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Abstract: The recently emerging cyber-physical-social system (CPSS) can enable efficient interactions
between the social world and cyber-physical system (CPS). The wireless sensor network (WSN) with
physical and social sensor nodes plays an important role in CPSS. The integration of the social sensors
and physical sensors in CPSS provides an advantage for smart services in different application areas.
However, the dynamics of social mobility for social sensors pose new challenges for implementing
the coordination of transmission. Furthermore, the integration of social and physical sensors also
faces the challenges in term of improving energy efficiency and increasing transmission range.
To solve these problems, we integrate the model of social dynamics with collaborative beamforming
(CB) technique to formulate the transmission optimization problem as a dynamic game. A novel
transmission scheme based on reinforcement learning is proposed to solve the formulated problem.
The corresponding implementation of the proposed transmission scheme in CPSS is presented by
the design of message exchange processes. The extensive simulation results demonstrate that the
proposed transmission scheme presents lower interference to noise ratio (INR) and better signal to
noise ratio (SNR) performance in comparison with the existing schemes. The results also indicate
that the proposed method has effective adaptation to the dynamic mobility of social sensor nodes
in CPSS.

Keywords: collaborative beamforming; cyber-physical-social system; social sensor nodes; wireless
sensor network

1. Introduction

Cyber-physical-social system (CPSS) is attracting increasing attention through the integration
of social system and cyber-physical system (CPS). The CPSS as a novel paradigm enables the deep
interaction of social space and CPS or Internet of Things (IoT), which brings significant changes for
improving the service and management of complex physical systems. Architectures, methods and
schemes of CPSS for different application areas have been proposed [1–9]. The wireless sensor network
(WSN) as the sensing network is one of the most important parts. Importantly, compared with CPS or
IoT, the CPSS contains a large number of social sensors, such as smart phones and tablets. The social
sensors have a great impact on data collection, transmission, and processing. The novel WSN composed
of social and physical sensors undertakes the collection task of sensing information and plays an
important role in CPSS. Since the sensor nodes are battery-powered and the battery capacities are
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limited, improving energy-efficiency of transmission for the novel WSN in CPSS is still one of the most
important research topics. In recent years, the emerging collaborative beamforming (CB) technique
provides a novel solution for improving energy efficiency of information transmission in traditional
WSN. However, due to the characteristic of dynamic social mobility for social sensors, the related
studies of CB in traditional WSN composed of physical sensors are not applicable for the CPSS. Our
objective was to integrate the social dynamic model with collaborative beamforming technique to solve
the problem of coordinated transmission of WSN with social and physical sensors for the CPSS.

In CPS, the traditional WSN only considering fixed physical sensors is widely used to sense or
collect the large-scale information due to the characteristics of low cost, lower power and the small
devices. The energy efficient schemes for the traditional WSN have been paid great attention in the
past few decades. In recent years, the emerging of collaborative beamforming (CB) technique brings
a novel solution for improving the energy efficiency of WSNs [10]. The CB technique requires that all
fixed sensor nodes in WSN divide into different clusters. All fixed sensor nodes in a cluster transmit
collaboratively the sensing information to the intended base station (BS). In process of transmission,
the phase synchronization is achieved by the existing synchronization methods. The CB can enhance
the transmission gain in intended direction and reduce the interference power at other directions.
In other words, these fixed sensor nodes in CB can obtain the beampattern with stable mainlobe and
low sidelobe by the cooperative way. Since the sensor nodes are randomly deployed in the given
areas, the random distribution of sensor nodes cause that the amplitude of sidelobe in beampattern
presents the unpredictability [11–13]. It means that the node locations have an important impact for
the amplitude of sidelobe [14]. However, the high sidelobe level can lead to the strong interference for
the others unintended BSs. Therefore, achieving the required sidelobe level can effectively improve
the service performance of CPS.

On the other hand, the existing CB optimization methods for sidelobe control in WSN mainly
consider the fixed and static sensor nodes. These methods generally include transmission coefficient
optimization [15–20] and sensor node selection [21–23]. These methods integrate the coefficient
optimization into node selection. They first use the intelligence algorithm to optimize the peak
sidelobe level and then select an optimal sensor node set based on the regular antenna array. However,
these research works have not presented the analysis of the computational complexity and the
implementation scheme of information transmission.

