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Abstract: In this paper, the torsional stress effect on Giant Magneto-Impedance (GMI) was studied
in Co-rich amorphous wires. The study, which was conducted in the context of the development
of a current clamp based on GMI, considered torsion as a parameter of the influence of this sensor.
Both diagonal, Z11, and off-diagonal, Z21, components of the impedance tensor were investigated.
The samples were Co-rich wires with a 100 µ diameter. The wires were twisted positive and negative
angles with respect to a reference position. For each component of the impedance, the intrinsic
sensitivity and offset were measured as a function of the rotation angle. The results showed that
the sensitivity of the diagonal component at a given working point slightly increased for angles
between −90◦ to +90◦, whereas the sensitivity was almost constant for the off-diagonal component at
zero-field. The intrinsic offset in the diagonal configuration was almost unchanged for the rotation
angles considered, whereas this offset increased in the off-diagonal configuration. Furthermore,
the GMI ratio of Z11 was also measured as a function of the rotation angle for comparison purposes
with known data. The maximum of this ratio was obtained for a rotation angle of about 50◦.
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1. Introduction

Giant Magneto-Impedance (GMI) is a significant change of the impedance of some soft magnetic
materials when they are subjected to an external magnetic field. This change of the impedance is
directly related to the change of the skin depth of the high-frequency current in the magnetic conductor
through the change of the magnetic permeability of the material with the applied magnetic field [1].

The GMI effect is investigated for the realization of magnetic sensors. These sensors are based
on the impedance measurement of the sensitive element. They combine excellent features such
as high sensitivity and a large bandwidth (from DC to several megahertz). Despite its potential,
this technology is in fact still not very mature, especially for industrial applications. To our knowledge,
only a few “concrete” realizations or commercial versions of these sensors have been achieved [2–7].
The systematic use of GMI sensors requires a clear identification of the areas of application for which
these sensors can have clear advantages when compared to other mature magnetic sensor technologies.
Contactless electrical current measurement could be one of these areas. For such applications, the ability
of the GMI sensor to measure both DC and AC magnetic fields with the same sensitive element is clearly
an important feature. Moreover, the mechanical flexibility of some GMI elements (like amorphous
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wires) is another key and very useful advantage since it enables the sensitive wire to be deformed in
order to be aligned with the magnetic field produced by the measured current.

The work presented in this paper, which deals with the torsion stress effect, was actually conducted
in the context of a specific application. This concerns the use of GMI to realize a toroidal current clamp
(probe), which is mechanically flexible (not rigid) and which allows for both DC and AC measurements
with the same sensitive element. By far, satisfying these features could not be easily achieved using the
magnetic sensor technologies available. In this context, GMI clearly has a decisive advantage.

The basic principle of the current clamp using GMI is quite simple. The GMI wire circles the
conductor that carries the measured current Im. This current produces a circumferential field, Hm,
which is measured by the GMI element. In practice, the clamp must be opened to circle the conductor
and then closed to perform the measurement. Such a use of the clamp involves repetitive mechanical
stresses. The effect of these stresses, as parameters of influence, on the GMI response needs to be
carefully investigated. Repetitive bending is one such type of mechanical stress. Torsion stress
could also be involved. It actually depends on how the user manipulates the sensor to perform
the measurement. In practice, both bending and torsion stresses could be combined, resulting in a
global change of the GMI response. However, for obvious reasons of simplicity, the two effects were
studied separately.

Unlike the tensile effect, which has been intensively investigated (References [8–16] provide a
non-exhaustive list of these studies), the effect of bending and torsion stresses on GMI have been
investigated far less in amorphous GMI wires. The bending stress effect on the GMI response in
amorphous wires has been addressed in our recent work [17,18] and more recently in Reference [19].

To our knowledge, the torsion stress effect on diagonal GMI was studied in some
publications [16,20–26]. These publications evidently have great merit. However, on the one hand,
most of them deal mainly with the diagonal component of the impedance tensor. Moreover, only the
change of the GMI ratio of this component was considered under torsion stress. While this ratio is
frequently used as a factor of merit to quantify the GMI effect, it is not the most relevant quantity to
take into account for the sensor implementation. In fact, some GMI sensitive elements could have a
large GMI ratio and at the same time exhibit a low sensitivity around the working point [27]. In this
paper, the change of the diagonal component under torsion stress was addressed with particular
attention paid to the change of the most relevant quantities, namely the intrinsic offset and sensitivity
at a given working point. Nevertheless, the GMI ratio was also briefly considered in this study for
comparison purposes with other previous studies dealing with the torsion stress effect. On the other
hand, to our knowledge, the impact of torsion on the off-diagonal component has only been studied in
a few publications [28–30], despite the promising characteristics of this component for GMI sensors.
The change in sensitivity and offset near the zero-field point was not investigated. This is why an
investigation of the torsion stress effect on this off-diagonal component was conducted with a primary
focus on the change of the intrinsic sensitivity and offset near the zero-field. In this study, the torsion
stress was considered as a parameter of influence that affects the response of the GMI current sensor.

