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1. Decomposition of the Kelvin probe current into its harmonics

In order to obtain the amplitude of the kth harmonic of the current I (cf. eq. (5) of the main
article):

I = − εε0 AUd1ω cos(ωt)
[d0 + d1 sin(ωt)]2

. (1)

we carry out a series expansion of equation (1), using the following abbreviations:

a :=
d1

d0
; b := −εε0 AUω

d1

d2
0

; x := ωt , (2)

which simplifies equation (1) to:

I = b cos x(1 + a sin x)−2 . (3)

We use the following power series expansion, which follows from the binomial theorem [1]:

(1 + z)−2 = 1− 2z + 3z2 − 4z3 + 5z4 − . . . =
∞

∑
n=0

(−1)n(n + 1)zn for |z| < 1 . (4)

In the present case, with z = a sin x, the condition |z| < 1 is always fulfilled, because due to physical
reasons the maximum oscillation amplitude d1 of the vibrating capacitor plate must be smaller than
the average distance d0 between the two plates, which means a := d1

d0
< 1. Taking relation (4) into

account we can rewrite the expression for I:

I =
∞

∑
n=0

b(−a)n(n + 1) cos x sinn x . (5)

After converting the sum (5) into expressions without powers of sin x using the Mathematica R©

command TrigReduce up to n = 10, we rearrange the respective result in order to find the coefficients
for the harmonics cos x, sin 2x, cos 3x, sin 4x, cos 5x, sin 6x , aiming at finding a regular pattern that
can be expanded to infinity. It turns out that the coefficients can be factorized as follows:

cos x : + ba0(1 · 1
1
· 1 · a0 + 3 · 1

4
· 1 · a2 + 5 · 1

16
· 2 · a4 + 7 · 1

64
· 5 · a6 + 9 · 1

256
· 14 · a8 + 11 · 1

1024
· 42 · a10 + . . .)

sin 2x :− ba1(2 · 1
2
· 1 · a0 + 4 · 1

8
· 2 · a2 + 6 · 1

32
· 5 · a4 + 8 · 1

128
· 14 · a6 + 10 · 1

512
· 42 · a8 + . . .)

cos 3x :− ba2(3 · 1
4
· 1 · a0 + 5 · 1

16
· 3 · a2 + 7 · 1

64
· 9 · a4 + 9 · 1

256
· 28 · a6 + 11 · 1

1024
· 90 · a8 + . . .)

sin 4x : + ba3(4 · 1
8
· 1 · a0 + 6 · 1

32
· 4 · a2 + 8 · 1

128
· 14 · a4 + 10 · 1

512
· 48 · a6 + . . .)

cos 5x : + ba4(5 · 1
16
· 1 · a0 + 7 · 1

64
· 5 · a2 + 9 · 1

256
· 20 · a4 + 11 · 1

1024
· 75 · a6 + . . .)

sin 6x :− ba5(6 · 1
32
· 1 · a0 + 8 · 1

128
· 6 · a2 + 10 · 1

512
· 27 · a4 + . . .)

(6)
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The terms in brackets obviously contain series of even powers of a, where the coefficients of each
such power of a contain three factors. While the 1st and 2nd factors follow easy-to-find patterns, the
third (bold printed) factors seem to be strange at first glance.

Actually, the numbers follow the rule of the CATALAN triangle1 [2,3], in which the number Clm
at position (l, m) is given by

Clm =
(l + m)!(l −m + 1)

m!(l + 1)!
. (7)

Here, the coefficient of cos x contains C10, C21, C32, . . ., for the coefficient of sin 2x the numbers
C20, C31, C42, . . . are relevant, and so forth. After several rearrangements a compact equation for the
kth harmonic Ikω of the KELVIN probe current I can be derived as:

Ikω = kb
∞

∑
n=0

( a
2

)2n+k−1 (2n + k)!
n!(n + k)!

{(−1)(k−1)/2Θ[(−1)(k+1)] cos(kx) + (−1)k/2Θ[(−1)k] sin(kx)} ,

(8)
with Θ being the HEAVISIDE function, which is needed because the harmonics alternately follow a
sine or cosine function. Moreover, the terms (−1)(k−1)/2 and (−1)k/2 in the {. . .}-term of equation (8)
create the proper sign.