As mentioned above, although the existing algorithms exhibit substantial improvement in terms
of minimizing the peak sidelobe or sidelobe control in direction of unintended BS, they assume the
sensor nodes in traditional WSN are static and the optimization results may cause some sensor nodes
to be selected more often such that the network lifetime is reduced. Due to the characteristic of the
social dynamic of social sensors for the novel WSN in CPSS, the existing CB optimization methods
are not applicable for the novel WSN including mobile social and static physical sensors in CPSS.
In this paper, we integrate the social dynamic model into CB to solve the problem. The corresponding
transmission optimization method based on reinforcement learning is developed to improve the
transmission efficiency of WSN in CPSS. Moreover, the communication mechanism of implementing
the transmission scheme and the detailed performance analysis are presented.

The remainder of this paper is organized as follows. The related work is presented in Section 2.
Section 3 presents the WSN sensing scenario based on CB in CPSS, including the model of social
dynamic mobility and the model of CB transmission. In Section 3, we formulate the CB transmission
optimization problem. Section 4 presents a transmission schemes of CB based on reinforcement
learning to maximize the SNR performance, while considering the constraint of the interference power
at the direction of unintended BS in CPSS. Section 5 evaluates the proposed methods via extensive
simulations. Finally, we conclude this work in Section 6.
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2. Related Work

In recent years, cyber-physical-social system (CPSS) attracts a great amount of attention because
it considers the integration of the human activity with CPS or IoT. Many applications based on CPSS
have been developed, such as intelligent transportation [2] and smart city [3]. The corresponding
architecture, methodology, control, and command schemes are also proposed [1,4,5]. In particular,
the sensing network architecture based on WSN as an important part of CPSS plays a significant
role for sensing, transmitting and collecting information. Since the WSN architecture composed of
social and physical sensor nodes is significantly different from that of traditional WSN, the related
research works on traditional WSN are not applicable for CPSS due to the characteristics of dynamic
social mobility for social sensors. Therefore, some novel methods are proposed to solve the emerging
problems in CPSS. For example, a moving centroid based routing protocol is presented to deal with
the incompletely predictable cyber devices in cyber-physical-social distributed systems [6]. In [7],
the authors studied a fusion scheme of cellular network and wireless sensor for CPSS. To prolong the
lifetime of the IoT, a novel rendezvous data routing scheme based on lower sensors is proposed to
achieve the data transmission for scalable CPS networking infrastructure [8]. In addition, a new sensor
trajectory planning method is proposed to solve the trajectory planning problem for robotic CPSS [9].
However, all the above-mentioned methods have not considered the improvement of transmission
efficiency of the novel WSN in CPSS. In [24], the authors presented a framework and infrastructure
of collaborative CPS to improve the management efficiency of the increasing number of devices.
The importance of collaboration among components is considered.

On the other hand, the collaborative beamforming technique has been studied extensively in recent
years, as it can increase the transmission range and improve the energy efficiency. The related research
works on CB transmission in WSN can be divide into three classes, with respect to beampattern analysis,
sidelobe level optimization, and synchronization scheme. The analysis of beampattern mainly focuses
on the performance of mainlobe, sidelobe, and directivity for different sensor node distributions [10].
The sensor nodes distributions mainly include uniform distribution [11], Gaussian distribution [12],
and arbitrary distribution [13]. Based on the analysis of beampattern for different nodes distributions,
results are obtained for the performance characteristics of different node distributions and the feasibility
of the CB technique in WSN. However, for WSN with small-size nodes, the beampattern performance
with random node distribution can hardly meet the transmission requirement in practical applications.
To address this problem, the researchers mainly focus on the minimization of peak sidelobe level
and the sidelobe control at the unintended receiver directions. The two optimization objectives can
be achieved by transmission coefficient optimization and sensor node selection. The two classes
of methods can be differential according to the characteristic of transmission coefficient. When the
transmission coefficient is continuous, the corresponding methods mainly focus on the optimization
of transmission power coefficient. If each sensor node in WSN has only two states, i.e., active on or
active off, node selection is generally considered to solve the optimization problem. For transmission
coefficient optimization, intelligent algorithms are often used to solve the minimum peak sidelobe or
maximum energy efficiency problem for CB in WSN. Due to the non-convex characteristics of this
optimization problem, intelligence heuristic algorithms are often employed. For example, the authors
in [17,21] utilized particle swarm optimization (PSO) and the firefly algorithm (FA) to optimize the
amplitude coefficient of each collaborative node, respectively. Then, a collaborative node set is selected
from the candidate nodes based on a circular antenna array. Similarly, the authors in [20] utilized the
genetic algorithm (GA) to minimize the peak sidelobe amplitude. Furthermore, several coefficient
optimization methods are proposed to extend network lifetime. A multi-objective beampattern
optimization problem is formulated in [18], and a metaheuristic method is proposed to calculate the
transmission coefficient. This method can ensure low peak sidelobe level and energy consumption, in
comparison with the existing heuristic algorithms. In [19], a beampattern optimization method based
on non-dominated sorting genetic algorithm II (NSGA II) is proposed to prolong network lifetime
for CB in WSN, which effectively reduces the energy consumption and improves the performance of
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the peak sidelobe. The optimization objectives involve the peak sidelobe and beampattern directivity.
Since the transmission coefficient is characterized as a continuous variable, these intelligent algorithms
generally have high computational complexity and cause redundant energy consumption. In addition,
the corresponding implementation schemes are not introduced in details.

