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Abstract: This paper proposes and investigates a piezoelectric energy harvesting system based on
the flow induced vibration of a piezoelectric composite cantilever pipe. Dynamic equations for the
proposed energy harvester are derived considering the fluid-structure interaction and piezoelectric
coupling vibration. Linear global stability analysis of the fluid-solid-electric coupled system is
done using the numerical continuation method to find the neutrally stable vibration mode of the
system. A measure of the energy harvesting efficiency of the system is proposed and analyzed.
A series of simulations are conducted to throw light upon the influences of mass ratio, dimensionless
electromechanical coupling, and dimensionless connected resistance upon the critical reduced velocity
and the normalized energy harvesting efficiency. The results provide useful guidelines for the practical
design of piezoelectric energy harvester based on fluid structure interaction and indicate some future
topics to be investigated to optimize the device performance.
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1. Introduction

The roaring development of engineering applications calls for more and more advanced
sensors and sensor networks. However, energy supply has been a critical concern with this trend,
since the capacity of currently available chemical batteries has not improved significantly in the past
decades. The power requirement of wireless sensor networks, especially those located in remote
applications can hardly be fulfilled. As a result, the employment of available energy in the ambient
environment to replace or recharge the currently used batteries for local sensors, or the so-called energy
harvesting technology, has been one the most popular research focuses over the last two decades [1].
Different ambient energy sources, such as vibration, heat, solar energy and wind energy, have been
investigated and utilized in numerous energy harvesting devices with the help of smart materials and
structures. Among the various proposed energy harvesting devices, piezoelectric vibration energy
harvesting systems gain special focus because of their structural simplicity and compatibility with
the micro electromechanical system as well as the universal presence of mechanical vibrations [2,3].
Until now, most of the proposed piezoelectric energy harvesting systems rely on the base excitation of
piezoelectric structures [4,5]. The mechanisms leading to the structure vibrations and the interaction
between the energy harvesting systems and the host structures are not as much concerned.

Among various mechanisms, fluid structure interaction and the resulting flow induced vibrations
(FIV) have long been recognized as an origin of structural vibrations. A number of researchers [6] have
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exploited the interaction between structures and surrounding fluid flow to construct energy harvesting
systems. Allen et al. [7] and Taylor et al. [8] firstly proposed the method of energy harvesting by placing
a flexible piezoelectric composite eel in the wake of a bluff body. Beyond a critical velocity, the steady
fluid flow towards the bluff body will generate alternating vortices behind the bluff body. This kind of
alternating vortices will impose alternating forces upon the flexible piezoelectric composite eel and
thus induce vibration in the eel, which can be used to extract energy from the fluid flow. Some other
mechanisms are also incorporated into the flow energy harvesting system, such as the coupled mode
flutter of airfoils, [9] the vortex-induced vibrations of rigid bodies inside steady flow, [10,11] and the
galloping instabilities of flexible structures [12], etc. In addition, based on the profound research of the
flapping dynamics of a flag in a uniform stream, [13,14] the utilization of compliant beams or plates to
directly harvest energy from steady state fluid flow has received much attention, [15,16] with multiple
aspects of the system investigated [17–21]. Nevertheless, nearly all the background research is based
on the flow induced vibration of a piezoelectric composite beam in the externally surrounding flow,
little attention is paid to the internal flow induced vibration of fluid conveying pipes, which is another
popular topic in the field fluid structure interaction and flow induced vibration [22].

In this contribution, we put forward a new piezoelectric energy harvesting system based on the
flow induced vibration of a piezoelectric composite pipe that conveys fluid flow. Considering the
fluid-structure-electric coupling in the system, a coupled system of equations is developed to describing
the dynamic behaviors of the system. Linear stability analysis with the help of numerical continuation
method is made to obtain the neutrally stable mode of the system as well as the corresponding reduced
flow velocity. Influences of system parameters upon the neutrally stable mode, and therefore the
critical reduced flow velocity are systematically investigated. A normalized measure for the energy
harvesting efficiency of the system is then developed and calculated. A series of simulations are done
to figure out the parametric dependence of the proposed energy harvesting efficiency. Results are
discussed with guidelines for the design of practical systems and possible extensions of the present
work explored.

