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Abstract: Continuing population growth will result in increasing global demand for food and fiber
for the foreseeable future. During the growing season, variability in the height of crops provides
important information on plant health, growth, and response to environmental effects. This paper
indicates the feasibility of using structure from motion (SfM) on images collected from 120 m above
ground level (AGL) with a fixed-wing unmanned aerial vehicle (UAV) to estimate sorghum plant
height with reasonable accuracy on a relatively large farm field. Correlations between UAV-based
estimates and ground truth were strong on all dates (R2 > 0.80) but are clearly better on some dates
than others. Furthermore, a new method for improving UAV-based plant height estimates with
multi-level ground control points (GCPs) was found to lower the root mean square error (RMSE)
by about 20%. These results indicate that GCP-based height calibration has a potential for future
application where accuracy is particularly important. Lastly, the image blur appeared to have a
significant impact on the accuracy of plant height estimation. A strong correlation (R2 = 0.85) was
observed between image quality and plant height RMSE and the influence of wind was a challenge
in obtaining high-quality plant height data. A strong relationship (R2 = 0.99) existed between wind
speed and image blurriness.

Keywords: fixed-wing UAV; sorghum plant height; structure from motion; multi-level GCPs;
GCP-based height calibration; image blurriness; wind speed

1. Introduction

Continuing population growth will result in increasing global demand for food and fiber for the
foreseeable future. In the near term, an increase of almost one-third or 2.3 billion people along with
improving living standards are anticipated through midcentury [1]. Potential effects of climate change
may also affect agricultural production especially in a regional context, which may require adjustments
in farming practices and production technology [2]. Two critical research efforts have the potential to
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meet world agricultural productions such as crop improvement through plant breeding and genetics
and production optimization through precision-agriculture management strategies [3,4]. In both cases,
the measurement of numerous traits such as plant height, leaf-area cover, and crop density is essential
for increasing yield potential and protection from crop losses.

Tremendous advances are being made in high-throughput plant phenotyping (HTPP) technology
by enhancing the technologies available for crop improvement [5]. Ultimately, breeders and geneticists
hope to use HTTP to increase the efficiency of phenotyping [6,7]. Some of these HTPP techniques are
translatable to precision agriculture specifically plant height estimation with 3D point clouds generated
from high-resolution imagery. In HTPP, sensors incorporating measurement techniques including
visible or near-infrared reflectance or fluorescence can be carried on automated platforms to more
efficiently estimate important traits in order to accelerate breeding and genetics research. Multiple
types of imaging sensors such as RGB, multispectral, thermal, and Light Detection and Ranging
(LIDAR) are now used with unmanned ground vehicles (UGVs) or unmanned aerial vehicles (UAVs
or “drones”) for mapping phenotypes at the plot or plant level [8–10]. A large number of potential
metrics including spectral reflectance, thermal emittance, and plant height demonstrate great potential
for the use of UAVs in vegetation monitoring [11–13]. With UAVs equipped with multispectral or
hyperspectral sensors, the data are often used to build a vegetation index [14–18], which is an indicator
of plant vigor, canopy cover, leaf area index (LAI), disease incidence, plant nutrient levels, and even
biomass yields. Biomass monitoring, which commonly involves pre-processing of multispectral
images including radiometric correction, geometric correction, and image enhancement, is crucial to
breeders for yield prediction in order to improve crops and to growers since it affects agricultural
management practices [19–21]. Bendig et al. [22] used combined linear regression models to estimate
biomass (R2 = 0.9) with RGB vegetation indices in the early growth stages of maize. Vegetation
indices from these sensors can potentially be used for making decisions and performing actions
in farm management [23,24]. Since they can collect multiple images over the same area during
a flight, UAVs can also help determine plant height, which is useful in assessing the influence of
environmental conditions on plant performance and is an important phenotype for crop improvement
and production optimization.

During the growing season, variability in the height canopy of crops provides important
information on plant health, growth, and response to environmental effects. Recent studies have
shown that crop height can be derived from 3D dense point cloud data derived from the structure
from motion (SfM) [25,26]. High resolution images have been shown to improve the plant-height
model accuracy [27,28]. Willkomm et al. [29] generated models with spatial resolutions of 0.5 cm and
found that modelled plant heights were on average 10 to 20 cm shorter than ground truth estimates.
Some reasons for height underestimation were determined to be negative heights of ground surfaces
in the crop surface model (CSM) and depression of the plant canopy affected by wind was caused by
the movement of UAV rotors. More recently, Malambo et al. [30] found a high correlation between
the digital surface model (DSM) obtained through SfM with rotary-wing unmanned aerial systems
(UAS) image data and terrestrial laser scanning (TLS) from a spray tractor for the purpose of detecting
maize and sorghum plant height. Results highlighted the potential for reducing laborious manual
height measurement through rotary-wing UAS and SfM. In order to develop agricultural utility, it is
important to develop accurate plant-height measurement capability with fixed-wing aircraft, which
can cover larger acreages per flight, can also fly higher and faster, and may require a smaller number
of images to get adequate ground coverage.

