. Figure 1 shows the layout of the measurement site, which can be considered
a typical indoor office environment. For measurement campaigns, two laptops equipped with
Qualcomm Atheros network interface cards (NICs) were used to capture both RSSI and CSI. The height
of the transmitter and the receiver were fixed at 1.2 m. A person holding the receiver walked around
the highlighted area shown in Figure 1 to collect data while recording the labels of the collected data:
LOS if there was no obstacle between the transmitter and the receiver or NLOS if the direct path was
blocked by the person holding the receiver or other obstacles, e.g., walls and doors.

The measurement took 4300 s to complete. During the measurement campaigns, the transmitter
sent sounding packets every 10 ms and the receiver measured RSSI and CSI per packet transmission.
For signal transmission, IEEE 802.11n protocol with a 20-MHz bandwidth was used, and therefore,
total K = 56 CSIs (i.e., full CSI report) and an RSSI were measured for each point-to-point link.
Moreover, the transmitter and the receiver were equipped with two and three antennas, respectively,
and six sets of CSI and three sets of RSSIs were measured during each packet transmission. Using these
protocols, a total of 101,197 packet transmissions were measured under the LOS condition and
331,365 packet transmissions were measured under the NLOS condition.
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Figure 1. The experiment setup.

4. Proposed CNNLSTM Model

To classify LOS and NLOS in WLANs, we propose a novel CNNLSTM model. Figure 2 shows
the overall framework of the proposed model, that comprise CNN and RNN segments. As shown in
Figure 2, the CSIs form the input signals for the CNN, while the output of CNN concatenates with the
RSSIs, and feed into the LSTMs for the LOS and NLOS classification.
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Figure 2. The overall framework of the proposed CNNLSTM.
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4.1. CNN Part

Figure 3 shows the proposed CNN model, that comprises one input vector, L convolutional
layers, and one output vector with size NC × NF by a Flatten layer. The input vector for the pth packet
transmission can be expressed as

NK
(1)

NF
(1) 

Flatten

xp Zp

1st con
volutional
layer

Lst convolutional
layer

NF
(L) 

CNN

Figure 3. Proposed one-dimensional CNN model.

xp =
[
R(Ĥp[−K/2]), I(Ĥp[−K/2], . . . ,R(Ĥp[K/2]), I(Ĥp[−K/2]

]
(3)

where Ĥp[k] is the CSI for the pth packet transmission, andR(.) and I(.) are the real and imaginary
parts of the complex value, respectively. The lth convolutional layer convolves the input regions locally
using NF filter kernels, where each filter uses the same kernel to extract the local features of the input
region. The output of a convolution operation at the lth layer for one filter is determined by

y(l)i = a(
N(l)

K

∑
r=1

w(l)
r x

r+i×N(l)
S

+ b(l)), (4)

0 ≤ i ≤ N−N(l)
K

N(l)
S

; l = 1, 2, . . . , L.

where N(l)
K is the kernel size of the filters, w(l)

r and b(l) are the weight and bias elements located at (r)
on the kernel, respectively, in the lth convolutional layer. In addition, a(.) represents a non-linearity
activation function, that is typically given by the sigmoid, softsign, hyperbolic tangent (tanh) and
rectified linear unit (reLU), etc. [31]. Without zero-padding, the output size is calculated as

N(l)
C =

N(l−1)
C − N(l)

K

N(l)
S

+ 1, (5)

where NS is a stride, which corresponds to how much a filter is shifted at a time. We put batch
normalization (BN) after the non-linearity activation function applied after each CNN layer. The BN
plays a role in regularization; its benefits are discussed in [32].

As shown in Figure 3, the CNN segment has L layers and we finally stress out the data to a vector
with size NC × NF by a Flatten layer. Note that CSI data is different from actual images so when
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applying the CNN, we need to change some structures from the normal CNN model. The first thing is
to set the stride step N(1)

S by even numbers (2,4, etc.) in the first convolutional layer to guarantee the
characteristic of complex input data. Because the size of the CSI packet is small, the second difference
is that we do not apply any pooling layers, thereby significantly reducing the size of the input, leading
to the loss of some important information to training in the RNN segment.

