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Abstract: An underwater wireless sensor networks (UWSNs) is an emerging technology for
environmental monitoring and surveillance. One of the side effects of the low propagation speed
of acoustic waves is that routing protocols of terrestrial wireless networks are not applicable. To
address this problem, routing strategies focused on different aspects have been proposed: location
free, location based, opportunistic, cluster based, energy efficient, etc. These mechanisms usually
require measuring additional parameters, such as the angle of arrival of the signal or the depth of the
node, which makes them less efficient in terms of energy conservation. In this paper, we propose a
cross-layer proactive routing initialization mechanism that does not require additional measurements
and, at the same time, is energy efficient. The algorithm is designed to recreate a radial topology
with a gateway node, such that packets always use the shortest possible path from source to sink,
thus minimizing consumed energy. Collisions are avoided as much as possible during the path
initialization. The algorithm is suitable for 2D or 3D areas, and automatically adapts to a varying
number of nodes, allowing one to expand or decrease the networked volume easily.

Keywords: underwater; UWSN; location free; routing protocol; self-organized; self-configured;
wireless networks; proactive

1. Introduction

An underwater wireless sensor networks (UWSNs) is an emerging technology for environmental
monitoring and surveillance. Electromagnetic waves are not suitable for this transmission medium
because of their high absorption rate. Acoustic waves provide better performance in this regard.
However, the propagation speed of acoustic waves is only slightly larger than 1500 m/s, varying with
temperature, depth and salinity, which significantly increases the propagation delay. Routing protocols
designed for terrestrial wireless sensor networks (WSNs) are difficult to be adopted for UWSNs due
to this physical constraint, as they assume virtually instantaneous propagation, thus allowing for
more signaling overhead. The propagation delay is a constraint that must be handled at the medium
access control layer, which will try to utilize the channel as much as possible. Additionally, acoustic
transmission data rates are much lower than in aerial transmissions.

Terrestrial protocols for ad-hoc networks often rely on location information of the nodes, which,
for UWSNs, is at best a challenging task, due to the unavailability of underwater positioning systems.
Routing protocols for underwater sensor networks, which are based in the location information of
the nodes, usually require the existence of a special node, a sink node that is equipped with a global
positioning system (GPS) receiver to ascertain its location. The location of the rest of the nodes is
estimated with reference to the sink node. Range-based schemes use time of arrival (ToA) [1,2] or angle
of arrival (AoA) [3] techniques to estimate the distance between the nodes and, eventually, the location
of the nodes. These techniques require additional devices to measure the distance, which makes
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them bulkier and more energy demanding. They also require time synchronization, which is another
challenging task for underwater networks [4,5]. Autonomous underwater vehicles (AUVs) based
protocols [3–7] typically use an AUV to visit the sensor nodes and collect the data to be transmitted to
the gateway. The disadvantage of this scheme is obvious, as it requires additional resources to operate
the AUV.

A radial topology can be deployed in 2D or 3D, as shown in Figure 1, and can be used to monitor
sea volumes such as delta plumes, navigable straits, and archaeological sites as well as to secure
facilities such as harbors, trade routes, mining sites, etc. It can also be of high value to monitor the
surroundings of geological activity, such as the underwater volcano Tagoro, which erupted recently
near island El Hierro [8,9]. The possibility of real-time video transmissions over these topologies have
been analyzed in Reference [10]. In terms of interference, the worst case is when adjacent strings are
parallel to each other, and this will be the case considered.
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Routing is not an easy to solve problem in networks similar to the example of Figure 1. In
this paper, we describe a location free routing protocol for 2D/3D underwater radial networks. The
algorithm is designed to recreate the physical topology in the logical routing tables. The paths are
established in such a way that only the nodes located in the same radius (called strings, see Section 3)
will forward the data packets coming from other nodes which are farther from the sink. This way, all
the packets are transmitted via the shortest paths. The algorithm uses the knowledge of the topology
to initialize the paths. It is designed to avoid collisions and minimizes the overhead due to signaling.
All together, these characteristics help save as much energy as possible.

This structure also helps to balance traffic among nodes that are at the same distance from the
gateway such that energy depletion is as homogeneous as possible. Other proposals do not consider
the physical topology when building the routing trees, and thus they do not balance traffic among
routes, causing faster energy depletion of some nodes than others. Obviously, nodes closer to the
gateway will forward a larger number of packets, using up energy faster than nodes located farther,
which cannot be avoided

Our proposal uses a cross-layer approach by merging some steps of the route creation process
with the medium access control layer, in order to minimize the odds of packet collision. The algorithm
self-adapts to different network sizes and number of nodes, and, for example, would allow one ship to
drop the nodes into the sea and they would find their neighbors and automatically create the paths. It
minimizes the cost, in time and computational effort, of forwarding a packet and requires minimal
periodic maintenance of the routes.

The rest of the paper is organized as follows. Section 2 discusses existing routing protocols.
The overview of our proposed protocol is described in Section 3. Details of the protocol are given
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in Section 4. In Section 5, the packet formats are described. Section 6 mathematically analyzes the
performance of our proposal. Section 7 contains the simulation results for the validation of the
protocol’s algorithm.

2. Related Work

Routing protocols can be classified in two broad categories, namely, proactive and reactive. In
proactive protocols, the forwarding nodes already know the next node to which the packet has to be
forwarded, which reduces the forwarding time. Proactive protocols are, thus, more suitable for delay
sensitive data. However, they have some disadvantages as well. They need to update the routing
tables whenever the network topology changes or when node failures occur. Scalability is another
problem of proactive protocols [11].

In reactive protocols, a node finds the next hop when it receives a packet to be forwarded [12–15].
This causes additional delay and makes this type of protocol unsuitable for delay sensitive data.
However, periodic updates are not required, saving this overhead, and the network is scalable too.

Routing protocols can also be classified as location-based or location free. Location-based routing
protocols choose the forwarding node on the basis of the location. For example, the next node can
be chosen based on its distance to the destination or its depth. The additional measurement device
increases energy consumption.

In the rest of this section, we present an overview of existing routing protocols. Although a
taxonomic classification is hard to come by, we have classified the protocols, for the sake of presentation,
in these groups: location free, location based, opportunistic, cluster based, energy efficient, mobility
based and reliable data deliver protocols.

2.1. Location Free Protocols

The Network Layer Protocol for UANs (NLPU) [16] is a self-configured, proactive protocol based
on the concept of full-duplex channel utilization. The gateway is the master node, manages the
topology of the network and establishes the routes by means of a topology discovery probe. The probe
assigns channel codes to each node it travels through along the network. Conflict remains possible if
the nodes select the same channel. This issue is resolved by the common parent node. Once the probe
completely tours the network, a completion notice is sent back to the gateway. The protocol heavily
relies on full-duplex communication.

The Location Free Link State Routing (LFLSR) [17] protocol addresses the problem of
communication voids. Every node selects the next hop based on three metrics, namely hop count,
path quality, and depth. A beacon message is broadcast from the sink node and forwarded along the
network. This message is used to update the information of the paths. This protocol also requires a
pressure measurement device, because the beacon message is forwarded to the neighbor closest to the
surface for paths with similar quality.

2.2. Location Based Protocols

Vector Based Forwarding (VBF) is a location based protocol [18]. It introduced the concept of
virtual pipes, a set of nodes from the source to the sink that can possibly forward the packets (a virtual
circuit). Multiple nodes within the virtual pipe forward the data packets to counter packet losses
and node failures. However, in case of networks with low density of nodes, voids may exist, which
decreases the delivery ratio. The power consumption is mainly due to three-way handshaking. To
solve the problem of voids, Hop-by-Hop VBF (HH-VBF) [19] proposes local virtual pipes, from one
node to the next, rather than from source to destination. However, the signaling overhead is higher
than in VBF. The Adaptive Hop-by-Hop Vector-Based Forwarding (AHH-VBF) protocol [20] is based
on the HH-VBF protocol. AHH-VBF may change the direction of the virtual pipeline and its radius to
restrict the forwarding range of the packets. As a consequence, the reliability of the packet delivery
increases in sparse networks and duplicate packets are fewer than in dense networks. Power control is
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also employed. LB-AGR [21] routes the packets on the basis of the difference in available power, node
density and proximity. Compared to VBF the packet delivery ratio is poorer, but the average energy
consumption is significantly better.