While UAVs can be used to collect very high-resolution data with various sensors and the data
can be used for 3D visualization on a large scale [31], their disadvantages include limitations associated
with weather, flight time and area coverage, and official permission to fly [32,33]. Consumers tend
to use rotary-wing UAVs but fixed-wing models are not uncommon in agricultural research because
they obtain lift from their wing surfaces and can typically cover larger areas on a single battery
charge. This fact also makes fixed-wing UAVs attractive for the potential use at larger production farm
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fields. However, they fly faster than rotary-wing UAVs, which adds difficulty to the selection of an
appropriate consumer-grade sensor because higher sensitivity and faster response may be required.
The quality of the UAV-based image can be degraded due to image motion blur whether rotary-wing or
fixed-wing UAVs are used. Image motion blur caused by camera movement during image acquisition
under strong winds and turbulence is a significant obstacle to automatic data processing based on
UAV imagery [34]. Several procedures including registration, orthomosaic generation, and 3D point
cloud generation by SfM may be significantly affected by the image motion blur [35]. One specific
issue is that sufficient tie point correspondence for successful image matching is a critical factor for
achieving high-quality 3D models in common software like PhotoScan or Pix4D mapper. Tie point
matching can also be made difficult by uniformity of pixels in flat terrain [36].

The overall goals of this research are to develop methods that simplify UAV remote sensing
for eventual use in production agriculture and to maximize the reliability of the data in both crop
improvement and production optimization. The specific objectives of this study were (1) to evaluate
sorghum plant height estimates with SfM from a fixed-wing UAV that can cover a relatively large
research field in one flight, (2) to evaluate improvements in plant height accuracy with height
calibration based on ground control points (GCPs) having multiple known height levels, and (3) to
identify remaining sources of error in plant height estimates.

2. Materials and Methods

2.1. Trial Plots

2.1.1. Experimental Setup

A 180-m by 40-m sorghum field at Texas A&M AgriLife Research’s Brazos Bottom research farm
(headquarters at latitude 30.549635 N, longitude 96.436821 W in WGS-84 coordinate system) near
College Station, TX, USA (Figure 1a) was used for the plant height measurement experiment. The total
size of the entire field area covered during the experimental fixed-wing UAV flights was 0.28 km2.
The regional climate is categorized as temperate with an average annual temperature of 20.5 ◦C and
average precipitation of 1018 mm. Six different types of sorghum germplasm were included in the
experimental tests: one elite hybrid sorghum (ADFH), one historical elite hybrid (UAVH), three exotic
early-program hybrids (RSC135, RSC37, and RSC114), and one bioenergy sorghum (UAVB). Each
test was planted on April 1, 2017 and consisted of one-row plots measuring 6.71 m long with 1.22-m
alleys except for UAVB, which consisted of four-row plots. The six tests had four replications each
and altogether composed 700 plots (Figure 1b) in a randomized complete block design. Standard
agronomic practices for grain sorghum and bioenergy sorghum in central Texas were employed.
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Figure 1. (a) Experiment field at Texas A&M AgriLife Research Farm. (b) Overview of the plot design
in sorghum field with 700 plots.

2.1.2. Ground-Truth Measurements of Plant Height

Ground-truth height (m) measurements were recorded manually with a meter stick. For plants
that had not yet emerged from the early vegetative stage (whorl), measurements were taken from the
ground vertically to the apex (highest point) of the plant (Figure 2a). For plants that had reached a
reproductive stage, measurements were taken from the ground near the stalk and followed to the tip
of the panicle (Figure 2b). Both measurements were essentially considered to be apex measurements.
Therefore, they were treated the same relative to the UAS-derived measurements. Ground-truth
measurements were recorded weekly or biweekly from May 26 to July 27 at the front of each plot
(Table 1) by looking across the sorghum apices or panicles to get an estimated mean of the entire plot.
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Table 1. UAV flights with corresponding field plant height measurements.