To provide another solution, the situation that the transmitter of each node only has two power
levels (i.e., zero and maximum power) is considered. The optimization objective is mainly to minimize
the interference power at direction of the other unintended BS by determining the nodes states in
terms of active or sleep states. The beampattern optimization problem is typically regarded as a node
selection problem. As the problem is a non-convex and combinatory in nature, it is difficult to be solved
in polynomial time. Heuristic and combinatory optimization methods are utilized to minimize the
sidelobe level. In [22], the authors proposed a random node selection method. This method randomly
selects L nodes from N nodes and evaluates whether the sidelobe level of the N nodes meets the
given requirement in the direction of unintended BS. Then, it needs to repeat the above process until
the requirement is met. However, the computational complexity of this method is very high which
may significantly increase the energy consumption of sensor nodes. To reduce the computational
complexity, a node selection algorithm based on cross-entropy optimization (CEO) is proposed in
[23]. The evaluation results show that the CEO algorithm has better sidelobe performance and lower
computational complexity than the method proposed in [22]. However, it only considers static physical
sensor nodes and can hardly be extended to mobile networks including the CPSS.

In summary, most of the above-mentioned related works tend to use intelligence algorithms to
solve the CB optimization problems for WSN in CPS. These methods assume that the physical sensors
in WSN are fixed. However, the social sensors have the property of social dynamic mobility, which
significantly affect the performance of CPSS. Therefore, in this work, we focus on the integration of
social and physical sensors and propose a corresponding CB optimization method to improve the
transmission performance in CPSS.

3. System Model and Problem Formulation

This section first presents the sensing scenario of WSN for CPSS. Then, the corresponding
transmission model of CB is described.

3.1. Sensing Architecture of WSN for CPSS

Generally, the CPSS is composed of three parts, i.e., social space, physical space, and cyber
space, as shown in Figure 1. The WSN, also called the sensing network, consists of social sensors and
physical sensors. The higher abstraction level represents different applications, such as smart home,
smart city, intelligent transport and so on. The social and physical sensors in WSN connect to the
cyber world through the communication network or Internet. The cyber space interplays with social
space and physical space. The social sensor can interact with physical sensors and among each other.
The progressive interaction between the two types of sensor nodes can provide the reliable operation,
low cost and efficient control for cyber system. They are used to capture the monitoring data and offer
the collection of large-scale data. In CPSS, the physical sensors are generally fixed and static. The social
sensors are affected by individual affective and physical state [25,26], which is a dynamic process. That
is, these social sensors are carried by people and each social sensor moves among different locations
based on the social dynamics. It should be noted that the concept of “location” has different definitions
in the literature [25,26]. The authors of [25] utilized Voronoi diagram to divide the plane into cells
and each Voronoi cell is referred to as a location. In [26], an square cell (block) is a location. In this
paper, we consider the definition of location in [25]. In this work, we use the energy efficient CB
technique to improve the transmission performance of the social and physical sensing network for
CPSS. The corresponding transmission model based on CB is presented in this section.
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Figure 1. Sensing scenario of WSN in CPSS.

3.2. Model of Social Dynamic Mobility

As we can see in Figure 1, the mobility of social sensors such as mobile phones and tablets is
determined by the decisions and behaviors of their owners. Accordingly, their mobility is consistent
with the human mobility. In the literature [27,28], several models are proposed to characterize human
mobility trajectories. However, these models lack the capability of capturing the features of human
dynamic mobility. In [25], the analytical results show that the human movements are not random.
Thus, a novel model is proposed to characterize the mobility of humans. The proposed model presents
high predictability of human movement. In the following, we present the detailed model of social
dynamic mobility.