Directional Flooding-based Routing (DFR) [12] assumes that every node knows the locations of
the next-hop node and the destination node. Forwarding nodes are selected on the basis of the link
quality and angle of arrival. In Focus Beam Routing (FBR) [22], each node has location information
of the final destination. The forwarding area is selected based on transmission power. If there is no
node present in the forwarding area, the power is increased. Sector-Based Routing with Destination
Location Prediction (SBR-DLP) [23] assumes that every node knows the movement of the destination
nodes. Pre-planned movement makes implementation of SBR-DLP quite limited.

In the Location-Aware Routing Protocol (LARP) [24], the sink nodes find their location using GPS
and broadcast their location coordinates. The other nodes calculate their location by using the reference
of at least three sink nodes. When the location of a packet destination is not known, the sender queries
the sink nodes. The sender finds the next hop by broadcasting the location of the destination node
and a “moving direction” packet. If a receiving node finds that it is in the same direction, it replies,
and the packet is forwarded. Hop-by-Hop Dynamic Addressing Based Routing (H2-DAB) [25] uses
dynamic addresses for the nodes, such that they reflect their depth levels using shorter addresses for
nodes closer to the surface.

2.3. Opportunistic Protocols

The Depth Based Routing protocol (DBR) [26] is based on opportunistic routing. Every node
ranks the quality of the route and the next hop is based on the number of hops. There is no mechanism
of recovery in case that there is no forwarding node in the direction of the sink node. If the depth of
the neighbor receiving the packet is less than the depth of the sender, it will forward the packet. Nodes
closer to the sink forward the packet first. However, communication void problems may occur if the
nodes are very sparse. The Weighting Depth and Forwarding Area Division DBR (WDFAD-DBR) [27]
protocol considers the depths of expected forwarding nodes to improve the delivery ratio, using a
location prediction mechanism. The forwarding region adaptively changes according to the density
of nodes and the channel conditions, to reduce the number of duplicate packets. Segmented Data
Reliable HydroCast [13] is similar to DBR, but it addresses the problem of voids and local maxima.
Each local maximum node maintains a recovery route towards a neighbor deeper than itself. It has a
higher energy consumption compared to DBR.

The Multi-Sink Opportunistic Routing Protocol (MSORP) [28] uses a two tier topology. The
bottom tier includes the sensor nodes, the mesh nodes and the underwater (UW) sinks and the top
tier contains the surface buoy and the monitoring center. Sensor nodes send their data to mesh
nodes, which aggregate the data and forward it to the sink. Void-Aware Pressure Routing (VAPR) [29]
uses depth information, hop count and sequence numbers to find the next hop and the directional
path. Sink nodes start the localization process by transmitting beacon packets. In order to elude
the voids in the network, the next hop selection is based on the data forwarding direction and the
next-hop’s data forwarding direction. Efficient Opportunistic Routing Technology (EFFORT) [30] uses
opportunistic end-to-end cost (OEC) to reduce the number of forwarding nodes, and thus increase the
network lifetime. The OEC cost is determined on the basis of a forwarding node’s residual energy and
link reliability.

Opportunistic Void Avoidance Routing (OVAR) [31] allows nodes which are farther away from
the sink than the sender to take part in packet forwarding. However, the nodes closer to the sink node
will have priority. This helps to elude the voids or local maxima problem.

2.4. Cluster Based Protocols

The Distributed Minimum-Cost Clustering Protocol (MCCP) [32] forms clusters based on the
total energy required to send data to the cluster head, the residual energy of the nodes of a cluster,
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and the cluster heads’ relative distance to the sink. Each cluster head candidate constructs its set
of neighbors. The costs of the clusters are exchanged to minimize the overall cost. MCCP uses a
centralized approach, designating more cluster heads around the sink node to balance the traffic load
and the energy consumption by the cluster heads. In the Distributed Underwater Clustering Scheme
(DUCS) [14] protocol, the nodes keep rotating the role of cluster head among themselves to conserve
energy. In the Temporary Cluster Based Routing (TCBR) [33], multiple sinks are used to increase the
delivery ratio. Special nodes, called couriers, collect data and transmit it to one of the sink nodes.
TCBR is not suitable for time critical applications.

Greedy Geographic Forwarding based on Geospatial Division (GGFGD) and Geographic
Forwarding based on Geospatial Division (GFGD) [34] are 3D routing protocols. In GGFGD, first the
target cluster is selected. The distance of the target cluster from the sink must be shorter than the
distance from the current cluster. This may make the total path longer. Then, the next hop is selected
within the target cluster. GFGD imposes the constraint that the target cluster must be surface-adjacent.
GGFGD always has a longer path than GFGD, but, compared to Multipath Power-Control Transmission
(MPT) (described in Section 2.5), both GGFGD and GFGD have longer paths because they take path
loss, transmission delay, and residual energy level as part of the selection criteria as well, and, thus
have higher average delay.

2.5. Energy Efficient Protocols

The Information-Carrying Routing Protocol (ICRP) [15] is an energy-efficient, real-time, scalable
routing protocol. The source node checks the existing route to the destination when it has packets
to send. If there is no existing route, it initiates a route formation process by broadcasting the data
packet, which also carries the route discovery message. All the nodes that broadcast the data packet
also maintain the reverse path. Route discovery is required every time the lifetime of the route expires.
The Reliable and Energy Balanced Routing (REBAR) protocol [35] adaptively changes the broadcast
domain to balance the energy consumption among the nodes. Nodes near the sink have a smaller
radius to decrease their chances of being involved in routing, which increases their working life.

The Energy-Efficient Routing Protocol (EUROP) [36] reduces energy consumption by reducing
the number of broadcast messages. EUROP uses pressure sensors in order to measure the depth,
thus avoiding the need for hello messages. In the Power Efficient Routing (PER) protocol [37],
the forwarding node is selected on the basis of distance, angle between the neighboring nodes,
and residual energy. A node forwards the packet to the next node if the number of received
duplicates does not exceed the limit. Compared to DBR, its energy consumption is lower. In the
Energy-Efficient Depth-Based Routing (EEDBR) [38] protocol, the nodes share their depth and residual
energy information with their neighbors. Packets are held by nodes for a certain time based on the
residual energy, to avoid duplicates and balance the energy costs of packet forwarding. The nodes
having less energy will wait longer. The Reliable Energy-Efficient Routing Protocol [39] takes into
account link quality, physical distance, and residual energy. The three metrics are computed and
shared by all the nodes.

The Delay-Aware Energy-Efficient Routing Protocol (DEEP) [40] is a 3-D routing protocol based
on energy efficiency and collision rate. There is no handshake mechanism in DEEP. Relay nodes are
selected on the basis of link quality and successful delivery ratio. A sequence number is used to discard
duplicate packets. In the Channel Aware Routing Protocol (CARP) [41], the next forwarding node is
selected on the basis of hop count and residual energy. Every node knows its hop distance from the
sink node. The transmitting node broadcasts a PING packet to find the next forwarding node. If the
hop count of the receiving node is less than the transmitting node, it sends back a PONG packet with
its information.

The Energy Efficient and Collision Aware (EECA) [42] multipath routing algorithm is based
on finding two collision-free routes using constrained and power adjusted flooding. Multipath
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power-control transmission (MPT) helps to deliver the packet with certain end-to-end packet error
rate and minimum transmission power.