Flight Date Ground Truth
Date

Days
Difference

Number of
Images

Number of
Plots Wind Speed

05/24 05/26 2 231 700 4.4 m/s
05/30 05/31 1 242 700 2.2 m/s
06/16 06/16 0 242 700 6.2 m/s
06/29 07/03 4 233 700 4.0 m/s
07/25 07/27 2 240 610 7.2 m/s

2.2. Image Data Acquisition

2.2.1. UAV Platform

The UAV used in this study was a Tuffwing Mapper (TuffWing LLC, Boerne, USA) fixed-wing
UAV, which is a ready-to-fly kit with semi-autonomous horizontal take-off and landing (HTOL)
(Figure 3). The Tuffwing weighs 1.9 kg and has a wingspan of 1.22 m and a maximum endurance
of 40 min (Table 2). This UAV can perform user-defined waypoint flights with a differential global
navigation satellite system (GNSS) receiver. It uses a brushless DC propeller motor powered by a
lithium polymer battery with a capacity of 6200 mAh.Sensors 2018, 18, x FOR PEER REVIEW  5 of 21 
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Figure 3. The fixed-wing UAV used in this study. (a) Tuffwing fixed-wing UAV. (b) The UAV in the
take-off position.

Table 2. Specifications of the fixed-wing unmanned aerial vehicle (UAV) platform.

Items Specifications

Wingspan 1.22 m
Weight maximum 2 kg

Material EPP foam, carbon fiber tubes, coroplast
Battery 6200 mAh, lithium polymer

Flight planning software Mission Planner
Endurance 40 minutes

Minimum air speed 16 meters per second

2.2.2. Sensor

A visible-light camera ILCE-6000 (Sony Inc., Tokyo, Japan) (Figure 4, Table 3) with an integrated
global positioning system (GPS) sensor was attached to the Tuffwing UAV. The visible camera produces
24.3-megapixel-format (6000× 4000) images in true color bands (red, green, blue) with 8-bit radiometric
resolution. These images were stored on a secure digital data card. To achieve the desired forward
overlap of 75% between images, the camera was triggered by the UAV’s controller to vary the frame
rate based on flight speed.
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Figure 4. The visible-light camera used in this study.

Table 3. Specifications of the visible-light camera.

Items Descriptions Specifications

Sensor
Sensor APS-C type (23.5 × 15.6 mm)

Number of pixels 24.3 MP
Image sensor aspect ratio 3:2

Exposure ISO sensitivity ISO 100-25600

Shutter
Shutter speed 1/4000 to 30 s

Flash sync. speed 1/160 s

Lens Focal length
Aperture range

16 mm
F22 to F2.8

Size and Weight Dimensions (W × H × L) 4.72 × 2.63 × 1.78 in
Weight (with battery) 0.34 kg

2.2.3. Flight Control

The Pixhawk controller (Figure 5, Table 4) used on the UAV includes a computer that
autonomously controls flight navigation with the NuttX real-time operating system. Each flight
was conducted in the auto-pilot mode with the “Mission Planner” ground station software [37] along
flight paths that were based on camera specifications, field area corner coordinates, flying parameters,
and an overlap percentage between images.
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Table 4. Specifications of the Pixhawk controller for the fixed-wing UAV.

Items Specifications

Processor
32-bit ARM Cortex M4 core with FPU

168 Mhz/256 KB RAM/2 MB Flash
32-bit failsafe co-processor

Sensors
MPU6000 as main accel and gyro

ST Micro 14-bit accelerometer/compass (magnetometer)
ST Micro 16-bit gyroscope

Dimensions (W × H × L) 2.0 × 0.6 × 3.2 in

Weight 3.8 g
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2.2.4. Flight Procedures

The focal length of the camera lens was a 16 mm with a fixed zoom to achieve a ground resolution
of approximately 2.74 cm/pixels at the standard operating procedure with a maximum altitude of
120 m above the ground level (AGL). During flight missions, the UAV was flown at an AGL of 120 m
with a ground speed of 17 m/s within 2 h of solar noon. The shutter speed was fixed for each flight
with the focus distance set at infinity. During each flight mission, aerial images were captured with an
overlap of 75% among both forward and side directions. Images were collected only on cloud-free days.

2.3. Ground Control Points (GCPs)

2.3.1. Structure

Eight multi-level GCPs (Figure 6) were constructed with wooden frames and affixed to the ground
with metal anchors to act as a semi-permanent calibration system, which is located around the field
covered by UAV flights. The eight GCPs were used for geo-referencing the field orthomosaic and then
five of the eight were also used for plant height calibration only in the sorghum breeding plots. Flights
of the entire field required 14 flight paths while the sorghum breeding plots would have required only
three flight paths. The DSM of the sorghum breeding plots was clipped out from the DSM of the entire
field. Each GCP had two platforms with three 61 cm square radiometric calibration references. Each
GCP level is 183 m long with the top level being 61 cm wide and the lower level being 76 cm wide. This
gives roughly 500 pixels for each calibration reference, which makes it very easy to precisely identify
specific positions on the GCP for purposes of georectification. The radiometric references were used in
another study, but in this study, the GCPs were used strictly for geo-referencing and height calibration.
The heights from the ground to the bottom and top panels were 91.5 cm and 183 cm, respectively,
which took into account the height variation of the sorghum plants from the early vegetative stage to
the reproductive stage.
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crop height calibration (Photo Credit: Cody Bagnall).