Section 2 of the paper presents, firstly, a brief overview of the quantities considered and the
general approach of the study. Secondly, a description of the setup and the experimental conditions is
given. The first results obtained are illustrated and discussed in Section 3.

2. Quantities Considered and Experimental Setup

In a GMI sensor, the sensitive wire is supplied by a high-frequency current, iac, of constant
amplitude, as illustrated in Figure 1.
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The impedance is a tensor which has two main components: the diagonal, 𝑍 , and off-diagonal, 
𝑍 , components [31–34]. The typical characteristics of these components as functions of the magnetic 
field, H, are illustrated in Figure 2. 
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magnet, for example. This external magnetic bias gives rise to an offset which is related to the value 
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Figure 1. Principle of the diagonal and off-diagonal GMI sensor.

The impedance is a tensor which has two main components: the diagonal, Z11, and off-diagonal,
Z21, components [31–34]. The typical characteristics of these components as functions of the magnetic
field, H, are illustrated in Figure 2.
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Figure 2. Typical behaviors of the diagonal and off-diagonal components of the impedance tensor in
amorphous wires.

Since the behavior of the modulus of Z11 is nonlinear, a GMI sensor based on this component
requires the use of a bias field (generally static bias), Hbias, to fix a working point in the almost
linear region. It is an axial external magnetic field, which could be produced using a coil or a
permanent magnet, for example. This external magnetic bias gives rise to an offset which is related
to the value of the impedance, |Z11(Hbias)|, at this field. When the measured field, Hm, is applied,
the voltage, vac, across the sensitive element is amplitude modulated by this field. After amplitude
demodulation, and offset suppression, the output voltage of the sensor is obtained. This output

is proportional to
∂Z11
∂H

∣∣∣
H=Hbias

× Iac × Hm, where Iac is the amplitude of the excitation current.

The intrinsic sensitivity, denoted as SΩ −11, is defined as being derivative of the impedance curve at

the bias point (SΩ−11(Hbias) =
∂|Z11|

∂H

∣∣∣∣
H=Hbias

).

It is also possible to introduce the voltage sensitivity, denoted as Sv-11, which takes into account
the amplitude, Iac, of the excitation current. This voltage sensitivity is defined by Equation (1)

Sv−11(Hbias) = SΩ−11(Hbias)× Iac =
∂|Z11|

∂H

∣∣∣∣∣
H=Hbias

× Iac (1)

One or the other of these quantities will be used, indifferently, in this paper.
A GMI sensor based on the off-diagonal component requires, a priori, no external axial magnetic

bias since both the real, Re{Z21}, and the imaginary, Im{Z21}, parts are intrinsically almost linear
and asymmetric (odd symmetry) with respect to the zero-field point, as seen in Figure 2. However,
the appearance of the off-diagonal component in wires with circumferential anisotropy requires the
use of a DC current flowing in the wire and producing a circumferential field, as is mentioned in
Section 3.2.



Sensors 2018, 18, 4121 4 of 11

Without the loss of generality, and for simplicity reasons, only the real part, Re{Z21}, is considered
(the imaginary part exhibits similar behavior). The working point is around the zero- field. In this case,
the offset is defined as the value of the real part at the zero-field, Re{Z21}(0), which is almost zero.
The intrinsic sensitivity, denoted as SΩ−21, is defined by the derivative of the curve at this same point
(SΩ−21(0) =

∂Re{Z21}
∂H

∣∣∣
H=0

).
In a similar way as for the diagonal component, the voltage sensitivity, denoted as Sv−21, is defined

by Equation (2)

Sv−21(0) = SΩ−21(0) . Iac =
∂Re{Z21}

∂H

∣∣∣∣
H=0

Iac (2)

For the intended application, which is the development of a GMI current clamp, the GMI sensor
should be implemented in closed-loop. The intrinsic voltage sensitivity, combined with the gain of
amplification of the conditioning electronics, determines the open-loop gain. This open-loop gain has
to be “high enough” to guarantee a well-regulated closed-loop. In this way, the sensor output is less
dependent on the imperfections of the open-loop. Some advantages of the closed-operation include
improved linearity, temperature dependence, and hysteresis of the sensor response as well as a higher
dynamic range [35]. The change of the intrinsic sensitivity under quantities of influence like torsion
stress must be known in order to compensate for it, if necessary. The general goal is to maintain a
“high enough” open-loop gain.