2.6. Reliable Data Delivery Protocols

The focus of this set of protocols is on reliability of data delivery. We present three examples.
The Multipath Virtual Sink Architecture (MVSA) [43] uses multiple sinks, which connected together
form a virtual sink. Instead of caching delay sensitive data, it is forwarded through multiple paths.
This protocol increases the data delivery reliability at the cost of an increase in energy consumption.
Efficient Data Delivery with Packet Cloning (EDDPC) [44] uses the same concept of multiple copies.
However, it is a little bit different because it clones or copies selected data packets when forwarding
them on the basis of link quality and channel conditions.

The Resilient Routing Algorithm for Long-term Applications (RRALA) [45] is based on virtual
circuit routing. Multihop connections are established in advance between each source and sink
and each packet is associated with a particular connection. If a connection fails during the packet
forwarding, another connection, established in advance, is used.

2.7. Mobility Based Protocols

Mobile Delay-Tolerant Data Dolphin (DDD) [46] uses mobile nodes (Dolphins) to gather data
from the stationary nodes. Mobicast Routing Protocol for Underwater Sensor Networks [47] is a 3D
routing protocol based on mobile sinks, i.e., AUVs. Nodes close to an AUV form a 3D zone and the
AUVs collect their data. For nodes to be ready, a sleeping node in the next zone is woken up in advance
by the AUV.

3. Overview of Self Organized Fast Routing Protocol (SOFRP)

This section provides an overview of the proposed protocol, prior to the detailed description in
Section 4. Our proposal is based on the automatic formation of predefined routing paths to forward
the data packet from each node to the sink, without the use of additional measurement devices, such
as pressure sensors. However, it is assumed that nodes are placed in a specific formation rather than
deployed randomly. For easier reference of the acronyms used, they can be looked up in Section 5,
where Table 1 lists the acronyms used for names of messages and Table 2 contains the acronyms used
to denote mathematical parameters.

Table 1. Packet Descriptions.

Packet Name Description Code

BEACON Beacon 1100011
CF_RR Clear to Forward the RR 0101000

CFRR_ACK CF_RR ACKnowledgement 0100001
CFRR_BACK CFRR from intermediate node to the side nodes 1011100

CFRRBACK_ACK CFRR_BACK ACKnowledgement 1000111
CNCL CaNCeL 0010001

CNCL_ACK CaNCeL ACKnowlegement 0010000
ENQ ENQuiry 0111100

ENQ_ACK ENQuiry ACKnowledgement 0111100
INFO_REQ INFOrmation REQuest 0111010

INFOREQ_ACK INFO_REQ ACKnowledgement 0111010
RR Route Request 0000111

RR_ACK Route Request ACKnowledgement 0100101
RR_RSP RR ReSPonse 0101101

RRRSP_ACK RR_ReSPonse ACKnowledgement 0001101
SGN Search Gateway Neighbor 0101010

SGN_RSP SGN ReSPonse 0011001
SGNRSP_ACK SGN_ReSPonse ACKnowledgemnt 0001100

SHN Search Horizontal Neighbor 0001011
SHN_ACK SHN ACKnowledgment 0100000

ST_RSP STart sending the RR ReSPonse 0110001
STRSP_ACK ST_RSP ACKnowledegement 0110101
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Table 2. List of the symbols used in the equations.

Symbol Description

DCFRR Delay for CF_RR and CFRR_ACK packets delivery
DCFRRBACK Delay for CFRR_BACK and CFRRBACK_ACK packets delivery
DGWRR Delay for RR packet delivery to the gateway
DRR Delay for RR packet delivery start at first layer
DRRALL Total delay for RR packet to be delivered to all nodes
DRRRSP Delay for RR_RSP and RRRSP_ACK packets delivery
DSGN Delay for SGN packet delivery
DSHN Delay for SHN and SHN_ACK packets delivery
DSHNRSP Delay for SHNRSP and SHNRSP_ACK packets delivery
DTOTAL Total delay for RR_RSP packet to reach the gateway
DR Data rate (bits/sec.)
DT Distance between two nodes (m)
GT Guard time (sec.)
LTS Duration of a wait period (sec.)
ND Number of nodes in a string
PKD Packet transmission delay (sec.)
PROD Propagation delay (sec.)
PS Packet size (bits)
RPH Repetition of RR packet forwarding within a layer
RPV Repetition of RR packet forwarding through all layers
SPS Sound Propagation Speed (m/s)
ST Number of strings
TS Duration of a timeslot (sec.)
TTS Number of timeslots in a wait period
WP Wait Period

3.1. Network Topology

It is well understood that the larger the number of sensor nodes deployed in an area the more
complete the area monitoring and characterization. Therefore, deploying the large number of sensors
in a grid or hexagonal form is preferred for more accurate monitoring. This relationship between
nodes density and information accuracy is valid for all kind of monitoring systems, whether terrestrial
or underwater, wired or wireless. However, such high accuracy is not always required for all kind
of monitoring systems. High density deployment of the nodes has a substantial effect on the cost.
Compared to terrestrial monitoring systems, the costs of the underwater sensor nodes and their
deployment are very high, especially in deep waters [48]. Therefore, monitoring systems having a
low density of sensor nodes are preferred (whenever high accuracy is not required) to reduce the
costs. Underwater monitoring systems such as an early warning system for tsunamis [49] and volcanic
eruption monitoring [50,51] will perform well enough with low density sensor networks. In such
cases, radial topology, with a larger density at the core, is more suitable to reduce the costs of the
monitoring system.

Our protocol is proposed for a kind of hybrid radial/linear topology as shown in Figure 2.
The reason is that this particular topology is very much suited for monitoring river plumes, where
sediments are carried away from a river mouth into the sea, whose scattering follows a triangular
pattern, moving sideways with the sea current. It can also be used for monitoring oil spills, coral reefs
and habitats along the coastal area. In general, the topology serves to monitor an area and collect all
the information in a single point that connects the network to the outside world.

We consider that the network contains an indeterminate number of nodes and a gateway (GW),
with N radii, where N = {1,2, . . . , n}. From now on, we will use the name of string for the radial lines.
The strings are shown in vertically in Figure 2, but they can be organized as radii departing from the
gateway in all directions, distributed over the circle (2D) or the sphere (3D). This topology fits any 3D
region shape when only one sink node is possible.
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For explanation purposes, the outer strings are called side strings and all the inner strings are 
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intermediate strings are called intermediate nodes. The nodes that are farther away from the gateway 
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In terms of interference, the worst case is when adjacent strings are parallel to each other, and
this will be the case considered. For the purpose of the analysis in this paper, we have considered an
equal distance among the nodes in each radius. Varying distances can be considered by setting an
appropriate guard time in the transmissions, within a limit. Finally, we consider that nodes adapt their
transmission power so that only neighbor nodes can be reached. Thus, nodes that are two or more
hops away from the source do not hear its transmissions.

This protocol is designed for an arbitrary number of strings. Along the description, we have
mainly considered a network of three strings (Figure 3) for easier understanding, but the algorithm is
designed for any number of strings.
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Figure 3. Example of network with three Strings.

3.2. Proposed Protocol Overview

The gateway is the node at the surface and relays the data of the other nodes to the terrestrial
network. It is also the controlling node of the network. The gateway receives data only from its
neighbors. For example, nodes A1, A2, A3, and A4 in Figure 3 form a routing path. The nodes in each
string forward the data of only those nodes that are above or below them in the same string. When the
nodes send data to the gateway, they forward the data to the node above. When the nodes forward
control packets from the gateway, they send the packets to the nodes below them.

For explanation purposes, the outer strings are called side strings and all the inner strings
are called intermediate strings. Nodes in the outer strings are called side nodes and nodes in the
intermediate strings are called intermediate nodes. The nodes that are farther away from the gateway
are called down nodes. The transmission range of a node is limited to its adjacent nodes, using power
control adaptation according to the distance between nodes.
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The routing path formed in this way presents two advantages. First, it creates the shortest path
between the sender node and the gateway, which minimizes the delay in terms of the number of
hops. If a node were allowed to forward the packet to the adjacent node on the same layer then
it would increase the total number of hops, which would increase the delay. Second, it keeps the
traffic balance among the gateway neighbor and avoids earlier failure of a gateway neighbor due to
excessive transmission.