2.3.2. Uses

The GCPs were uniformly distributed across the field (Figure 1a). A Trimble R8 GNSS unit and
an R7 base station, accurate to 1 cm + 1 ppm horizontal and 2 cm + 1 ppm vertical after post-correction
based on known benchmarks, was used to collect a GPS point at the front left and front right corner
of the lower deck for all eight GCPs. Later, the GCPs were identified in the mosaicked images for
geo-referencing and height calibration. Because the heights of each GCP level were known, plant
height estimates were calibrated based on the GCP platform heights.
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2.4. Image Data Processing

2.4.1. UAV SfM Method

Images collected on each date were mosaicked in PhotoScan Professional 1.3.1 (Agisoft LLC,
St. Petersburg, Russia) software and a DSM was calculated with SfM involving interpolation of 3D
point clouds, which was accomplished in PhotoScan. The processing steps included aligning images,
building a dense point cloud, building a 3D mesh, and building a field geometry (Figure 7, Table 5).
In the image-alignment step, the GCP positions were imported, manually located, and matched on
images to determine camera position for each image and to refine the camera calibration parameters
for the software, which included camera type, focal length, radial distortion coefficients, and tangential
distortion coefficients. In the point cloud building step, a dense point cloud model was generated
based on the estimated camera positions to provide accurate depth map data for each image overlap
area. “Mild” depth filtering—a built-in median filtering algorithm mode—was used to sort the outliers
from the generated dense point cloud. In the 3D mesh building step, a 3D polygonal mesh was
constructed to produce an estimated crop surface based on the dense point cloud through an algorithm
called “Height Field.” In the field geometry building step, the software requires selection of a blending
mode for texture generation and this mode was set as the “Mosaic” to generate the orthomosaic and
DSM in the *TIF image format.
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the collected UAV imagery.

Table 5. Parameters of the UAV flights and Agisoft Photoscan processing used in the study.

Items Descriptions Values

Alignment Accuracy High
Adaptive camera model fitting Yes

Dense point cloud Quality High
Depth filtering Mild

DEM
Model resolution Around 5.52 cm/pix

Source data Dense cloud

Orthomosaic
Coordinate system WGS 84/UTM zone 14N

Blending mode Mosaic

2.4.2. Crop Height Analysis

Plot boundaries were created in ArcGIS 10.3 (ESRI, Redlands, CA, USA) based on the experimental
layout dimensions shown in Figure 1. The plot boundaries were then moved inward by 15 cm with
the ArcGIS buffer tool in order to exclude edge effects due to the potential foliage encroachment from
adjacent plots (Figure 8). The digital terrain model (DTM) was created by using SfM to measure bare
ground elevations in the unplanted field and the DSM was created through a combination of the bare
ground elevations and the crop features in the field. To perform plant height calibration from the DSM,
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a linear calibration equation was developed for each flight date (Equation (1)) with three points and
were extracted from the DTM, GCP level 1, and GCP level 2 (Figure 9). These three calibration points
were the median of four samples from each level at each GCP, ground, lower platform, and upper
platform. The samples included four-pixels-sized polygon grids for extracting original height values
from the DSM. Height calibration was implemented with aerial measured values of the GCPs based on
the derived linear calibration equation. A key step in estimating plant height is subtracting the DTM
from the DSM [30,38]. Maximum plant height was extracted as the final plant height for each plot
(genotype). Experimental data for UAVB on 7/25 were not included in the analysis since the sample
had been harvested earlier.

Calibrated Height = Slope×Original Height± Intercept (1)

where original height is taken from the uncalibrated DSM and calibrated height is taken from the
calibrated DSM based on the multi-level GCPs.Sensors 2018, 18, x FOR PEER REVIEW  9 of 21 
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2.4.3. Comparison with Ground-Truth Measurements

The estimated plant heights from the fixed-wing UAV were compared to the ground-truth
measurements across the 700 sorghum plots that uniformly distributed with fixed gaps (0.76 m)
between the plots. Coefficient of determination (R2), root mean square error (RMSE), and relative
RMSE as shown in Equation (2) were calculated for each date and genotype. Trends relative to over
or underestimation in the ground-truth and UAV-estimated data were considered. Moreover, the
improvements in accuracy with GCP-based calibration were also considered.