2. Problem Description and Formulation

We consider here a piezoelectric composite cantilever pipe of length L and width b conveying
fluid flow, as shown in Figure 1a. We set the origin of a coordinate system Oxyz to be the geometric
center of the cross section of the piezoelectric composite pipe at the fixed end. The piezoelectric
composite pipe consists of an elastic hollow pipe with two identical piezoelectric plates of thickness
tp attached to its upper and lower surface. In the z direction, the wall thickness of the elastic pipe
is ts while in the y direction, its wall thickness is tsw. Without loss of generality, we assume in the
following analysis that span-wise thickness tsw of the flexible is small compared to all other geometric
dimensions of the elastic pipe and can be thought to be zero. Dimensions of the cross section of the
piezoelectric composite pipe, which is symmetric with respect to the xOy plane, is thus shown in
Figure 1b. Inner height of the flexible pipe is 2h f , which is also the height of the conveyed fluid flow.
As a result, we then obtain the z coordinates of the upper surface of the pipe and upper surface of the
piezoelectric layer as hs = h f + ts and hp = hs + tp, respectively.

The two identical piezoelectric plates are connected to the external circuit in parallel [5]. They are
arranged in such a way that their poling directions are aligned in the positive z direction, as shown
in Figure 1c. For the simplicity of current analysis, the external circuit is supposed to have only a
resistive load Rl . The upper and lower surface of the piezoelectric plates are covered with one single
electrode, and the electric field inside the piezoelectric plates is assumed to be uniform everywhere
except for the negligible edges. This is an assumption different from that of Doaré et al. [15],
where a multiple electrode arrangement and its continuous limit are considered. Though there
may be charge cancellation on the electrodes attached to the piezoelectric patches according to the
fundamental unstable mode for the cantilever pipe, [21] we assume that the piezoelectric patches in
the current contribution are covered with single electrodes for the sake of model simplicity. In the
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literature, there has been some research concerning the optimization of electrode distribution [23].
The consideration of the optimization of electrode distribution is a totally different topic and will not
be covered here.
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Figure 1. Schematic diagram of the proposed piezoelectric energy harvester based on the flow induced
vibration of fluid conveying piezoelectric composite pipe: (a) whole view of the system, (b) the cross
section view of the proposed energy harvester and (c) the externally connected circuits.

The proposed design of the flow energy harvesting device is distinguished in two ways. Firstly,
most of the proposed flow energy harvesters in the literature [6] consider the vibration of piezoelectric
composite plates or beams in surrounding flows. Here in our design, pipe structure is adopted which
has not been covered in the literature. Secondly, for the pipe structure proposed, internal flow is
generally used to harvest energy from fluid flow, while the conventionally used external flow is also
possible to be employed. This is different from the reported flow energy harvesting devices which
typically use external flow induced vibration.

Suppose that the flow induced vibration of the piezoelectric composite pipe is purely two
dimensional in the xOz plane. The force diagram of the energy harvesting system for an arbitrary
element δx of the system at the position x is shown in Figure 2.
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Figure 2. (a) Force diagram of the fluid element and (b) the piezoelectric composite pipe element.
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According to the shown force diagram, the force balance for the fluid element [22] is described as:
−A

∂p
∂x
− qAs + F

∂w
∂x

= m f a f x,

−F− A
∂

∂x

(
p

∂w
∂x

)
− qAs

∂w
∂x

= m f a f z,
(1)

where p is the fluid pressure above the ambient atmosphere pressure, Fδx and qAsδx are the
reaction forces of the piezoelectric composite pipe on the fluid in the normal and tangential direction,
respectively, associated with the wall shear stress q at the inner wall of the piezoelectric composite
pipe, a f x and a f z are the accelerations of the fluid element in the x- and z-directions, respectively, w is
the displacement of the pipe centerline in the z-direction, and m f is the unit mass of the fluid element.
Following the same routine, the force balance of piezoelectric composite pipe element (including the
elastic pipe and attached piezoelectric layer) is

∂T
∂x

+ qAs − F
∂w
∂x

= (mp + ms)apx,

∂Q
∂x

+ F + qAs
∂w
∂x

+
∂

∂x

(
T

∂w
∂x

)
= (mp + ms)apz,

Q +
∂M
∂x

= 0,

(2)

where apx and apz are the accelerations of the piezoelectric composite pipe element in the x- and
z-directions, respectively, T is the longitudinal tension in the composite pipe, Q is the transverse shear
force, M is the bending moment, and mp and ms are the unit length of the attached piezoelectric layers
and elastic pipe, respectively.