That is why the investigation of the change of the intrinsic sensitivity is investigated under torsion
for both diagonal and off-diagonal components. In addition, the change of the offset, which is another
practical issue, is also considered. Finally, for comparison purposes with other published works only,
the evolution of the GMI ratio for the diagonal component, Z11, under torsion is recalled.

A schematic of the experimental setup is shown in Figure 3.
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Figure 3. Schematic of the experimental setup for the investigation of the torsion stress effect on GMI
in amorphous wires.

The samples studied were Co-rich amorphous wires (Co-Fe-Si-B) with a 100 µm diameter from
Unitika. These wires exhibit nearly zero magnetostriction. A pick-up coil was wound around each
wire. The GMI element was soldered to a rotation device. The twisting of the wire was performed by
rotating this device, which ensures the application of a torsion with a defined rotation angle. Indeed,
this rotation device was graduated to measure the rotation angle starting from a reference position
corresponding to the zero angle.
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The wire was supplied by the high-frequency current, iac, using a signal generator and a
voltage-to-current convertor made by the resistor Rg. In the same way, a DC current could be supplied
to the wire using a DC source and the resistor Rb. The voltages, vac, across the wire, and vcoil, across the
pick-up coil, were demodulated using a lock-in amplifier. The output voltages of this lock-in amplifier
are proportional to the diagonal and off-diagonal components. A low-frequency (0.2 Hz) sweeping
of the magnetic field was applied to the sensitive element using the same pick-up coil. An electrical
“separation” between this low-frequency section and the high-frequency one was made using a choke
inductor Lchoke.

3. Results and Discussion

3.1. The GMI Ratio of the Diagonal Component

For this experiment, the GMI wire used was 6.5 cm long with a pick-up coil of about 1000 turns.
The high-frequency current, iac, had a frequency of 1 MHz and an amplitude of 3 mA. No DC current
was supplied to the wire. Figure 4 shows the modulus of the diagonal component for positive and
negative rotation angles of the sensitive element. The zero-degree angle corresponded to the position
at which the wire was initially soldered.

It can be seen that there is obviously a net change of the impedance curve with the torsion.
This change can be quantified using the GMI ratio defined by Equation (3)

∆|Z11|/|Z11|(%) =
||Z11|(H)− |Z11|(Hmax)|

|Z11|(Hmax)
× 100 (3)

where Hmax is the maximum available field.
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Figure 4. Modulus of the diagonal component for different rotation angles of the sensitive element.

For each rotation angle, this ratio has a maximum noted (∆|Z11|/|Z11|)max. This maximum is
plotted in Figure 5 as a function of the rotation angle. It can be seen that the behavior is not symmetrical
for positive and negative rotation angles. The maximum is obtained for a rotation angle near 50◦ and
not for a zero degree.
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These results are very close to the ones reported in Ref. [16], where a similar behavior in as-cast
Co-rich amorphous wires has been observed. The change in the GMI response was interpreted based
on a change in the domain structure. Indeed, in the case of negative magnetostriction, the domain
structure in the GMI wire consists of a core, which is axially magnetized, and an outer shell with
circular magnetization [36–40]. The wires used in our experiments have a nearly zero magnetostriction
constant. In this case, it is usually assumed that the magnetic structure is roughly the same as the
structure encountered in negative magnetostriction wires [16,24,36–38]. The torsion modifies this
spatial distribution of the magnetization close to the surface of the wire. This results in a modification
of the circumferential permeability and consequently of the GMI response with torsion. The asymmetry
in the GMI ratio in Figure 5 may indicate that there were already preexisting torsional stresses in
the wire, which may be due to the fabrication process. Some of these preexisting torsional stresses
have been partially compensated for a torsion corresponding to a rotation angle of 50◦ [16,23]. In this
context, it is to be noted that the torsion applied could in fact not completely compensate for these
internal stresses due to the complexity of their distribution [23].

3.2. Offset and Sensitivity of the Diagonal and Off-Diagonal Components

For this experiment, the GMI wire used was 9 cm long with a pick-up coil of about 1400 turns.
A high-frequency current, iac, of 1 MHz/5 mA was used. A DC current, Idc = 5 mA, was also supplied to
the wire. This current is required for the significant appearance of the off-diagonal component in wires
with circumferential anisotropy [31–34]. In addition, this current may make it possible to obtain an
anhysteretic field dependence of the impedance when its value exceeds a certain threshold [26,28–30].