Relative RMSE = 100%×

√
1
n ∑n

i=1 (xi − x̂i)
2

1
n ∑n

i=1 xi
(2)
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where n is the number of plots, xi is the ground-truth plant height for plot i, and x̂i is the UAV-estimated
plant height for plot i.

2.5. Image Quality Assessment

Image blur can reduce DSM accuracy [39] due to camera vibration, and image-object motion,
during flight (Figure 10). Thus, image quality assessment was performed with a method called
“no-reference blur estimation” to quantify the blurriness of images. This method was discussed by
Crete et al. [40] and it discriminates between different levels of blur perceptible in the same base image
(Figure 11).
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In the first step of calculating blurriness, the intensity variations between adjacent pixels of the
original mosaicked image were calculated. Equation (3) involves the absolute values of the variations
between adjacent pixels in an original m × n image’s horizontal (∆p1) and vertical (∆p2) directions.

∆p1 =
∣∣∣p1i

j − p1i−1
j

∣∣∣, ∆p2 =
∣∣∣p2i

j − p2i
j−1

∣∣∣ (3)

In the second step, a low-pass filter (Equation (4)) was used on the original mosaicked image
to reduce the variations between the adjacent pixels. Equation (5) involves the variation of adjacent
pixels in the horizontal (∆q1) and vertical (∆q2) directions of the blurred image.

h1 =
1
4
[111111111], h2 = h1′ (4)

∆q1 = p1× h1 =
∣∣∣q1i

j − q1i−1
j

∣∣∣, ∆q2 = p2× h2 =
∣∣∣q2i

j − q2i
j−1

∣∣∣ (5)
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In the third step, the image blurriness was evaluated through a comparison of intensity variations
between the original image and the blurred image. Equation (6) involves the variation of adjacent
pixels between the original and blurred images in the horizontal (∆u1) and vertical (∆u2) directions.
A high variation indicates that the original image was clear. Otherwise, the original image was already
somewhat blurred.

∆u1 = max(0, ∆p1− ∆q1), ∆u2 = max(0, ∆p2− ∆q2) (6)

Lastly, Equation (7) involves the sum of the calculated intensity variations for the second and
third steps. The evaluated image blurriness was normalized in a defined range from 0 to 1. In addition,
the final blurriness of the image was defined in the horizontal (η1) and vertical (η2) directions, which
is shown in Equation (8).

η1 = 1−
∑m−1,n−1

i=1,j=1 ∆u1

∑m−1,n−1
i=1,j=1 ∆p1

, η2 = 1−
∑m−1,n−1

i=1,j=1 ∆u2

∑m−1,n−1
i=1,j=1 ∆p2

(7)

blurriness = max(η1, η2) (8)

The effects of image quality on plant height measurement were observed by considering the
relationship between image blur and plant-height error and image blurriness was compared to wind
speed measured with a nearby ground-based weather station on each flight date to examine the cause
of the image blur.

3. Results

3.1. Plant Height Estimation with Fixed-Wing UAV

3.1.1. SfM Model Accuracy and Trends in Ground-Truth and Estimated Plant-Height Data

The RMSEs of the GCP coordinates over five flights are shown in Table 6. The X-coordinate RMSEs
ranged from 1.83 to 2.52 cm, the Y-coordinate RMSEs ranged from 1.72 to 3.09 cm, and the Z-coordinate
RMSEs ranged from 0.96 to 2.22 cm, which indicates that the geo-referencing data provided positioning
accuracy well under 4 cm in all coordinate directions.

Table 6. RMSE at GCP locations for the SfM model over five flights.

Flight Date X_RMSE (cm) Y_RMSE (cm) Z_RMSE (cm)

5/24 2.52 1.72 1.88
5/30 2.23 2.12 0.96
6/16 2.29 1.96 1.83
6/29 1.83 3.09 2.22
7/25 1.87 2.55 2.18

Figure 12 shows the digital surface model outputs of the test sorghum field. Changes in crop
coverage and plant height were well represented in terms of plant growth across the five dates.
As mentioned previously, experimental data for UAVB on 7/25 were not included in the analysis.
Figure 13 shows a comparison between UAV-estimated plant height and the standard ground-based
method. Plant height measurements varied significantly at different growth stages across the five
dates from May to July 2017. Estimates from UAV-based and field measurements showed consistent
crop growth up to June 16 and a levelling off afterward (except for UAVB). Measurement biases were
evident on May 24. Plant height errors were in the range of 0.161 to 0.222 m for both experimental
tests during the plants’ early vegetative stage. Furthermore, UAV estimates on July 25 also appeared to
underestimate plant height during the plants’ reproductive stage. Errors ranged from 0.197 to 0.320 m.
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3.1.2. Accuracy Assessment of SfM Plant-Height Estimates