Kinematic analysis shows that the acceleration components a f x, a f z, apx, and apz are

a f x =
∂U0

∂t
,

a f z =
∂2w
∂t2 + 2U0

∂2w
∂x∂t

+ U2
0

∂2w
∂x2 +

∂U0

∂t
∂w
∂x

,

apx = 0,

apz =
∂2w
∂t2 ,

(3)

respectively, given that the vertical displacement of the pipe is much smaller compared with the pipe
length and pipe height. In these expressions, U0 is the relative velocity of the conveyed fluid to the
piezoelectric composite pipe.

Combing the Equations (1), (2) and (3), we arrived at the following system of equations for
the system:

(mp + ms)
∂2w
∂t2 + m f

(
∂2w
∂t2 + 2U0

∂2w
∂x∂t

+ U2
0

∂2w
∂x2 +

∂U0

∂t
∂w
∂x

)
− ∂2M

∂x2 =
∂

∂x

[
(T − pA)

∂w
∂x

]
,

m f
∂U0

∂t
=

∂

∂x
(T − pA).

(4)

Suppose that no external tension is applied to the piezoelectric composite pipe, that the gravity
is neglected, and that the fluid is discharged into atmosphere with a steady velocity U0, we have
boundary conditions at the free end of the pipe as

T = 0, p = 0 at x = L. (5)

As a result, the governing equation of the system is converted into

(mp + ms)
∂2w
∂t2 + m f

(
∂2w
∂t2 + 2U0

∂2w
∂x∂t

+ U2
0

∂2w
∂x2

)
− ∂2M

∂x2 = 0. (6)
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By using the general Euler-Bernoulli beam theory [24], we have the the strain S1 of the piezoelectric
composite pipe in the axial direction as

S1 = −z
∂2w
∂x2 . (7)

The constitutive relation for the elastic pipe (h ≤ z ≤ hs, or − hs ≤ z ≤ −h) is

σs = EsS1, (8)

in which σs is the related stress in the elastic pipe, Es is the Young’s modulus for the elastic pipe.
The constitutive relation for the piezoelectric layer (h ≤ z ≤ hs, or − hs ≤ z ≤ −h) is [25]

σp = cE
11S1 − e31E3,

Dp = e31S1 + εS
33E3,

E3 = −
Vp

tp
,

(9)

in which σp is the related stress in the elastic pipe, cE
11 is the elastic stiffness of the piezoelectric material

at constant electric field, e31 is the piezoelectric constant and E3 is the electric field component in the
z− direction, εS

33 is the dielectric constant of the piezoelectric material at constant strain, and Vp is
the voltage developed at the piezoelectric layer. For the externally connected resistance Rl , we have
according to Ohm’s law [26]:

Vp + Rl
dQp

dt
= 0, (10)

where Qp is the amount of charge on the upper electrode of the piezoelectric layer. According to
Gauss’s law [26]

Qp =
∫

Σ
D · ndΣ = −

∫ L

0
Dpbdx

= He

∫ L

0

∂2w
∂x2 dx + CeVp,

(11)

where D is the electric displacement field inside the piezoelectric material, n is the outward unit
normal for the electrodes attached to the piezoelectric patches, and

He = 2e31bhpc, Ce =
2bLεS

33
tp

, (12)

and hpc being the coordinate the center surface of the piezoelectric layer in the vertical direction

hpc =
1
2
(hp + hs). (13)

Combining all the information together, we obtain a system of fluid-solid-electric coupled
equations for the proposed energy harvesting system:

(ms + mp + m f )
∂2w
∂t2 + 2m f U0

∂2w
∂t∂x

+ m f U2
0

∂2w
∂x2 + Ye

∂4w
∂x4 = 0,

−Ye
∂2w
∂x2 + HeVp = M,

He

∫ L

0

∂2w
∂x2 dx + CeVp = Qp,

Vp + Rl
dQp

dt
= 0,

(14)
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with boundary conditions

x = 0, w = 0,
∂w
∂x

= 0,

x = L, M = 0,
∂M
∂x

= 0.
(15)

The equations are non-dimensionalized using L, L/U0, (ms + mp), U0

√
(ms + mp)L/Ce,

and U0

√
(ms + mp)LCe as characteristic length, time, mass per unit length, voltage, and

charge, respectively:

(1 + M∗)
∂2w̄
∂t̄2 + 2M∗

∂2w̄
∂t̄∂x̄

+ M∗
∂2w̄
∂x̄2 +

1
U∗2

∂4w̄
∂x̄4 = 0,

V̄p + β
dV̄p

dt̄
+

αβ

U∗

[
∂2w̄
∂x̄∂t̄

]1

0
= 0,

(16)

with boundary conditions

x = 0, w = 0,
∂w
∂x

= 0,

x = 1,
∂2w
∂x2 − αU∗Vp = 0,

∂3w
∂x3 = 0,

(17)

where

M∗ =
m f

ms + mp
, U∗ = U0L

√
ms + mp

Ye
, α = He

√
L

CeYe
, β =

U0RlCe

L
(18)

are called hereafter the mass ratio, the reduced velocity, the electromechanical coupling, and the
dimensionless connected resistance, respectively.

3. Linear Stability Analysis

For the linear partial differential equation, we seek the stability of the trivial solution w̄(x̄, t̄) = 0.
Using the representation of eigensolution

(w̄, V̄p) = Re {(ξ, η)eσ} , (19)

in which σ = σr + jσi, we have the following eigenvalue problem

(1 + M∗)σ2ξ + 2M∗σ
∂ξ

∂x
+ M∗

∂2ξ

∂x2 +
1

U∗2
∂4ξ

∂x4 = 0 (20)

with boundary conditions

x̄ = 0, ξ = 0,
∂ξ

∂x̄
= 0

x̄ = 1,
∂2ξ

∂x̄2 +
βσ

1 + βσ
α2 ∂ξ

∂x̄
= 0,

∂3ξ

∂x̄3 = 0
(21)

The linear eigenvalue problem in terms of ξ, η, and σ is then solved using the “push and
pull” method [27,28] with the help of the AUTO software package [29,30]. For the given values
of the dimensionless parameters α, β, and M∗, the fluid-conveying piezoelectric composite pipe
becomes neutrally stable at a critical reduced velocity U∗c [21]. We consider here the dependence of the
critical reduced velocity U∗ upon the dimensionless electromechanical coupling α, the dimensionless
connected resistance β, and the mass ratio M∗.
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3.1. The Influence of Mass Ratio

To begin with, we explore the dependence of system behaviors upon the mass ratio M∗. By setting
the dimensionless electromechanical coupling α = 0.5 and choosing different values for the externally
connected resistance β, we can calculate the critical reduced velocity U∗ and the corresponding
neutrally stable frequency σi, respectively. (Here the neutral stability means that the eigenvalue
σ = σr + jσi corresponding to the eigenmode has zero real part σr = 0. Thus we denote the neutrally
stable frequency of the mode by σi hereafter.) The results are plotted in Figure 3. It is shown that in
the considered range of 0.01 ≤ M∗ ≤ 100, the critical reduced velocity U∗c displays an overall trend
of decreasing while the neutrally stable frequency σi displays an overall trend of increasing with the
increasing of mass ratio M∗. From the perspective of energy harvesting, it is desirable for the system
to have a low critical reduced velocity [16]. Therefore, we tend to choose a relatively large mass ratio
M∗ in the design of related energy harvesting systems. For certain values of mass ratio M∗, there exist
multiple critical velocities U∗c and corresponding neutrally stable frequencies σi. Besides, for this value
of α = 0.5, no big difference is found by changing the values of β from a small β = 0.01 to a large
β = 100.0. (Actually, in both panels of Figure 3, the differences between the curves with different
values of β are so small that they can hardly be discerned visually.) This can be validated by checking
the Equation (17). Since the term βσ

1+βσ α2 occurs as a whole in the boundary conditions Equation (17),
for a small value of α, say α = 0.5 in our case, the variance in the values of β does not qualitatively and
quantitatively change the boundary conditions Equation (17). As a result, the calculated curves for
critical reduced velocities U∗c and neutrally stable frequencies σi will not be much different.
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Figure 3. Dependence of the critical reduced velocity U∗c (left panel) and the corresponding neutrally
stable frequency σi (right panel) upon the mass ratio M∗ and different values of β. (Here we have
α = 0.5).