4.2. RNN Part

The RNN model is composed of LSTM modules and an output layer for classification. The input
vector for the LSTM module is defined as up = [rp, zp] where rp is an RSSI value for the pth packet
transmission. The structure of the LSTM is shown in Figure 4. At the current time step p, the equations
below describe the internal structure of the LSTM module:

ip

fp

op

gp

 =


σ

σ

σ

tanh




Wuiup + Wcihp−1 + bi
Wu f up + Wc f hp−1 + b f
Wuoup + Wcohp−1 + bo

Wugup + Wcghp−1 + bg

 (6)

cp = fp � cp−1 + ip � gp (7)

hp = op � tanh(cp) (8)

where up is the input to the LSTM block; ip, fp, op, cp and hp are the input gate, the forget gate,
the output gate, the cell state, and the output of the LSTM block, respectively. Wui, Wu f , Wug, and Wuo

are the weights between the cell state and the input gate, the forget gate, the external output gate,
and the output gate, respectively. Wci, Wc f ,Wcg,and Wco are the weights between the cell state
and the input gate, the forget gate, the external output gate, and the output gate, respectively, and
finally, bi, b f , bg, and bo are the additive biases of the input gate, the forget gate, the external output
gate, and the output gate, respectively. The sigmoid function σ(.) and the hyperbolic activation
function tanh(.) are used as activation functions. In (7) and (8), the cell state, cp, and the output of
the LSTM block, hp, are calculated using the outputs form the above gates in (6), where � denotes an
element-wise multiplication.

σ tanh σ

tanh

cp-1

hp-1

up

σ

fp ip
op

Figure 4. The structure of the LSTM.

Finally, for the NLOS and LOS condition decision, we put the feature vector hP extracted at
the last LSTM cell through a single perceptron layer where P is the number of packet transmissions.
The output hθ of the model is calculated as follows:
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hθ = σ(VhP + b) (9)

where V is the weight matrix that transfers the values in the Fully Connected (FC) layer to the output
layer and b is a bias factor. In(9), the sigmoid function σ(.) is used to transform the logit of the single
neuron in the final stage to calculate the probability for classifying the LOS or NLOS.

We set y = 1 for LOS conditions and y = 0 for NLOS conditions. During the training stage,
at each epoch, we select multiple batches from the set of input and output pairs ([X, r], y) to train and
verify the proposed CNNLSTM model. Every parameter in the model is adjusted to minimize the
following lost function

L = − 1
N

N

∑
g=1

C(g) (10)

where N is the batch size of model, C(g) is the cost of the gth input and output pair that measures how
accurately the model predicts the label that corresponds to the input. Among many choices of the loss
function used in optimizing our model, we adopt the binary cross-entropy function, expressed by

C(g) = y(g)loghθ([X, r](g)) + (1− y(g))log(1− hθ([X, r](g)) (11)

where the superscript is used to indicate the index of the input and output pair.
To minimize the loss function, many variants of the gradient-descent method such as AdaGrad,

AdaDelta, and Adam optimizers have been studied. These optimizers adaptively change the learning
rate to properly minimize the loss function. In this study, we applied the Adam optimization algorithm
to train our proposed CNNLSTM model as the Adam optimizer is straight-forward and saves memory
and computational resources.

The process starts with random initialization of all the model parameters. During the training
phase, the weight update takes place after a whole sequence has been propagated forward through
the network. The error signals are calculated with respect to the Mean of Cross Entropy Losses cost
function. The loss function was chosen as the natural cost function for the sigmoid output layer with
the aim of maximizing the likelihood of classifying the input data correctly.

Once every parameter in the proposed CNNLSTM model is adjusted appropriately, the model
can identify the channel condition based on the following simple hypothesis test

H0 : Hθ([X, r]) ≥ α (12)

H1 : Hθ([X, r]) < α

where H0 and H1 are null and alternative hypothesis, respectively, and α denotes the decision threshold.
We assume that, LOS detection rate is a true positive rate (TPR) corresponding to the portion of correct
decisions among all measurements under the LOS condition. Similarly, NLOS detection rate is a true
negative rate (TNR) corresponding to the portion of correct decisions over all measurements. These
statistical values depend on the decisions.