Initially the nodes have no knowledge about the existence of each other on the network. In order
to form the routing path, they need to exchange certain information. The gateway starts the routing
configuration process by broadcasting a packet to find its neighbors. The neighbors of the gateway
(Figure 3) first look for the nodes in their neighborhood that are at the same level (horizontally). This
is the set of nodes that is one hop from the gateway, and each of them is the first node in one string
(see Section 4.1)

It is possible that the packets broadcast by the gateway do not reach some or any of its neighbor
nodes due to channel noise. If any of the neighbor nodes fails to receive the broadcast packet, then
that node and all the nodes below it will not be able to create the routing path. To address this issue,
we have designed the protocol using cross-layer techniques, merging some steps of the route creation
process with the medium access control layer. Initially, both the neighbor nodes and the gateway try to
discover each other. This is achieved by means of beacon packets, transmitted periodically by each
node. When the gateway receives a beacon packet from any of its neighbor nodes it will wait for a
specific period and then send an enquiry packet to find its immediate neighbors.

Once the gateway knows the first layer of neighbor nodes, it sends a Route Request (RR) packet to
form the strings. The neighbor nodes and those nodes below them forward the request packet, hop by
hop, until it reaches the end of each string. Then starts the response process, which sends information
about the completion of the string formation. The unique string ID is used by the data packets to send
data to the gateway on the corresponding route. When a node receives the data packet, it compares its
string ID with the string ID field in the packet header. If both string IDs are the same, then the node
forwards the data packet; otherwise, it discards it. Step-by-step detail of the string formation process
is given in Section 4.2.

To avoid collisions, the nodes each transmit routing packets at different times. A node will
randomly select a timeslot (TS) from a set of k timeslots. The length of a timeslot is equal to the sum of
the propagation delay, the transmission delay and a guard time. The duration of k timeslots is called
wait period (WP). Assume that the maximum distance between two nodes is 1000 m. If the maximum
packet size is 16 bytes and the channel data rate is 5 kbps, then the time interval is 0.666 + 0.0256 =
0.6916 s (approx.). If we consider a number of 40 timeslots, they would start at instants 0, 0.6916, 1.3832,
2.0748, 2.766, . . . , 26.972 s. The total of 40 timeslots would last for 27.664 s, which would be the WP
value. In this configuration, the probability of two nodes selecting the same timeslot out of 40 timeslots
is 2.5%. No matter how large the number of timeslots, the chances of collision are always there.

Different types of transmission modes have been used to optimally achieve delivery reliability
and energy efficiency. There are four modes of transmission named mode1, mode2, mode3 and mode4.

i. mode1: the packet is transmitted once without any acknowledgement.
ii. mode2: the packet is transmitted three consecutive times without any acknowledgement. The

interval between transmissions is equal to one timeslot (TS).
iii. mode3: all the candidate nodes send a packet within a period equal to the wait period. Then,

acknowledgements are sent during the next WP. Hence, the total time for sending a packet
and receiving its acknowledgment is 2*WP. This process of sending a packet and receiving
its acknowledgment may repeat two more times in case of packet loss. Therefore, the overall
period for the three transmissions remains fixed (which is 6*WP) whether the number of
transmissions is one, two or three.
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iv. mode4: this mode is a little bit different from mode3 in terms of packet retransmissions. In
mode4, the packet and its acknowledgement are transmitted three times, even if the packet
was successfully delivered in the first or the second transmission.

The main novelties of this protocol are:

(a) It is designed to recreate the physical topology in the logical routing tables, creating the shortest
possible paths,

(b) The algorithm uses the knowledge of the topology to avoid collisions,
(c) It helps to balance traffic among nodes that are the same distance from the gateway,
(d) Our proposal self-adapts to different network sizes and number of nodes.

Together, these characteristics help to save as much energy as possible, and minimize the cost, in
time and computational effort, of forwarding a packet.

4. Routing Path Formation

We can divide the formation of routing paths in two phases, which are described in detail in
this section.

â Phase 1: Search for gateway neighbors
â Phase 2: String formation

4.1. Phase 1: Search for Gateway Neighbors

As we mentioned earlier, in Section 3, the gateway is the controlling node of the network and
it can only communicate with its neighbor nodes, which are at one hop distance. The gateway is
responsible for starting the process of forming the strings. Since, initially, the gateway does not know
about its neighbor nodes, it finds them first. This phase follows these steps:

1. Initially, all the nodes transmit a beacon packet, using mode1, at random time slots to inform of
their presence. Other than the gateway, all other nodes ignore the packet.

2. When the gateway receives a beacon packet from any of its neighbor nodes it will wait for a WP.
This avoids a possible collision between the SGN packet (see next step) and a beacon packet from
another node.

3. The gateway broadcasts the first Search Gateway Neighbor (SGN) packet to find its neighbors (see
1 in Figure 4a). Altogether, the gateway sends the SGN packet using mode2 (three consecutive
transmissions) (Figure 4b). The SGN packets carry a sequence number.

4. The nodes that receive the first SGN packet wait to receive two more SGN packets before they
start finding horizontal neighbor nodes. Suppose that a node fails to receive the first two SGN
packets but receives the third SGN packet. This node does not wait for two more SGN packets
because it knows from the sequence number that this is the third SGN packet.

5. After receiving the SGN packet(s), each neighbor broadcasts a Search Horizontal Neighbors
(SHN) packet to find its horizontal neighbors (see 2 in Figure 4a) using mode3. Each node selects
a random timeslot for transmission.

6. The nodes that received a SGN packet earlier, send an SHN acknowledgment (SHN_ACK) packet.
(see 3 in Figure 4a). The SHN_ACK packets are transmitted using mode3 after all the neighbor
nodes have finished sending their SHN packets. The nodes in the lower layer receive the SHN
packets as well but they ignore them because they did not previously receive the SGN packet
from the gateway.

7. When the waiting time for SHN_ACK packets finishes, each neighbor node sends an SGN
response (SGN_RSP) packet to the gateway (see 4 in Figure 4a), using mode3. The SGN_RSP
packet includes information on the neighbors of the sender. When all responses are received, the
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gateway will know its neighbors and can determine their relative positions by the horizontal
neighbor information of each node.

8. The gateway sends back an SGN_RSP acknowledgement (SGNRSP_ACK) packet at a random
time, using mode3 as well.

9. To form a string, the gateway assigns a unique string identification (ST_ID) number to each
neighbor. The nodes below each gateway neighbor will be part of that straight hop-by-hop
forwarding path.
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We can explain mode3 in more detail with the help of the SHN and SHN_ACK packets. If the
SHN_ACK packet is not received by a node, it will retransmit the SHN request. If the SHN_ACK
packet is still not received, then the sender will transmit the SHN packet a third and last time. The
next step, transmission of the SGN_RSP packets from the neighbors, will start after six WPs, which is
the time required for a sequence of three iterations of SHN and SHN_ACK packets. However, during
this period the SHN packet will be retransmitted only if the SHN_ACK packet is not received.

4.2. Phase 2: String Formation

In this phase, the routing paths will be formed. The gateway allocates a string identification
(ST_ID) to each neighbor node. The gateway neighbor nodes are called the first nodes in the strings,
the next nodes below them are called second nodes, and so on (see Figure 2). The process will be
completed layer by layer. That is, first of all, the first nodes in the strings will identify the second
nodes in the strings, then the second nodes will identify the third nodes, and this process will continue
until the end of each string. In each layer, the identification of the nodes will start from the side nodes
and will continue inwards through the intermediate nodes. Step-by-step detail of the procedure is
given below:

1. First, Route Request (RR) packets are sent from the gateway to each of its neighbors (see 1 in
Figure 5a) using mode4. The RR packet contains the IDs of all the neighbors and their respective
string IDs. When a neighbor receives the RR packet for the first time it checks the list of node IDs
to know its assigned string ID.