However, when we set α = 0.5 and choose different values of α, some qualitative differences are
present. The results for this set of parameter values are shown in Figure 4. When the dimensionless
electromechanical coupling α is relatively small, say α = 0.05 or α = 0.5, there exists the same trend
as that for the fixed α and varying β. While for relatively large values of α, say α = 50 or α = 50,
no multiple correspondences of critical reduced velocities U∗c and neutrally stable frequencies σi are
shown. The critical reduced velocity U∗c is monotonically decreasing with respect to mass ratio M∗.
(See the left panel of Figure 4). At the same time, the corresponding neutrally stable frequency σi is
only slightly increasing with respect to M∗. (See the right panel of Figure 4.) This kind of qualitative
change with respect to α shows the influence of α upon the dynamical behaviors of the system.
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Figure 4. Dependence of the critical reduced velocity U∗c (left panel) and the corresponding neutrally
stable frequency σi (right panel) upon the mass ratio M∗ and different values of α. (Here we have
β = 1).

3.2. The Influence of Electromechanical Coupling

In this line of calculations, we first set a fixed value of β = 1.0 and choose different values for
M∗. The calculated critical reduced velocities U∗c and neutrally stable frequency σi are shown in
Figure 5. It is clearly shown that the value of M∗ has a large effect on the overall level of the critical
reduced velocity U∗c . As shown in the previous subsection, the smaller the mass ratio M∗, the larger the
critical reduced velocity U∗c . Note that here the value of α is allowed to be both positive and negative.
This comes from the fact that in Equations (12) and (18), the term e31 can be positive or negative
for different piezoelectric materials. (Actually, for the piezoelectric material of PZT (lead zirconate
titanate), e31 is negative while for the piezoelectric material of PVDF (polyvinylidene difluoride) ,
e31 is positive.) Besides, from the Equation (17), we find that it is the value of α2 that affects the
boundary condition and thus the dynamical system. Hence, we are interested here in the range of α

in a symmetric interval. It is interesting to note that for all values of M∗, when the absolute values
of α are large enough, say α > 10 or α < −10 in our case, the resulting values of the critical reduced
velocity U∗c and the neutrally stable frequency σi are not much affected by the further change of α.
Besides, for small values of α, say 0.5 ≤ α ≤ 0.5 in our case, the influences of α upon U∗c and σi are
not obvious in the sense that the values of U∗c and σi do not vary too much. However, when α is in
the intermediate range, it will largely affect the values of U∗c and σi and a multiple correspondence is
observed between the value of α and those of U∗c and σi. From the point view of energy harvesting, it
will be advisable to choose either small values of α for higher neutrally stable frequencies σi or large
values of α for lower critical reduced velocities U∗c .

In the next, we set M∗ = 1.0 to be fixed and change the values of β, with the interesting results
shown in Figure 6. In this case, the values of β influence the multiple correspondences of U∗c and σi
with respect to α. For β = 0.01, no multiple correspondence is found in the range of −20 ≤ α ≤ 20
while for β = 100.0 multiple correspondence is found for most values of α in the range −35 ≤ α ≤ 35.
Though generally the dimensionless externally connected resistance β are determined in the design of
the energy harvesting systems so that better output performances are achieved, we must note that
the connection of β to the energy harvesting system does actually change the dynamical behaviors
of the system. Therefore, care must be taken when deciding the parameter values of β so as not to
affect such performance measures of the energy harvesting system as the operation velocity range and
frequency range.
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Figure 5. Dependence of the critical reduced velocity U∗c (left panel) and the corresponding neutrally
stable frequency σi (right panel) upon the electromechanical coupling α and different values of M∗.
(Here we have β = 1.0).
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Figure 6. Dependence of the critical reduced velocity U∗c (left panel) and the corresponding neutrally
stable frequency σi (right panel) upon the electromechanical coupling α and different values of β.
(Here we have M∗ = 1.0).