5. Performance Evaluation

In this section, we will discuss the results of the proposed scheme using CSI and RSSI data with
a total 100,000 packet transmissions. We assess several numbers of packet transmissions, P = 10,
P = 20, P = 50 and P = 100. We split our dataset into three parts: training, validation, and test sets.
We use 70% of sample points to build our classification model during the training phase. 15% of data
were used to compare the performances of the models in the validation phase. We selected the best
model for the test phase. Finally, we applied our chosen model to the test set, the remaining 15% of the
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original data set, so as to evaluate how our model performs on unseen data. Note that, the test set was
not used in the experiments.

The model was trained by truncated backpropagation through time [33] with Adam
optimization [34] with an initial learning rate of 0.001. On the dataset, we used a minibatch [35]
with a size of 128 for high efficiency. After each batch, the gradients were averaged and updated.
We employed the early stopping method to stop the training when the validation accuracy becomes
stagnant and does not increase after 10 epochs. We adopted the dropout method with a probability of
0.5 after the CNN layers and LSTM layer for regularization to avoid over-fitting problems [36].

In the CNN segment, we used hybrid hyper-parameters settings for the CNNs with high numbers,
L of convolution layers to extract the implicit features of data. We applied the CNN models with
a different number of N(l)

F filters, such as 16, 32, 64, 128, etc. with different kernel sizes, such as 2,
3, 4, etc., and with several kinds of popular activation functions, such as ReLU, tanh, sigmoid, etc.
After testing out all the simulation settings, the best achieved model is as shown in Table 1. Here, we set
number of CNN layers L = 3 with kernel size, N(1)

K = 8 for the first layer, and N(2)
K = N(3)

K = 2 for the

second and third layer. In the first and second CNN layers, we use N(1)
F = 32 and N(2)

F = 16 filters

with the softplus activation function. N(3)
K = 2 and N(3)

F = 8 are used for the third CNN layer.
In the RNN segment, we also set different the number of units in LSTM layer, Dh, such as 5, 10,

20, etc., to obtain the best result for our model.

Table 1. Details of proposed CNNLSTM model.

Layer Type Activation Kernel Size Stride Filter Output Shape

Input 50× 112× 1
Convolution softplus 8 2 32 50× 53× 32
Convolution softplus 2 1 16 50× 52× 16
Convolution reLU 2 1 8 50× 51× 8

Flatten _ _ _ _ 50× 408
Concatenate with RSSI _ _ _ _ 50× 409

LSTM _ _ _ 10 10
FC sigmoid _ _ 1 1

Figure 5 shows the convergence of the model over epochs for the training and validation set.
It can be seen that, the accuracy of the training set shows a trend of improvement in performance after
each epoch. Conversely, the accuracy of the validation set decrease and fluctuates after reaching the
top point of 96.32%. To avoid wasting time in training the data, we used the early stopping method
that automatically stops the model if the accuracy of the validation set does not improve after several
epochs (in our model, this value was set to 10). The peak point of the highest accuracy for the validation
set occurred in epoch 21 and was marked by X symbol in the figure.

In this paper, we also implemented CNN methods and compared them with the conventional
method LSTM method. The CNN model was also optimized similarly to the proposed CNN segment,
except here, instead of the LSTM layer, we added the Flatten layer after the final CNN layer. The LSTM
model only learns time relative sequence information whereas the CNN model focuses on extracting
implicit features that contain space information, while our proposed model offers both of these
advantages. Figure 6 illustrates the performance of the proposed model with various values of P for
the test set. It can be seen that the best outcome was obtained at P = 50. Even if P is increased to 100,
the performance shows a decreasing trend for all models. Hence, in the results shown below, we use
P = 50 to compare to the building data.
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Figure 6. Performances of the models depend on the number of packets.

Table 2 summarizes the performances decision thresholds that are selected to maximize the
average LOS/NLOS detection rate for the LSTM, CNN, and CNNLSTM models. As can be seen,
the CNNLSTM model outperforms the other models in both accuracy and average detection rate for
all values of P. Note that CNNLSTM* denotes a model that applies the absolute values of CSI data.
It offers slightly better performance than the LSTM and CNN models while using simpler data, so we
can consider it as a choice when generating data from practical instruments. The input signal for the
CNN segment in this case can be written as

x?p =
[
|Ĥp[−K/2]|, . . . , |Ĥp[K/2]|

]T (13)

where |Ĥp[k]| is the amplitude value of the CSI for the pth packet transmission.
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Table 2. Performances according to the models.