2. The neighbor nodes will send the RR acknowledgement (RR_ACK) using mode4 as well.
3. After that, first the side nodes in the string will forward the RR packet (see 3 in Figure 5a), now

using mode3. The RR packet will be received by all adjacent nodes within range. These RR
packets contain the node IDs with their corresponding string IDs and packet sequence number.
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4. When a node receives the RR packet, it records the ID of the sender and its respective ST_ID. The
gateway discards any RR packets it receives from its neighbors. The nodes that already have
received the RR packet also discard the RR packet.

5. Only the node below in the string will reply with the RR_ACK packet, which will contain the
sender ID and the ST_ID. They use mode3.

6. The node that receives the RR_ACK packet as a reply to a previous RR packet transmission
records the node and the string IDs in its routing table. This way each node has complete
information about the nodes above and below it in the string.

7. Now, the side nodes of the first layer send a Clear to Forward RR (CF_RR) packet (see 5 in
Figure 5a) to their adjacent horizontal nodes (first nodes of the intermediate strings) using mode3.

8. The intermediate nodes send a CF_RR acknowledgement (CFRR_ACK) packet using mode3.
9. The process of sending RR and CF_RR will continue repetitively as described above until all the

first layer nodes in all the strings have sent an RR packet to the second layer nodes.
10. When the last intermediate node in the first layer sends the CF_RR packet, it will not receive the

CFRR_ACK reply because it is the last intermediate node. It will retransmit the CF_RR packet
two more times and then it will decide to send a CFRR_BACK packet.

11. The CFRR_BACK packet will travel from this last intermediate node in the first layer to the side
nodes in the second layer (see 9 in Figure 5a). CFRR_BACK and CFRRBACK_ACK packets will
also be transmitted using mode3.

12. When the node of the second layer in the side string receives the CFRR_BACK packet, it starts
the process of forwarding the RR packet to the third layer node.

13. Assuming that the number of nodes in all the strings is the same, the last nodes of the side strings
will transmit the RR packet three times, but will not get any acknowledgement. Hence, they will
conclude that they are the last nodes and will send the CF_RR packet to the intermediate nodes,
with information that they are the last nodes. The intermediate nodes also transmit an RR packet,
using mode3, and then send a CFRR_BACK packet to the side nodes informing that it is the last
node of the string as well. At this stage, all the last nodes randomly select a time slot and send
the RR_RSP response (see Figure 6).

14. When the RR_RSP packets reach the gateway neighbor nodes, they forward the packet to the
gateway. Each neighbor node waits to receive the RR_RSPACK packet from the gateway after
transmitting the RR_RSP. After receiving the RR_RSP packet, the gateway knows that the routing
path formation is complete for that string. RR_RSP and RRRSP_ACK are sent using mode3.

15. The gateway waits for a threshold period to receive the RR_RSP from all of its nodes. If the
RR_RSP packets are not received within that threshold period, the gateway starts a new process
of finding the path by sending a new RR packet. A packet sequence number is used so that the
nodes know that this RR packet is different from the old one.

In case the number of nodes in the side strings is smaller than the number of nodes in the
intermediate strings and the side strings have reached the end, the side nodes will send their CF_RR
packets to the intermediate nodes before sending the RR response (RR_RSP) packet. When the
intermediate nodes receive the CF_RR packet, they will transmit the RR packet and wait for the
acknowledgement. Once the intermediate nodes finish the process, they send the Start Response
(ST_RSP) packet to the side nodes to inform them that they can initiate the transmission of the RR_RSP
packet. In this case, the intermediate nodes send a ST_RSP packet to the side nodes instead of the
regular CFRR_BACK packet. The intermediate nodes need to know in which occasions to send the
ST_RSP packet. For that, the side nodes send information to the intermediate nodes, in the CF_RR
packet, indicating that they are the last nodes and they are waiting for the ST_RSP packet to send the
RR_RSP response packet. The ST_RSP and RR_RSP packets are also sent using mode3.
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Similarly, if the intermediate strings end before the side strings, the intermediate nodes wait for
the ST_RSP packet before sending the RR_RSP packet. When the last intermediate nodes send the
CF_RR packet to the side nodes, they also indicate that they are the last node in the string. The side
nodes send the ST_RSP response to the intermediate nodes after finishing the process of finding the
next nodes. The side nodes also know that the intermediate strings have ended and when they forward
the RR packets, they neither send CF_RR to the intermediate node nor wait for the CFRR_BACK from
the intermediate nodes. The side nodes simply forward the RR packet to the next node in the string
after sending RR_ACK to the node from which they received the RR packet.

If a node was up when the RR packet was forwarded but is down when the RR_RSP packet is
sent, then the RR_RSP packet from that particular string will not reach the gateway. In that case, the
gateway will send the RR packet again for that string only. In case more than one node is down in
multiple strings, the gateway starts the process of route finding for all the nodes again.



Sensors 2018, 18, 4178 14 of 28

4.3. Adaptation for Hexagonal and Grid Topologies

This protocol may also work for a hexagonal topology. When the gateway receives the SGN_RSP
packet (see Section 4.1) from the neighbors, it can easily deduce that the neighbors are located in a
ring around it, because all gateway neighbors indicate that they have two neighbors each. When the
gateway sends the RR packet (see Section 4.2) to the neighbors, it will set the ring field in the header to
true. This will allow a node to form multiple paths with multiple nodes. Each node in a layer may
form paths with 1, 2 or 3 nodes in the next layer as shown in Figure 7.Sensors 2018, 18, 4178 14 of 27 
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The neighbor nodes send the RR packet at randomly selected timeslots. The first RR packet will be
received by three next layer nodes and they will form the path with the RR-sending neighbor (shown
in Figure 7). The rest of the neighbor nodes form two paths with the next layer nodes, except the last
node, which will form only one path. Thus, the resulting paths may be unbalanced, but this can be
solved either by choosing one of the possible paths or by using all paths in a round-robin fashion,
which would balance the energy consumption among the forwarding nodes.

In the case of a grid topology, the network can be split in several sections as shown in Figure 8,
each having its own sink (gateway). Each section then can be considered to have the topology shown
in Section 3.1 (Figures 2 and 3).
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4.4. String Formation in Case of Node Failure

Let us analyze the situation in which one of the nodes is down either at the time of initialization
or after the initialization. These two situations and their solutions are discussed below in Scenario 1
and Scenario 2.

4.4.1. Scenario 1: A Node is down at the Time of Routing Initialization.

The down node can be one of the side or intermediate strings. Consider a network with three
strings (see Figure 9) and assume that C2 is down during the routing initialization. C1 sends the
RR packet three times and finally thinks that there are no more nodes in the string. It will send the
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RR_RSP response as mentioned in Section 4.2 paragraph (13). In this case, the RR_RSP is sent not
because the string has ended, but because a node failure has occurred. When C1 sends the CF_RR to
the intermediate node, it also indicates that it is the last node in the string (although this is not true).
Once the intermediate node finishes sending and receiving the RR and RR_ACK packets, respectively,
it sends a CFRR_BACK to the side nodes.
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Continuing to form a string in this way creates a problem. Suppose that up to C1, ST-C is
formed. When B3 forwards the RR packet, it is supposed to receive a RR_ACK from B4 only. But since
previously, C3 failed to become part of ST-C, it also responds to B3. Upon receiving two RR_ACK
packets, B3 understands that either B4 or C3 is not part of its string. However at this stage, B3 cannot
decide which one.