3.3. The Influence of Externally Connected Resistance

By setting α = 0.5 and choosing different values of M∗, we calculate the critical reduced velocity
U∗c and the neutrally stable frequency σi corresponding to β. The results are shown in Figure 7.
For given values of M∗, the variances of U∗c and σi with respect to β is relatively small. Nevertheless,
we can find interesting peaks for each value of M∗. More interesting features are found when we fix
the value of M∗ = 1.0 and change the values of α, for which the results are shown in Figure 8. Actually,
for small values of α (say α = 0.05 or α = 0.5 in our case), or large values of α (say α = 500.0 in our
case), the variances of U∗c and σi with respect to β are relatively small. However, for intermediate
values of α, say α = 5.0 and α = 500.0 in our case, substantial drop is observed in U∗c and σi when we
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gradually increase the value of β. From the point view of energy harvesting, it can be concluded that,
larger β helps to obtain a larger operation velocity range (the critical reduced velocity U∗c is smaller)
and brings about lower operation frequencies (the critical reduced velocity σi is smaller).
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Figure 7. Dependence of critical reduced velocity U∗c and neutrally stable frequency σi upon the
externally connected resistance β and different values of M∗. (Here we have α = 0.5).
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Figure 8. Dependence of critical reduced velocity U∗c and neutrally stable frequency σi upon the
externally connected resistance β and different values of α. (Here we have M∗ = 1.0).

4. Energy Harvesting Efficiency of the Proposed Device

Following the routine by Doaré et al. [15], we define the kinetic energy Ek, the elastic potential
energy Ep and electrical potential energy Ee stored in the piezoelectric elements as
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Ek =
∫ L

0

1
2
(ms + mp)

(
∂w
∂t

)2
dx

Ep =
∫ L

0

1
2

Ye

(
∂2w
∂x2

)2

dx

Ee =
1
2

CeV2
p

(22)

respectively, while the harvested energy, or the dissipated power Pel by the connected resistance β

(suppose that all the dissipated energy by the resistance can be harvested and utilized) is

Pel = −Vp
∂Qp

∂t
=

V2
p

Rl
(23)

In the framework of linear stability analysis, it is impossible to extract any estimates of the total
harvested energy. Hence we defined here a normalized measure re f for the energy conversion efficiency
of the system [15] by considering the total harvested energy in a working period Tp of the system
relative to the average contained energy in the system itself. That is

re f =

∫ Tp
0 Peldt

1
Tp

∫ Tp
0
(
Ek + Ep + Ee

)
dt

. (24)

Using the equations indicated in [15] and considering the expression (19), the definition (24) is
converted into

re f =

4π
βσi
|η|2∫ 1

0

(
w2

i |ξ|
2 +

1
U∗2

∣∣∣∣ ∂2ξ

∂x2

∣∣∣∣2
)

dx + |η|2
(25)

With different values of α, β, and M∗, the normalized energy harvesting efficiency re f
corresponding to the acquired neutrally stable mode is calculated according to Equation (25).
The results are summarized and shown in Figure 9.