Model Decision Threshold Avg Detection Rate Accuracy

LSTM 0.332970 0.94920 94.57
CNN 0.372340 0.94310 94.90

CNNLSTM 0.302848 0.95989 96.53
CNNLSTM* 0.225334 0.95141 95.97

Table 3 shows the total training time and the number of parameters of the LSTM, CNN and
proposed CNNLSTM models, where an NVIDIA Titan X GPU 1.4 GHz with 3584 cores is used for
simulations. The total training time for the proposed CNNLSTM is comparable to the CNN and
LSTM models because the proposed model takes only 21 epochs to converge to the optimal solution.
The number of parameters for the proposed CNNLSTM is larger than the LSTM model. However,
the memory requirement is less demanding in the test time evaluation because there is no backward
propagation. In addition, the proposed CNNLSTM* reduces the total training time and number of
parameters compared to the proposed CNNLSTM.

Table 3. The training time and number of parameters of the models.

Model Time (s) Epochs Total Training Time (s) Number of Parameters

LSTM 9 37 333 5011
CNN 16 25 400 22,463

CNNLSTM 17.5 21 367.5 18,863
CNNLSTM* 15 23 345 9679

In Figure 7, we use the receiver operating characteristic (ROC) curve, that describes the
relationship between TPR and FPN. If the performance is better, the ROC curve will approach a
point in the upper left edge, that implies perfect discrimination. As we can see, the LSTM model has
worse performance. Conversely, the proposed CNNLSTM model offers the best result because its area
under curve (AUC) of 0.9928 approximates with perfect result of 1 [18,19,37].
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Figure 7. ROC curves of LOS identification using the proposed CNNLSTM and other methods.
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To further understand what is inside the model, we analyze the internal representations of the
trained network. Following the training procedure, the hidden state vector of the last LSTM module
was used to visualize the trained network. Figure 8 shows t-SNE representations using 5000 different
inputs from the training set of the proposed method and conventional LSTM method [16], where t-SNE
aims to project the high dimensional vectors to two-dimensional space while retaining their pairwise
similarity [38]. In the figure, we can see that the hidden state for the proposed method was much more
dispersed compared to the hidden state for the conventional method [16]. This explains the improved
accuracy based on feature extraction by using CNN segment in the proposed CNNLSTM.

(a) (b)

Figure 8. tSNE representation of 5000 training samples for (a) proposed CNNLSTM and
(b) conventional LSTM.

6. Conclusions

In this paper, we proposed a deep learning model to identify channel conditions by combining
CNN and RNN. In the proposed CNNLSTM model, the CNN captured the feature from
frequency-domain characteristics of CSIs and then LSTMs extracted the temporal feature from RSSI
and the output of CNN. In addition, a CNNLSTM model with the absolute value of CSIs was proposed
to reduce the complexity with slightly better performance than the conventional models. The proposed
methods were verified under indoor environments for WLANs and achieved higher accuracy than the
conventional LSTM model in classifying LOS and NLOS. In future work, we would like to investigate
the performance of the proposed CNNLSTM models in outdoor environments to expand the range of
applications of the algorithm.

Author Contributions: V.-H.N. and Y.-H.K. conceived the idea of the proposed scheme and performed the
modeling and simulation of the proposed scheme. M.-T.N. and J.C. provided substantial comments on the
performance analysis of the proposed scheme.

Funding: This research was supported in part by Korea Electric Power Corporation (Grant number:R18XA01)
and in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Science and ICT (NRF-2017R1C1B1012259).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. McNeff, J.G. The global positioning system. IEEE Trans. Microw. Theory Tech. 2008, 50, 645–652. [CrossRef]
2. Cui, K.; Chen, G.; Xu, Z.; Richard, D.R. Line-of-sight visible light communication system design

and demonstration. In Proceedings of the 7th International Symposium on Communication Systems,
Networks & Digital Signal Processing (CSNDSP 2010), Newcastle upon Tyne, UK, 21–23 July 2010;
pp. 621–625.

3. Dialani, J.C.; Patel, A.; Jindal, R.P. Performance measurements of IEEE 802.11 a wireless LANs in presence
of ultrawideband interference. In Proceedings of the 2006 IEEE Sarnoff Symposium, Princeton, NJ, USA,
27–28 March 2006; pp. 1–4.