It is worth noting that the use of a relatively low frequency of 1 MHz is justified by practical
considerations related to the parasitic resonance of the pick-up coil. This resonance is due to the
LC circuit formed by the inductance of the coil and the stray capacitance between the turns of the
winding. Indeed, for the off-diagonal configuration, the voltage sensitivity increases up to a maximum,
which is obtained for an optimum frequency. This sensitivity then decreases when the frequency
increases [29,41]. The optimum frequency is lower than the frequency of parasitic resonance of the
pick-up coil. For the GMI sensitive element and pick-up coil used, this optimum was experimentally
found to be about 1 MHz. Furthermore, the amplitude of the high-frequency current was chosen to be
relatively low to avoid the nonlinear regime of the GMI and to thereby guarantee a linear relationship
between the voltage and the current in the wire [42]. Finally, for a given AC current, the value (5 mA)
of the DC current was used as a trade-off between the sensitivity and the reduction of the level of
low-frequency intrinsic magnetic noise of the sensitive element [43].
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In summary, in practice, the set of values for the excitation (frequency, amplitude of the AC
current, and value of the DC current) was chosen to optimize the sensitivity and noise (under zero
torsion stress) while avoiding both nonlinear effects of the GMI and the paratactic resonance of the
pick-up coil. The impact of the torsion stress, as an influence parameter, was studied under these real
conditions of implementation of the GMI current clamp.

Figure 6 shows voltages proportional to the modulus of the diagonal component and to the real
part, Re{Z21}, of the off-diagonal component for a few rotation angles.
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A general change of both components with torsion is observed. The torsion seems to induce an
asymmetry of the curve for the diagonal component, whereas the odd symmetry of the off-diagonal
component seems to be well-preserved.

Voltages proportional to the offsets of these components are plotted in Figure 7.
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For the diagonal component, only a small change of this offset, at a given bias, was observed
for the range of rotation angles considered. In the off-diagonal case, the offset near the zero-field
point exhibited a significant change. At this first stage of investigation, and in a first approximation,
the change of the offset of this component at the zero-field could be roughly interpreted by knowing the
origin of the voltage induced in the pick-up coil. Indeed, in the absence of torsion stress, this induced
voltage results from the appearance of an AC longitudinal magnetization in the GMI wire, which is
circumferentially magnetized by the excitation current, iac. To observe this longitudinal component
of the magnetization, the static magnetization must follow a helical path around the direction of
the excitation current [31–34]. In the case of a GMI wire with an almost circumferential anisotropy,
as is the case with the wire used in this study, a DC static current, Idc, superimposed to the excitation
current, iac, is required. The static circumferential field produced by Idc, combined with the longitudinal
external measured field, allows the magnetization to have a helical path. Hence, in the absence of
an external measured field, there is no longitudinal magnetization and the coil voltage is almost
null. In other words, the offset is roughly null at the zero-field. When the wire is twisted, a helical
magnetic anisotropy could be induced so that an AC longitudinal magnetization component appears.
This magnetization component gives rise to a coil voltage, even when the external magnetic field is not
applied, that is to say, the offset at the zero-field is not null.

For the sensitivity of these components, the tendency of change was the opposite, as illustrated in
Figure 8. This sensitivity was almost unchanged for the off-diagonal component near the zero-field
point (a maximum change from−19.5 mV/(A/m) at zero angle to about−18 mV/(A/m) at 90 ◦). In the
case of the diagonal component, a significant change in the sensitivity at the bias field was observed.
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For this diagonal component, a rough estimation of the intrinsic sensitivity could generally be
given by the ratio between the field of the maximum of the impedance (which is closely related to the
field of anisotropy) and the value of the impedance at this field [27]. For the data in Figure 6, this ratio
increased, under torsion stress, in some linear behavior, from 0.42 Ω/(A/m) at−90◦ to 0.6 Ω/(A/m) at
90◦. At least, this general trend is consistent with the almost linear increase in the sensitivity measured
in Figure 8 in the range of rotation angles considered.

The experimental results showed a better offset stability for the diagonal component under torsion.
The sensitivity change was less important for the off-diagonal component near the zero-field point.

The torsion, as a parameter of influence of the GMI current sensor, directly influences the choice
of one or the other of the two components for sensor implementation. Usually, the offset change is
an issue, especially when the sensor in intended to measure DC magnetic fields. In this case, the use
of the diagonal component may be preferred. However, in this case, attention should be paid to
the gain of the open-loop, which changes with the torsion stress, through the change in the intrinsic
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sensitivity. The off-diagonal component still exhibits the advantage of odd symmetry, which was
preserved under torsion stress for the set of excitation parameters used. This preserved odd symmetry
near the zero-field point is important since it still allows for the implementation of the off-diagonal
sensor without making use of an axial bias field to fix the working point. This greatly simplifies the
design of the sensor.

Finally, it should be noted that the results presented were obtained for one set of excitation
parameters that allowed maximum sensitivity under zero torsion stress. In practice, this is a pragmatic
approach for considering the problem. However, both diagonal and off-diagonal components depend
on the high-frequency excitation current and on the DC current.
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