From Figure 9a,b, it is clearly shown that for different values of M∗ and β, the normalized energy
harvesting efficiency re f reaches its peak at some value of α. However, it should be noted that the
value of α at which re f is maximized is possibly subject to multiple correspondence of reduced critical
velocity U∗c and neutrally stable frequency σi. This multiple correspondence actually results from the
multiple correspondence of the marginally stable mode calculated to the system parameters, which has
been indicated in Figure 3. This kind of multiple correspondence is prevalent in the research of
dynamical systems and has been validated by many studies in the fluid structure interaction of flexible
plates and steady ambient fluid flow, [14,21] where a similar dependence of critical reduced velocity
and the mass ratio is observed. As a result, in practical design of the proposed energy harvesting
systems, care must be taken to choose the value of electromechanical coupling α so that a better
output performance is achieved. Note that for the case of M∗ = 10.0 and M∗ = 100.0, the resultant
dependence curves are very close to each other and can hardly be distinguished from that shown in
Figure 9a. This phenomenon lies in the fact that for a rather large value of M∗, the influence of mass
ratio upon the qualitative characteristics of the devices is not so significant, which is valid according to
Equation (20).
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Figure 9. Dependence of the normalized energy harvesting efficiency re f upon (a) the dimensionless
electromechanical coupling α with β = 1.0 and different values of M∗; (b) the dimensionless connected
resistance β with α = 0.5 and different values of M∗; (c) the mass ratio M∗ with β = 1.0 and different
values of α; (d) the dimensionless electromechanical coupling α with M∗ = 1.0 and different values of
β; (e) the dimensionless connected resistance β with M∗ = 1.0 and different values of α; and (f) the
mass ratio M∗ with α = 0.5 and different values of β.
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As for the influence of dimensionless connected resistance β upon the normalized energy
harvesting efficiency re f , it is seen from Figure 9c,d, that roughly a resonance will be achieved for
some values of β. This is similar to the resonance property of an oscillating RC-circuit connected
to a harmonic source with frequency σi, [15] which is indicated by Equation (16). Nevertheless,
since the neutrally stable frequency σi is dependent on dimensionless connected resistance β, a
piezoelectric feedback is imposed by the externally connected circuit upon the piezoelectric composite
pipe. It indicates that extra design and control strategies should be put forward to achieve a matched
output performance for the externally connected circuits. However, in this way the future model must
take into account the influence of the control circuit upon the whole energy harvesting system. On one
hand, the dynamical behaviors of the system is partially affected as we have equivalently changed
the external circuit connected to the energy harvester. On the other hand, power consumption of the
control circuit is sure to affect energy harvesting efficiency of the proposed system and thus has to be
minimized.

Besides, it is indicated in the previous section that the increase of mass ratio M∗ leads to the
overall decrease of critical reduced velocity U∗c and the overall increase of neutrally stable frequency σi
despite the occurrence of multiple correspondence. However, here in Figure 9e,f, an overall decrease
of normalized energy harvesting efficiency re f is observed. It shows that we must have a trade-off
between the operation velocity range and normalized energy harvesting efficiency when choosing the
appropriate mass ratio M∗.

5. Discussion and Perspectives

The flow induced vibration of a piezoelectric composite pipe is considered here in the contribution
as a candidate for flow energy harvesting. A mathematical model is derived to describe the dynamical
behaviors of the proposed system by incorporating fluid induced vibration and piezoelectric coupling.
Global stability analysis is done with the help of the AUTO software package. The critical reduced
velocity U∗c , the neutrally stable frequency σi, and the normalized energy harvesting efficiency re f for
each of the neutrally stable eigenmode are then calculated and summarized.

The mass ratio M∗ measures the mass per unit length conveyed in the pipe relative to that
of the piezoelectric pipe. With an increasing M∗, we expect to obtain a smaller critical reduced
velocity U∗c and larger neutrally stable frequency σi but reach a lower re f . In practical system
design, the phenomenon of multiple correspondence must be taken into account to achieve a better
performance. The dimensionless electromechanical coupling α measures the coupling between the
elastic pipe vibration and the circuit response. While the system behavior is only related to the absolute
value of α, we can see from the simulation results that a small value of α is likely to result in larger
values of U∗c and σi. At the same time, a maximum of re f does exist with varying α and for this part
a small value of α are not necessarily corresponding to a maximum normalized energy harvesting
efficiency. The existence of multiple correspondence between α and the critical reduced velocity U∗c
make things complicated. In fact, the U∗c corresponding to maximum re f at a given value of α may
not be achieved in practical applications since a lower U∗c also exists for the same value of α and is
easier to achieve. As for the dimensionless connected resistance β, for small values of α, it affects little
the values of U∗c and σi while for larger values of α, it causes the decrease of U∗c and σi. Though a
typical resonance is observed, the resonance is actually affected by the coupling between the externally
connected circuit and the elastic vibration of the piezoelectric composite pipe. As a result, no quick
conclusion can be made about the choice an optimal externally connected resistance β.