Solution

Under this situation, B3 will not send a normal CF_RR packet instead, it sends an information
request (INFO_REQ) packet, which asks nodes B4 and C3 (one by one) to send an enquiry packet
(ENQ), and waits for the INFO_REQ acknowledgement (INFOREQ_ACK) packet (Figure 10). If the
INFOREQ_ACK packet is not received after three attempts, then the node waits for a certain time and
retries two more times. Assume B3 first asks C3 to send the ENQ packet. When C3 sends the ENQ
packet, only the nodes that are already part of a string send an enquiry acknowledgement (ENQ_ACK)
packet. Hence, C3 does not receive the ENQ_ACK packet from C4, as it is not part of a string yet (B3
does not send an ENQ_ACK packet because it originally asked C3 to send an ENQ packet). C3 sends
an INFOREQ_ACK packet to B3 indicating that it did not receive any acknowledgement. Similarly,
B3 asks B4 to send an ENQ packet. B4 will receive the ENQ_ACK packet from A4. B4 provides that
information to B3 in the INFREQ_ACK packet. Now, B3 knows that B4 is the intermediate node,
because it received the ENQ_ACK packet. B3 sends a cancel (CNCL) packet to C3, which tells it that it
has wrongly become part of string ST-B and it should initiate forming a new string. B3 has not sent the
CFRR_BACK at this point yet. To form string ST-D, C3 will send a RR packet to C4 and, after receiving
the acknowledgement, it will send a CNCL_ACK (acknowledgement) packet to B3. Upon receiving
the CNCL_ACK packet, B3 will send a CFRR_BACK packet to C3 and A3 as described before.

When string ST-D reaches the end node, it starts sending the RR_RSP packet. When the RR_RSP
packet reaches C3 it knows that it initiated a new string and the node above is down, therefore it will
not forward the RR_RSP packet. In order to send data of ST-D via strings ST-B and ST-C we use the
same method of route discovery as mentioned in Scenario 2. This route discovery process starts after
the completion of the routing initialization process.

4.4.2. Scenario 2: What will Happen If a Node in a String Goes down after the Initialization?

A mechanism is required to forward the packets in case one of the nodes of a string is down. First,
the nodes above and below the failed node in that string should be informed about the failure so they
can make an alternative path. Timeout threshold and beacon signals are used to address this issue. If
a node does not transmit a packet for a certain period, i.e., 10 WPs, then it should transmit a beacon
packet to indicate that it is still alive. The nodes should also expect to receive a data or a beacon packet
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from the nodes above and below them within the threshold period. If a node fails to transmit data or
beacon packets, then the nodes above and below in the string conclude that the node has died and
start the process of finding the alternative path.
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Solution

The only solution is that the nodes of the adjacent strings forward the packet. One such alternative
path is shown in Figure 11. In this example, it is assumed that node C3 has gone down and the data of
C4 is forwarded to C2 via B4, B3 and B2.

Sensors 2018, 18, 4178 16 of 27 

 

so they can make an alternative path. Timeout threshold and beacon signals are used to address this 
issue. If a node does not transmit a packet for a certain period, i.e., 10 WPs, then it should transmit a 
beacon packet to indicate that it is still alive. The nodes should also expect to receive a data or a 
beacon packet from the nodes above and below them within the threshold period. If a node fails to 
transmit data or beacon packets, then the nodes above and below in the string conclude that the node 
has died and start the process of finding the alternative path.  

Solution 

The only solution is that the nodes of the adjacent strings forward the packet. One such 
alternative path is shown in Figure 11. In this example, it is assumed that node C3 has gone down 
and the data of C4 is forwarded to C2 via B4, B3 and B2. 

 
Figure 11. Alternative path when a node fails after the routing paths have been formed. 

In this way, the traffic load is balanced as much as possible between the nodes of the two strings. 
If all the packets of all the nodes below the failed node in string ST-C are forwarded via string ST-B 
only, then nodes of ST-B will be overloaded. A new ST_ID is used for the packets transmitted by C4 
to B4. B2 should forward packets of its own string with a different string ID than packets of ST-C. 
This way, B1 forwards data packets of its own string only in order to create a balanced energy 
consumption. Suppose that B2 forwards a packet of ST-C with a different string ID, say ST-D. The 
forwarded packet reaches both B1 and C2, but only C2 accepts the packet. When C2 receives packets 
from B2 with string ID ST-D, it changes the string ID to ST-C before it forwards the packet to C1. 
Therefore, nodes B2, C2, B4, and C4 handle two different string IDs. When C4 sends or receives data 
from the node below it (if a node is there), it uses string ID ST-C, but when it sends data to B4 or receives 
data from B4, it uses string ID ST-D. Two IDs are used by all nodes that form the alternative path. 

The node below the failed node initiates the new route-finding process. It broadcasts an RR 
packet with a new string ID and its existing string ID. Nodes below the initiating node in the same 
string ignore the RR packet. The nodes in the adjacent string(s) receive the RR packet and recognize 
that it is sent from the adjacent string. Knowing that, they send back the acknowledgement. 

Suppose C4 initiates the new route discovery process. It broadcasts an RR packet, which is 
received by B4 and it sends back the acknowledgement.  

Now B4 will forward the RR packet, which will be received by B3 and A4. A mechanism is 
required such that only the node above (B3 in this case) accepts the forwarded RR packet. For that, 
B4 adds information in the RR packet, which tells the receiving nodes that this RR packet is not 
generated by the sending node. When A4 receives the RR packet and it learns that B4 simply 
forwarded the RR packet of another string, it will not send the acknowledgement to B4. Only B3 will 
send the acknowledgement to B4. B3 will also forward the RR packet to B2 and it will become part of 
this new string.  

Now, B2 forwards the RR packet, which is received by nodes A2, B1, and C2. Node A2 will 
ignore the received RR packet because of the different string ID. B1 and C2 both send the 

Figure 11. Alternative path when a node fails after the routing paths have been formed.

In this way, the traffic load is balanced as much as possible between the nodes of the two strings.
If all the packets of all the nodes below the failed node in string ST-C are forwarded via string ST-B
only, then nodes of ST-B will be overloaded. A new ST_ID is used for the packets transmitted by C4 to
B4. B2 should forward packets of its own string with a different string ID than packets of ST-C. This
way, B1 forwards data packets of its own string only in order to create a balanced energy consumption.
Suppose that B2 forwards a packet of ST-C with a different string ID, say ST-D. The forwarded packet
reaches both B1 and C2, but only C2 accepts the packet. When C2 receives packets from B2 with string
ID ST-D, it changes the string ID to ST-C before it forwards the packet to C1. Therefore, nodes B2, C2,
B4, and C4 handle two different string IDs. When C4 sends or receives data from the node below it (if
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a node is there), it uses string ID ST-C, but when it sends data to B4 or receives data from B4, it uses
string ID ST-D. Two IDs are used by all nodes that form the alternative path.

The node below the failed node initiates the new route-finding process. It broadcasts an RR packet
with a new string ID and its existing string ID. Nodes below the initiating node in the same string
ignore the RR packet. The nodes in the adjacent string(s) receive the RR packet and recognize that it is
sent from the adjacent string. Knowing that, they send back the acknowledgement.

Suppose C4 initiates the new route discovery process. It broadcasts an RR packet, which is
received by B4 and it sends back the acknowledgement.

Now B4 will forward the RR packet, which will be received by B3 and A4. A mechanism is
required such that only the node above (B3 in this case) accepts the forwarded RR packet. For that, B4
adds information in the RR packet, which tells the receiving nodes that this RR packet is not generated
by the sending node. When A4 receives the RR packet and it learns that B4 simply forwarded the
RR packet of another string, it will not send the acknowledgement to B4. Only B3 will send the
acknowledgement to B4. B3 will also forward the RR packet to B2 and it will become part of this
new string.

Now, B2 forwards the RR packet, which is received by nodes A2, B1, and C2. Node A2 will ignore
the received RR packet because of the different string ID. B1 and C2 both send the acknowledgment
to B2. B2 decides to make a path with C2 rather than B1 because it gets a reply from C2, which has
the same string ID as C4. B2 sends a packet to B1 to inform that it is not part of the ST-D, and another
packet to C2 to inform that it is now part of ST-D as well. This way, a new route is established between
nodes C4→ B4→B3→ B2→ C2.