Strong correlations between UAV estimates and ground-truth measurements were determined
(R2 = 0.80, 0.82, 0.72, 0.88, and 0.62 for May 24, May 30, June 16, June 29, and July 25, respectively),
which is shown in Figure 14. This implies that SfM is effective in estimating the heights of sorghum.
The UAV data estimated on June 16 did not fit with the ideal line well because of the effects of the
image blurring. Strong linear relationships (R2 > 0.70) generally existed between UAV estimates and
ground-truth measurements for most of the sorghum germplasm types, which is shown in Figure 15.
However, since expected correlations were weaker for the advanced hybrids UAVH and ADFH, which
had relatively low height variation because of the lesser range in the height data (yellow and gray dots
in Figure 14). When all experimental tests were combined into one data set, the R2 value was around
0.80 for each flight date except July 25 (R2 = 0.62). The RMSE comparison between UAV estimates
and ground-truth measurements for all sorghum germplasm types is shown in Figure 16. Relatively
low RMSE values (<0.20 m) existed for May 30, June 16, and June 29. Furthermore, the RMSE values
for each flight date on all the combined experimental tests were lower than 0.2 m except for July 25
(0.26 m).
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in plant height data. The relative RMSEs in relation to measured heights for each flight date are given 
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the error is relatively consistent when the plants get taller. Furthermore, the calibration reduced 
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3.2. Plant Height Accuracy Improvement with Height Calibration

Linear calibrations of UAV-based plant height estimates did not significantly increase the
correlations between UAV estimates and ground truth (Figure 17). However, calibration did
significantly reduce the RMSE values. The trend lines of the calibrated data were closer to the
1:1 ground truth line than the uncalibrated trend line on every date due to the biases present in the
original DSM (uncalibrated data) in which the actual value of the ground surface and actual maximum
plant height were unknown. Therefore, the calibration appears to reduce the inherent bias in plant
height data. The relative RMSEs in relation to measured heights for each flight date are given in Table 7,
which shows an overall downward trend during the season, as might be expected because the error is
relatively consistent when the plants get taller. Furthermore, the calibration reduced RMSE to 0.19 m,
0.07 m, 0.18 m, 0.12 m, and 0.26 m for May 24, May 30, June 16, June 29, and July 25, respectively. Thus,
the error in plant height estimates was reduced by around 20% (21%, 29%, 18%, 17%, and 13% for May
24, May 30, June 16, June 29, and July 25, respectively) overall with calibration.

Sensors 2018, 18, x FOR PEER REVIEW  15 of 21 

 

 
Figure 16. Variation of RMSE for sorghum height estimate over five flights. 

3.2. Plant Height Accuracy Improvement with Height Calibration 

Linear calibrations of UAV-based plant height estimates did not significantly increase the 
correlations between UAV estimates and ground truth (Figure 17). However, calibration did 
significantly reduce the RMSE values. The trend lines of the calibrated data were closer to the 1:1 
ground truth line than the uncalibrated trend line on every date due to the biases present in the 
original DSM (uncalibrated data) in which the actual value of the ground surface and actual 
maximum plant height were unknown. Therefore, the calibration appears to reduce the inherent bias 
in plant height data. The relative RMSEs in relation to measured heights for each flight date are given 
in Table 7, which shows an overall downward trend during the season, as might be expected because 
the error is relatively consistent when the plants get taller. Furthermore, the calibration reduced 
RMSE to 0.19 m, 0.07 m, 0.18 m, 0.12 m, and 0.26 m for May 24, May 30, June 16, June 29, and July 25, 
respectively. Thus, the error in plant height estimates was reduced by around 20% (21%, 29%, 18%, 
17%, and 13% for May 24, May 30, June 16, June 29, and July 25, respectively) overall with calibration. 

(a)                                         (b) 

Figure 17. Cont.



Sensors 2018, 18, 4092 16 of 21
Sensors 2018, 18, x FOR PEER REVIEW  16 of 21 

 

  
(c)                                         (d) 

  
(e) 

Figure 17. Comparison of uncalibrated data and calibrated data through the height calibration 
method over five flights on (a) 05/24, (b) 05/30, (c) 06/16, (d) 06/29, and (e) 07/25. The black dotted line 
indicates a 1:1 ground truth line. 

Table 7. Accuracy improvement results between uncalibrated data and calibrated data from the 
height calibration method over five flights. 