Compared with the piezoelectric harvesting flag proposed by Doaré et al. [15] we partially
validated the obtained results [16]. First, we compare the obtained results in terms of the dependence
of critical reduced velocity U∗c upon the mass ratio, which corresponds to the results shown in
Figures 3 and 4 and the results shown in Figure 3 of the paper by Michelin et al. [16] (In the following
text, this reference paper is referred to as MD2013). The similarity of the dependence diagram results
from the similar governing equations of the two systems and the similarity of instability modes.
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Besides, the numerical values of the the critical reduced velocity U∗c in our contribution are quite close
to those in the paper MD2013. For example, in the case of α = 0.5 and β = 1.0, we found a U∗c of
around 11 for a mass ratio of M∗ = π/8. Note that our definition of the mass ratio M∗ is related to that
defined in MD2013 by a factor of π/8. Hence, we find in Figure 3a of MD2013 that the critical reduced
velocity U∗c corresponding to the case of α = 0.5 and β = 1 is around 12. The difference is due to the
different governing equations and boundary conditions presented in the two contributions. Secondly,
we compare the dependence of normalized energy harvesting efficiency re f upon the dimensionless
electromechanical coupling α, which corresponds to the results shown in Figure 9c,d and the results
shown in Figure 13 of the paper by Michelin et al. [15]. (In the following text, this reference paper
is referred to as DM2011). Again we can find similar results. In the case of β = 0.5 and M∗ = 1 in
DM2011 (In our case, it corresponds to M∗ = π/8.), re f is maximized at βwr ≈ 1 with a maximum
of about 0.8, while in our case, the maximized re f is observed to be about 0.1, corresponding to a
different value of β. When we come to check the influence of α, a maximum re f of 5− 7 is observed in
our contribution, while the maximum re f is around 6 in DM2011. The closeness between the results
validates our results and model.

Besides, since our model is developed in line with the method utilized in the references [15,16],
and serves to theoretically investigate the feasibility and potential of flow induced energy harvesting,
we define a numerical measure re f of the energy conversion efficiency which is not the same as the
engineering notation of efficiency. As a result, it is impossible to compare our calculated results with
those presented in the literature that are obtained by experiment. However, we can find many useful
insights from various publications in the field of energy harvesting. Shan et al. [31] proposed an
energy harvesting system composed of two energy harvesters in a tandem configuration to improve
the energy harvesting output. Song et al. [32] integrated several cylinders into the beam, which serves
to amplify the flow induced vibration. Shan et al. [33] combined flow induced bending and torsion
vibrations to broaden the work zones of the energy harvesters. All these proposed designs provide
clues for the future modeling and optimization of our proposed design.

Though we have revealed many interesting and useful properties of the proposed piezoelectric
flow induced vibration energy harvesting system, there are still open challenges. Apart from the
controlling of the actual selection of neutrally stable mode and the improvement of the device efficiency,
it is also interesting to explore the parameter space to acquire insights into the complex dynamical
behaviors of the system, which will be helpful to the detailed design of the system in terms of its
operation velocity and frequency range.

On the other hand, the coupling of fluid flow, solid vibration and electric circuits is far more
complicated than the simplified version considered in this contribution. First, the fluid flow considered
in this contribution is a steady state inviscid flow. However, in the general case, the fluid flow is viscous
and sometimes viscoelastic. The flow velocity along the pipe is not uniform and usually of dependence
upon time. Second, the dynamics of the cantilever pipe is linearized in terms of a small transverse
displacement field in our analysis. For a more practical model, a motion with large displacement
or even finite strain is to be considered to retain the nonlinear nature of the problem. Besides, the
non-uniform distribution of electrical field and electric displacement field is to be considered to allow
for the optimization of electrode patches upon the piezoelectric materials [34]. Last but not least
important, the output circuit is shown to have great influence on the output performance, though
we consider only a simple resistive load here. To further improve the output performance, a more
complicated load circuit is to be adopted. Note that there is substantial coupling between the electric
circuits and the cantilever pipe vibration. Some kind of control method is to be developed along with
the adopted output circuit.
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