4. Aiello, G.R.; Rogerson, G.D. Ultra-wideband wireless systems. IEEE Microw. Mag. 2003, 2, 36–47. [CrossRef]

http://dx.doi.org/10.1109/22.989949
http://dx.doi.org/10.1109/MMW.2003.1201597


Sensors 2018, 18, 4057 12 of 13

5. Kaemarungsi, K. Distribution of WLAN received signal strength indication for indoor location determination.
In Proceedings of the 1st International Symposium on Wireless Pervasive Computing, Phuket, Thailand,
16–18 January 2006.

6. Seshadri, V.; Zaruba, G.V.; Huber, M. A bayesian sampling approach to in-door localization of wireless
devices using received signal strength indication. In Proceedings of the Third IEEE International Conference
on Pervasive Computing and Communications, Kauai Island, HI, USA, 8–12 March 2005; pp. 75–84.

7. Wang, X.; Wang, Z.; O’Dea, B. A TOA-based location algorithm reducing the errors due to non-line-of-sight
(NLOS) propagation. IEEE Trans. Veh. Technol. 2003, 1, 112–116. [CrossRef]

8. Guvenc, I.; Chong, C.-C. A survey on TOA based wireless localization and NLOS mitigation techniques.
IEEE Commun. Surv. Tutor. 2009, 11, 107–124. [CrossRef]

9. Chan, Y.-T.; Tsui, W.-Y.; So, H.-C.; Ching, P.-C. Time-of-arrival based localization under NLOS conditions.
IEEE Trans. Veh. Technol. 2006, 1, 17–24. [CrossRef]

10. Venkatraman, S.; Caffery, J.; You, H.-R. A novel TOA location algorithm using LOS range estimation for
NLOS environments. IEEE Trans. Veh. Technol. 2004, 5, 1515–1524. [CrossRef]

11. Caire, G.; Shamai, S. On the capacity of some channels with channel state information. IEEE Trans. Inf. Theory
1999, 6, 2007–2019. [CrossRef]

12. Marzetta, T.L.; Hochwald, B.M. Fast transfer of channel state information in wireless systems. IEEE Trans.
Sign. Process. 2006, 4, 1268–1278. [CrossRef]

13. Zhou, Z.; Yang, Z.; Wu, C.; Sun, W.; Liu, Y. LiFi: Line-of-sight identification with WiFi. In Proceedings
of the IEEE INFOCOM 2014–IEEE Conference on Computer Communications, Toronto, ON, Canada,
27 April–2 May 2014; pp. 2688–2696.

14. Zhou, Z.; Yang, Z.; Wu, C.; Shangguan, L.; Cai, H.; Liu, Y.; Ni, L.M. WiFi-based indoor line-of-sight
identification. IEEE Trans. Wirel. Commun. 2015, 11, 6125–6136. [CrossRef]

15. Wu, C.; Yang, Z.; Zhou, Z.; Qian, K.; Liu, Y.; Liu, M. PhaseU: Real-time LOS identification with WiFi.
IEEE Trans. Wirel. Commun. 2015, 14, 2038–2046.

16. Choi, J.S.; Lee, W.H.; Lee, J.H.; Lee, J.H.; Kim, S.C. Deep Learning Based NLOS Identification with Commodity
WLAN Devices. IEEE Trans. Veh. Technol. 2018, 4, 3295–3303. [CrossRef]

17. Kim, K.S.; Lee, S.; Huang, K. A scalable deep neural network architecture for multi-building and multi-floor
indoor localization based on Wi-Fi fingerprinting. Big Data Anal. 2018, 3, 4. [CrossRef]

18. Abbas, R.; Hussain, A.J.; Al-Jumeily, D.; Baker, T.; Khattak, A. Classification of Foetal Distress and Hypoxia
Using Machine Learning Approaches. Int. Conf. Intell. Comput. 2018, 767–776.

19. Amin, A.; Shah, B.; Khattak, A.M.; Baker, T.; Anwar, S. Just-in-time Customer Churn Prediction: With and
Without Data Transformation. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC),
Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–6.

20. Alshabandar, R.; Hussain, A.; Keight, R.; Laws, A.; Baker, T. The Application of Gaussian Mixture Models
for the Identification of At-Risk Learners in Massive Open Online Courses. In Proceedings of the 2018 IEEE
Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8.
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