Date 
Performance 

Uncalibrated RMSE Calibrated RMSE Improvement RMSE R2 Relative RMSE 
05/24 0.23 m 0.19 m 21.3% 0.81 20.4% 
05/30 0.09 m 0.07 m 29.2% 0.83 6.1% 
06/16 0.21 m 0.18 m 17.7% 0.73 12.0% 
06/29 0.14 m 0.12 m 17.4% 0.85 8.0% 
07/25 0.29 m 0.26 m 12.8% 0.63 16.2% 

3.3. Plant Height Accuracy Correlation with Image Quality 

As exemplified in Figure 10, some images were blurry, which makes it difficult in those cases to 
obtain high-accuracy plant height estimates. This problem was particularly acute on July 25 when the 
RMSE was at its highest at 0.26 m. As previously mentioned, the level of blur in each mosaicked 
image was quantified and a strong correlation (R2 = 0.85) was observed between image quality and 
plant height RMSE, which is shown in Figure 18a. Low blurriness was associated with low plant 
height RMSE. The influence of wind speed was considered and a strong linear relationship (R2 = 0.99) 
was found to exist between wind speed on the time of flight and image blurriness, which is shown 

Figure 17. Comparison of uncalibrated data and calibrated data through the height calibration method
over five flights on (a) 05/24, (b) 05/30, (c) 06/16, (d) 06/29, and (e) 07/25. The black dotted line
indicates a 1:1 ground truth line.

Table 7. Accuracy improvement results between uncalibrated data and calibrated data from the height
calibration method over five flights.

Date

Performance

Uncalibrated
RMSE

Calibrated
RMSE

Improvement
RMSE R2 Relative

RMSE

05/24 0.23 m 0.19 m 21.3% 0.81 20.4%
05/30 0.09 m 0.07 m 29.2% 0.83 6.1%
06/16 0.21 m 0.18 m 17.7% 0.73 12.0%
06/29 0.14 m 0.12 m 17.4% 0.85 8.0%
07/25 0.29 m 0.26 m 12.8% 0.63 16.2%

3.3. Plant Height Accuracy Correlation with Image Quality

As exemplified in Figure 10, some images were blurry, which makes it difficult in those cases to
obtain high-accuracy plant height estimates. This problem was particularly acute on July 25 when the
RMSE was at its highest at 0.26 m. As previously mentioned, the level of blur in each mosaicked image
was quantified and a strong correlation (R2 = 0.85) was observed between image quality and plant
height RMSE, which is shown in Figure 18a. Low blurriness was associated with low plant height
RMSE. The influence of wind speed was considered and a strong linear relationship (R2 = 0.99) was
found to exist between wind speed on the time of flight and image blurriness, which is shown in
Figure 18b. Thus, it is strongly suggested that weather conditions play a significant role in the accuracy
of plant height estimates from SfM with images collected by a fixed-wing UAV at 120 m AGL.
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Fixed-wing aircraft commonly use banking turns to maintain the flight-path direction when
crosswinds occur. If the aircraft rolls back and forth slightly in response to an unsteady crosswind,
the viewing angle toward the ground can change significantly very quickly, which may potentially
cause the image to blur. Therefore, it was expected that wind would have a stronger effect on the
blurriness of UAV images if the wind were across the flight path rather than along the flight path.
The effects of crosswinds were expected to be more severe in the horizontal direction in the images
than in the vertical direction. To evaluate this idea, the blurriness of raw images over five flights was
assessed in the horizontal and vertical directions, which is shown in Figure 19. The blurriness in the
horizontal direction was greater than in the vertical direction for each flight and the blurriness in the
horizontal direction was much greater than in the vertical direction on the windier days of 6/16 and
7/25. Furthermore, there was more blurriness if the wind direction was across the UAV flight path.
More blurriness and a greater difference between blurriness in the horizontal and vertical directions
occurred on the last three flight days (6/16, 6/29, and 7/25), which had larger acute angles between
flight paths and wind directions (80◦, 63◦, and 69◦).
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4. Discussion

As mentioned previously, Malambo et al. used SfM to estimate sorghum plant height from
rotary-wing UAV imagery [30]. Strong linear relationships between UAV-based and manually
measured plant height for sorghum (R2 = 0.67–0.85) with relatively low RMSE values (0.12–0.24 m)
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were observed. Furthermore, Chang et al. proposed a framework for sorghum plant height monitoring
with UAS data and identifying that the RMSE between field measurements and the proposed approach
was 0.33 m based on rotary-wing UAV [38]. These results are consistent with other studies [14,19]
focused on other crops. From a production-agriculture point of view, it is important to consider whether
fixed-wing aircraft flying higher that typical rotary-wing flights can produce accurate plant-height
estimates. In addition, being able to measure plant height over large areas could increase the speed
of plant breeding programs by increasing the number of plots monitored. Thus, this study involved
estimating sorghum plant height with images from a fixed-wing UAV at 120 m AGL. The plant-height
estimates showed a strong linear relationship (R2 > 0.70) with ground-truth measurements and RMSE
values (RMSE < 0.20 m) were generally small and comparable to those of previous studies with
rotary-wing UAVs at lower AGLs. Therefore, it is clear that fixed-wing UAVs at 120 m AGL have the
potential to estimate plant height, which enables measurements to be made over relatively larger fields
that could not be covered with standard hand based methods and might be too large for rotary-wing
UAVs. Some varieties in this study especially the early generation hybrids in the pollinator inbred line
had relatively high height variation and, thus, relationships were stronger because of the greater range
in the height data. In contrast, the advanced hybrids had relatively low height variation and, thus,
relationships were weaker because of the lesser range in the height data.