In case one of the intermediate string nodes fails, the procedure of the new path selection will be
almost the same with one exception. Suppose B2 is the failed node and B3 is the initiating node. B3
generates an RR packet, which is received by both A3 and C3. Both A3 and C3 send acknowledgment to
B3 along with their energy level information, and B3 chooses the node that has the higher energy level.

4.5. Other Issues

Routing Path Periodic Update Process

The routing initialization process needs to be executed from time to time in order to eliminate
any change in the routing path due to movement, failure or addition of nodes. Before the process is
initiated by the gateway, the data communication from the nodes must be stopped, otherwise collisions
may occur. For that, the gateway broadcasts an alert packet to all of its neighbor nodes, and throughout
the strings. All the nodes that receive the alert send back acknowledgement to the gateway. The
gateway already knows about all the nodes in the network. If it fails to receive the acknowledgment of
the alert packet from any of the nodes, it sends the alert packet again after waiting for the maximum
possible delay. If the gateway still fails to get the acknowledgement, it assumes that the node or nodes
are down and starts the routing path update process using the same initial configuration process
described above.

4.6. Data Packet Forwarding

When a node receives a data packet to be forwarded, it looks into the routing table and compares
the string ID of the received data packet with its own string ID. If the string ID of the packet matches
with the node’s string ID, it forwards the packet.

5. Packet Format

A packet is composed of a header and a payload. There are seven header fields, namely S-ID,
D-ID, Packet Type, Seq#, ST_ID, Middle Node, and Last Node. The total length of the packet header
is 37 bits. The packet header format is shown in Figure 12. The first two fields are the source node
ID (S-ID) and the destination node ID (D-ID). The D-ID will be FF for broadcast communication. The
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packet type field helps the receiving node to identify the type of the packet. Total length of the packet
type field is eight bits. Seven bits out of eight bits are used for the unique code for each packet type
(shown in Table 1) and the last bit (LSB) is used to indicate the ring topology. LSB “1” indicates that
the topology is the ring topology. In case of multiple transmissions of the same packet, such as the
RR packet, the three-bit sequence number (Seq. #) is used to identify duplicate packets. The string
identification (ST_ID) is represented by six bits. With the Middle Node field, the gateway informs its
neighbors, in the RR packet, whether they are side nodes or intermediate nodes. The Last Node field is
used by the last node in a string when it sends a CF_RR or a CFRR_BACK packet. The list of packet
names, their description, and code is given in Table 1.
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6. Performance Analysis

We have developed a mathematical model to calculate the convergence delay, that is, how long it
would take to create the routing paths, and compared it with the simulated convergence delay. The
calculations are carried out with the help of MAPLE®. The list of the symbols used in the following
equations is given in Table 2.

For the mathematical analysis, we will assumed that the number of nodes in all the strings is the
same. First, we will calculate the duration of one timeslot. This is the amount of time reserved for a
packet to reach from one node to another. This value depends on two factors: the packet size and the
propagation delay. Equation (1) gives the size of the packets in bits. Equations (2) and (3) calculate the
packet delay and the propagation delay respectively. Equation (4) calculates the guard time to take into
account variations in propagation delay. The guard time is 5% of the total of the packet transmission
delay and the propagation delay. Equation (5) adds packet transmission delay, propagation delay and
guard time to obtain the duration for one timeslot.

PS = 37 + 8 * ND, (1)

PKD = PS/DR, (2)

PROD = DT/SPS, (3)

GT = (PKD + PROD) * 0.05, (4)

TS = PKD + PROD + GT, (5)

Next, we developed the equations to calculate how long the gateway takes to find its neighbor
nodes plus the time it takes the neighbor nodes to find their horizontal neighbors. Equation (6)
calculates the length of the wait period. As mentioned in Section 4.1, the gateway waits one WP before
transmitting SGN packets in order to avoid a collision with any of its neighbors, which might be
broadcasting a beacon packet (see Equation (7)). Then the gateway sends an SGN packet three times.
Equations (8) and (9) give the delay for the SHN and SHN_ACK packets and for the SGNRSP and
SGNRSP_ACK packets, respectively

WP = TS * (TTS − 1), (6)

DSGN = WP + 3 * TS, (7)

DSHN = 6 * WP, (8)
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DSGNRSP = 6 * WP (9)

The delay for the pairs of SHN and SHN_ACK packets, RR and RR_ACK packets from the
gateway to the neighbor nodes and RR_RSP/RRRSP_ACK packets is shown in Equation (10). Two
WPs are required for packet sending and receiving and, since the packets will be sent three times, total
WPs will be 2 * 3 = 6.

D1 = 6 * WP (10)

The delay for the pairs of RR and RR_ACK, CF_RR and CFRR_ACK and CFRR_BACK and
CFRRBACK_ACK packets is shown in Equation (11):

D2 = 3 * D1 (11)

The process to send the RR and CFRR packets proceeds from both sides of the network to
the intermediate node. The number of intermediate nodes is even if the number of strings is even,
otherwise there will be an odd number of intermediate nodes. Merging both scenarios, the process is
repeated half times the number of strings and the result is rounded up to the next integer for an odd
number of strings (Equation (12)). As mentioned in Section 4.2 the RR forwarding process is completed
layer by layer and this process is repeated (ND-1) times (Equation (13)).

RPH = ceiling(ST/2), (12)

RPV = ND − 1, (13)

If we add all the delays calculated up to this point, we obtain the total delay for RR packet
forwarding from the gateway to all the nodes in the network (see Equation (14)). After the RR packet
has been forwarded, the last nodes in the strings start sending the response. Since all the nodes of each
layer send an RR_RSP packet at randomly selected timeslots, we simply multiply the delay for one
pair of RR_RSP/RRRSP_ACK packets (Equation (15)) by the number of nodes in the strings. Finally, to
get the total delay, we add Equations (14) and (15) to get Equation (16). Equation (17) is the expansion
of Equation (16).

DRR_ALL = RPV * (RPH * (D2)) + D1, (14)

DRR_RSP_ALL = ND * D1, (15)

DTOTAL = DRR_ALL + DRR_RSP_ALL, (16)

DTOTAL = ceiling(ST/2) * ((ND-1) * (D2)) + D1 + ND * D1 (17)

This mathematical analysis has been validated via simulation, as described in the next section.
Several cases have been simulated to assess the convergence delay, such as when the number of strings
and nodes varies (see Figures 13 and 14, and Tables 4 and 5), and for a varying number of timeslots in
the wait period (Figure 19). A comparison between the values obtained via the mathematical equation,
Equation (17), and via the simulations is shown in Figure 19. As it can be seen, there is an almost
perfect agreement between both methods.
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7. Computer Simulation Results

The performance of the protocol is analyzed in terms of three parameters, i.e., convergence
delay, probability of collision between packets and number of retransmitted packets in case of packet
loss. Convergence delay is defined as the total time required to form the routing paths, which starts
with the transmission of the beacon packets and ends when the gateway successfully receives the
RR_RSP packets.

For the simulations, we have assumed a topology with the structure shown in Figure 3. The
distance between the gateway and its neighbor nodes is set at 500 m. Similarly, the distance between
two adjacent nodes in a string is also set at 500 m. The number of nodes in all the strings is the same.
Propagation speed is taken as 1500 m/s. The data rate is 5000 bits per second and the packet size is
calculated using Equation (1). The transmission power considered for the simulations is 18 W (a value
taken from Reference [52]), and the BER is 10−6. The simulation parameters are summarized in Table 3.
All these values are realistic in UW communication networks. The simulation tool is a proprietary
MATLAB®-based simulator.

Table 3. Simulation Parameters.