In order to remove the discontinuous HEAVISIDE function we use (−1)1/2 = i, as well as the
EULER relations

cos z =
eiz + e−iz

2
; sin z =

eiz − e−iz

2i
, (9)

and the relations

Θ[(−1)(k+1)] + Θ[(−1)k] = 1 ; Θ[(−1)(k+1)]−Θ[(−1)k] = (−1)k−1 , (10)

finally obtaining an alternative, more compact expression for Ikω:

Ikω = kb
∞

∑
n=0

( a
2

)2n+k−1 (2n + k)!
n!(n + k)!

ik−1

2
{eikx + (−1)k−1e−ikx} . (11)

The formulas (8) and (11) have been cross-checked with Mathematica
R©

for k = 1, 2, . . . , 6 (and n
up to 10) to see whether they reproduce the coefficients from the expressions (6). The total current I
can then be written as

I =
∞

∑
k=1

Ikω . (12)

The expressions for the first- and second-harmonic part of I turn out to be:

Iω = −εε0 AUω
d1

d2
0

cos(ωt)
∞

∑
n=0

(
1
2

d1

d0

)2n (2n + 1)!
n!(n + 1)!

(13)

I2ω = 2εε0 AUω
d1

d2
0

sin(2ωt)
∞

∑
n=0

(
1
2

d1

d0

)2n+1 (2n + 2)!
n!(n + 2)!

, (14)

where a, b and x have been substituted according to equations (2).

1 The numbers of the CATALAN triangle appear in many problems in combinatorics, but their appearance as part of the
harmonics of the current within an oscillating paralel-plate capacitor is quite a surprise.
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Figure S1. Kelvin-probe current amplitudes Îω and Î2ω as a function of the ratio a = d1
d2

plotted
with the parameters of the experiment described in the main article (A = π

4 (5 · 10−3)m2; U = 1 V;
ω = 2 · π · 175 Hz; d0 = 100 µm; d1 = 25 µm).

After a number of algebraic transformations, we find that the amplitude Îkω of the current
according to eq. (11) is described by the hypergeometric function [4] 2F1:

Îkω = 21−kakkI0 2F1

(
1 + k

2
,

2 + k
2

; 1 + k; a2
)

(15)

with I0 = b
a . Figure S1 depicts Îω and Î2ω and their intersection point d1

d0
= 0.8, which is independent

of all the other variables.
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2. Photographs of the Kelvin probe device

In order to illustrate the Kelvin probe device a bit more vividly, the following figures show some
photographs (with partially removed outer shielding box). Figure S2 contains the first version in
(a) side view and (b) top view, which corresponds to the construction described in the main article,
while figure S3 shows a slightly modified version, not primarily devoted to oxide samples. There,
the heating option is omitted, while the sample holder has been adapted to the sample-holder design
of our UHV apparatus for preparing organic/inorganic interfaces.

(a)

(b)

Figure S2. Kelvin probe device in (a) side view and (b) top view..
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(a)

(b)

Figure S3. (a) Modified Kelvin probe device. (b) Zoom picture of sample and probe.



Sensors 2018, 18, x; doi:10.3390/s18110000 S6 of S6

3. Reference surface photovoltage data on material systems different from SrTiO3

The performance of the Kelvin probe device was cross-checked with two samples of a
conventional semiconductor: n- and p-type silicon, for which SPV data are available in the
literature. Figure S4 comparatively shows the behavior of the contact potential upon super-bandgap
illumination for both Si samples. While the temporal response is too fast to be resolved with a Kelvin
probe detection scheme, both the sign and the relative magnitudes (much smaller SPV in p- than in
n-type Si) of the SPV are in accordance with the literature [5]. The signal-to-noise ratio is in the same
range as in the measurements on highly resistive oxides.
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Figure S4. Surface photovoltage in (a) n-type and (b) p-type silicon upon superbandgap illumination
(wavelength: 780 nm, intensity: 0.5 mW, spot size = probe area). Darkness periods are indicated by
grey color and illumination periods by red color, respectively.

For a detailed discussion of SPV data, acquired with the described Kelvin probe setup on a
different oxide system, namely the currently intensively investigated LaAlO3/SrTiO3 heterosystem,
refer to our in-depth study [6].
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