While it is evident that fixed-wing UAVs at 120 m AGL have the potential to estimate plant
height, it is critical to develop methods that are accurate and provide repeatable data. Proposed
methods to reduce error in plant-height measurements have been lacking in the literature. This
study considered two types of error: (1) height biases due to errors in the DTM and DSM and (2) the
effects of wind. The method proposed to reduce plant height biases involved calibration of the DSM
based on multi-level GCPs in the field at the time of flight. Results indicated that height calibration
was capable of significantly improving plant-height estimates (RMSE improvement ≈ 20%). This
reduction in error has important implications. Decisions regarding irrigation, fertilizer, and more
are often based on projected crop yield and, in many crops, there is a strong relationship between
yield and plant height [41]. Therefore, more accurate height measurements should result in improved
on-farm decision-making.

In addition to errors in the image-based DTM and DSM, it is important to consider possible
errors in the ground-truth data against which the UAV data are compared. For example, human data
collectors have a downward-looking perspective for height measurements during the plant’s early
vegetative stage. While the UAV measurements appeared to underestimate height on May 24, it is
likely that human error contributed to these inaccuracies. In addition, there was concern about errors
resulting from poor formation of point clouds that could result from the effects of wind either on the
aircraft or from the plants in the field. It is notable that plant height RMSE was strongly related to image
blurriness and image blurriness was strongly related to wind speed on the day of flight (Figure 18).
Furthermore, the influence of wind speed and direction on image blurriness in the horizontal and
vertical directions was analyzed to show the relationship between wind effects and image quality. It
is apparent that crosswinds had strong effects on plant height estimates. Thus, it is suggested that
weather conditions can play a major role in the accuracy of plant height estimates from fixed-wing
UAV images collected at 120 m AGL [19,42]. Further research needs to be done to improve 3D point
cloud accuracy by understanding and overcoming the sources of blurriness in captured images and
plant movement between overlapping images.

It is notable that UAV measurements also underestimated plant height on July 25. This effect may
have been caused by image blur or plant movements resulting from high wind speeds. As can be seen
in Table 1, the wind speed measured by a nearby weather station was 7.2 m/s on July 25, which is the
highest value over five flights. Previous studies [19,42] have indicated problems related to creating
high-resolution maps in windy conditions or when various noise effects in point clouds exist [43,44].
Overall, results of this study indicate that fixed-wing UAV images collected at 120 m AGL can be used
to estimate sorghum plant height and growth trends reasonably well and multi-level GCPs are helpful
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in reducing error on relatively flat terrain. However, some error sources like weather conditions remain
problematic. Some prior studies [45,46] have focused on conventional GCP applications in complex
topography. It should be possible to effectively apply height calibration with multi-level GCPs over
rough terrain if the GCPs are appropriately distributed across the field.

5. Conclusions

This work indicates the feasibility of using SfM on images collected from 120 m AGL with a
fixed-wing UAV to estimate sorghum plant height with reasonable accuracy on a relatively large
farm field. UAV-based plant height estimates on multiple dates were able to highlight trends in plant
growth. Discrepancies between UAV-based estimates and ground truth existed during the vegetative
stage, but this difference is likely caused by inaccuracy of ground truth due to the human viewing
perspective. Correlations between UAV-based estimates and ground truth were strong on all dates but
were clearly better on some dates than others. Furthermore, a new method for improving UAV-based
plant height estimates with multi-level GCPs was found to lower RMSE by about 20%. These results
indicate that multi-level GCP-based height calibration has a potential for future application where
accuracy is particularly important. Lastly, the image blur appeared to have a significant impact on the
accuracy of plant height estimation. A strong relationship (R2 = 0.85) was observed between image
quality and plant height RMSE and the influence of wind was a challenge in obtaining high-quality
plant height data. A strong linear relationship (R2 = 0.99) was identified between wind speed and
image blurriness. Image blur can also be caused by improper camera settings and care must be taken
to ensure that camera shutter speed is fast enough for fixed-wing UAV flights. In the future, different
lenses or exposure times should be investigated to reduce the error of the plant height estimation.
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