Parameter Value Unit

Sound speed 1500 m/s
Distance between nodes 500 m
Data rate 5000 bits/s
Header size 37 bits
Transmission power 18 Watts
Bit error rate 10−6

Number of runs 500

First, we analyze the effect of increasing the number of strings on the convergence delay. Figure 13
shows the results of a simulation in which there are three nodes in each string, but the number of
strings varies. It shows that the convergence delay remains the same when the number of strings
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increases from odd to even, as for example from three to four or from five to six. This is due to the
fact that the number of transmissions of RR packets and CF_RR packets remains the same when the
number of strings increases from odd to the next even number. Hence, the delay remains the same for
a number of strings (1, 2), (3, 4), (5, 6), and so on. The difference of delay between string 4 and 5 is
8.489754 min. Similarly, the difference between strings 6 and 7 is also 8.489754 min.

The effect of increasing the number of nodes in a string is depicted in Figure 14. It shows that
the convergence delay increased linearly with the number of nodes. This was as expected because
the delay incurred by each layer is almost constant. The delay increased as the number of nodes grew
due to the increase in the packet size. The difference in the packet delay transmission was constant
(0.0016 s) for consecutive increases in the number of nodes (see Table 4). The impact of augmenting the
network in one node per string in the total convergence delay was 0.091728 (see Table 5).

Table 4. Packet Delay Analysis.

Nodes (ND) Packet Delay (PKD) PKDi − PKDi-1

3 0.0122
4 0.0138 0.0016
5 0.0154 0.0016
6 0.0170 0.0016
7 0.0186 0.0016

Table 5. Convergence Delay Analysis.

Nodes (ND) Convergence Delay (CD) α = CDi − CDi-1 β = αi − αi-1

3 22.639344
4 32.694753 10.055409
5 42.841890 10.147137 0.091728
6 53.080755 10.238865 0.091728
7 63.411348 10.330593 0.091728

We have analyzed the number of packet retransmissions when the probability of packet loss
increases from 0 to 20% at intervals of 2% (Figure 15). The graph shows that, even at high packet loss
probabilities, the number of retransmitted packets was in the range of 11–13%.Sensors 2018, 18, 4178 21 of 27 
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The collision rate is also tested. Figure 16 shows the collision rate when the number of nodes is
constant (three nodes in each string), whereas the number of strings increases from three to eight. The
graph shows that the collision rate increases nonlinearly with the number of strings. It shows that
there is a slight change in the collision rate when the increase in the number of strings is from an odd
number to an even number. From even number of strings to the odd number of strings, the change
is negligible.
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Figure 17 shows the collision rate as the number of nodes per string increases from 3 to 10. There
is no clear relationship between the number of nodes in a string and the collision rate. It seems that the
collision rate remains roughly constant. The mean is µ = 2.325 and the standard deviation was σ =
0.135. This was due to the fact the collision among the nodes mainly depends on the number of strings
rather than the number of nodes in a string.
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The number of timeslots is an important factor in controlling the collisions between transmitted
packets. Figure 18 shows the simulation results for different numbers of timeslots ranging from 10
to 80. This comparison shows the tradeoff between collision rate and convergence delay. It is clear
from the graph that increasing the number of timeslots decreased the collision rate, but it increased
the convergence delay. When using 10 timeslots, the convergence delay is minimum but the collision
rate is maximum, whereas in case of 80 timeslots, the number of collisions was at a minimum but the
convergence delay was at a maximum. From Figure 18, it is observed that the optimum number of
timeslots is around 30. We have chosen 40 timeslots in order to have a low collision rate, though at the
cost of a little higher convergence delay.

Figure 19 compares the convergence delay obtained from the mathematical equations and from
the simulations (see green bars). It can be seen that there was almost perfect agreement between these
values. Figure 19 also includes a comparison between the simulated collision rate values and the
calculated collision rate. It also shows that the simulated collision rate was in agreement with the
theoretical analysis.

It can be seen in Figure 20 that the average energy consumption for 10 timeslots was higher than
for 20 or 40 timeslots. This happens because the number of collisions in case of 40 timeslots was lower
than in the other scenarios and, as a result, the number of retransmitted packets was lower.
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Discussion of Results

If we analyze the results, we can see that the convergence delay was due to the long propagation
delay of the underwater acoustic channel. In order to avoid collisions, some kind of time
synchronization must be used in this protocol. For example, it is possible that RR packets sent
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by the first nodes of the side strings have been successfully received by the second nodes but we have
to wait for a period equal to three transmissions of RR and RR_ACK packets before the side nodes
transmit the CF_RR packet to the intermediate nodes. The reason is that the two side nodes do not
know about each other transmission’s state. If one side node has successfully sent the RR packet
but the other one needs one more transmission, then synchronization will be lost, which may cause
collisions at later stages.

Figure 14 shows that the convergence delay increases linearly with the number of nodes in the
strings. In Figure 13, we see that the convergence delay changed only when the number of strings
increased from even to odd. Figure 16 shows that the collision rate also increased substantially when
the number of strings grew from odd to even, whereas there is a trivial increase in the collision rate
when the number of strings grows from even to odd. However, Figure 16 shows that, when the
number of nodes increased, the collision rate remained almost the same with an average of 2.325% and
standard deviation of σ = 0.135.

The percentage of retransmitted packets increased with the probability of packet loss but it was
not high (see Figure 15). Under normal channel conditions, we may expect low packet loss probability
and hence a small number of packet retransmissions.

We can compare our proposal with the location-free protocols described in Section 2.1. Both
NLPU [16] and SOFRP are proactive protocols, using a probe message to establish the path and their
topology has one gateway node. However, there are two main differences: (a) NLPU does not replicate
the physical topology, thus paths may be longer than required; and (b) the channel is split into several
sub-channels, thus decreasing the available bandwidth per node.

Assume a network that has 30 nodes, organized in 5 strings and 6 rows. The distance between
the nodes is 1000 m and data rate is 10 kbps. The communication channel is divided into seven
subchannels, each with a data rate of 1428 bps. If we analyze the end-to-end delay achieved with
NLPU and SOFRP when the farthest node transmits, we find that for NLPU, this value is 20.3 s, while
SOFRP achieves an end-to-end delay of 4.3 s. Overall, an improvement of roughly 75%.

It is not possible to carry out a proper comparison with the other location free protocol, LFLSR, as
the results shown in Reference [17] do not describe the network configuration and information on the
number of hops each packet requires is missing. However, the use of periodic Hello packets imposes
an additional burden that increases the end-to-end delay of packets. Hence, LFLSR would at least
require 0.667 s more than SOFRP per each Hello packet transmission that the data packet encountered
along the way.

8. Conclusions

In this paper, we have presented a routing protocol adapted for acoustic underwater networks
with a hybrid radial/linear topology. It can also be easily used in hexagonal or rectangular grids by
just allowing the formation of multiple connections via one intermediate node. Such networks are
an interesting topology for monitoring medium-size oceanic regions such as estuaries, fishing zones,
or geological features of interest. The protocol is designed to minimize the delay for sensitive data
transmitted by the nodes, minimize the costs of managing such a network, and to provide strong
resilience. We have reduced the energy consumption by designing the protocol in such a way that we
avoid collisions that may occur during the initialization and maintenance of routes. Furthermore, it
does not require additional sensing devices.

As a proactive protocol, this proposal achieves a low packet forwarding latency compared to
reactive protocols. Although the convergence time at initialization is high due to the effort made in the
design to avoid collisions, once the routing paths have been formed, the packet forwarding delay is
quite low, thus reducing computational cost.

The gateway initiates the path formation process, assigns a unique identification for each string,
and serves as a connecting point with external networks. The paths are created in a hybrid radial/linear
way, by forwarding a Route Request packet that travels along the network and, upon reaching the end
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of each string, a response is sent back. Cross-layer techniques have been used to minimize the odds
that some node is mistakenly considered down during path initialization.

To counteract node failures, the protocol includes mechanisms for creating alternative paths, thus
making the protocol fault-tolerant. The full set of possible scenarios has been analyzed in the paper.
The protocol provides viable solutions for all of them without compromising the transmissions of the
other nodes.

A performance analysis has also been presented, and it has been validated through simulations.
The analysis of results shows that extending the network, both in number of nodes per string or in
number of strings, has a linear impact on the performance.
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