From the work in [25,26], we know the human trajectories can be characterized by two probability
distributions, related to the jump length (∆r) and waiting time (∆t), respectively, given by [25,26]:

P(∆r) = (∆r + ∆r0)
−1−αe−∆r/k1 (1)

P(∆t) = (∆t)−1−βe−∆t/k2 (2)

where the jump length ∆r is the distance from current location to the next location. The waiting time
∆t denotes the spending time of individual at the same location. α and β are the parameters controlling
the jump distance and wait time, respectively, while k1 and k2 are the cutoff values of jump distance
and wait time, respectively. The value of ∆r0 specifies the minimum jump distance.

According to the above distributions and the analysis in [25], the individual will change the
current location after a waiting time ∆t. The individual mobility process is described by two generic
mechanisms, i.e., exploration and preferential return. For exploration, each social sensor node intends
to move to a new location with probability Pnew

Pnew = ρS−γ. (3)
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In Equation (3), the S denotes the number of visited locations, while ρ,γ refer to the parameters of
exploring a new location and returning to a visited location, respectively. The social sensor node visits
the new location based on the probability Pnew. After a waiting time ∆t, the social sensors return to
the previously visited location based on the following probability Pret

Pret = 1− ρS−γ. (4)

The analytical results for the model in [25] show that, over time, the number of visited locations S
should follow the law:

S(t) ∼ tµ. (5)

where µ = β/(1+ γ), and γ refers to the parameter of returning to a visited location, γ > 0. β denotes
the parameter of controlling wait time, 0 < β < 1. We know that µ < 1, which means that the S(t) has
a decreasing tendency of visiting unvisited locations for the individual. According to the above definition
of location in Section 3.1, the number of locations in a city or urban area is limited. When the simulation
time t tends to be infinity, the number of visited location will be constant. Then, based on the initial time
moment, we can determine the number of visited locations S. According to the analysis in [25], we can
count the frequency of visiting location i and calculate the corresponding transition probability between
any two visit locations j and k, i.e., Pi(sj|sk) = F i

j,k, i ∈ {1, · · · , O}, j, k ∈ {1, 2, · · · , S}, j 6= k.

Pi(sj|sk) =


0 F i

(1,2) · · · F i
(1,S)

F i
(1,2) 0 · · · F i

(1,S)
...

...
. . .

...
F i
(S,1) F

i
(S,2) · · · 0

 (6)

From the work in [25], we know that the model can effectively capture the basic features of human
social mobility. Therefore, we use this model to characterize the mobility of social sensors. In this work,
since the number of the visited locations for human in a area is limited, we utilize the above model
to establish a fixed number of visited locations, and then each social sensor returns to the previous
visited location based on the above transition probability.

3.3. Transmission Model of CB

We consider a CPSS with a social or physical sensing WSN with M nodes, in which there
are O social sensor nodes and F physical sensor nodes randomly deployed on a plane, as shown
in Figure 2. We assume D base stations (BSs) are located in the surrounding area of the WSN.
We use R = {R0, R1, · · · , RD} and Z = {z1, z2, · · · , zM} to denote the BSs and the sensor nodes,
respectively. The nodes {z1, z2, · · · , zO} are referred to as the social sensor nodes. The other nodes
denote the physical sensor nodes. The transmission range of each sensor node cannot fully cover the
BS due to the limited transmission power. As a result, the sensor nodes need to use CB technique to
transmit the monitoring information to the intended BS. Moreover, the polar coordinates (rk, ψk) and
{(A0, θ0, ϕ0), (A1, θ1, ϕ1), · · · , (AD, θD, ϕD)} are used to denote the location of the kth collaborative
node and BS, respectively. We use dk(ϕ, θ) to denote the Euclidean distance between the kth node and
location (A, θ, ϕ). The elevation angle θ lies in the range from 0 to π and the corresponding azimuth
angle is ϕ is from −π/2 to π/2. According to the literature [11], we first present the value of dk(ϕ, θ)

as follows
dk(ϕ, θ) =

√
A2 + r2

k − 2rk A sin θ cos (ϕ− ψk) (7)

When the locations of M collaborative nodes are obtained, the corresponding array factor is
given by

AF(ϕ, θ, cP) =
O

∑
k=1

ck
√

PkejΨk ej 2π
λ dk(ϕ,θ) +

F

∑
i=1

ci
√

PiejΨi ej 2π
λ di(ϕ,θ) (8)
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where O denotes the number of social collaborative nodes, and F is the number of physical sensor
nodes. In addition, Pk refers to the transmitting power of the kth node zk, while λ is the wavelength of
signal carrier. Let the initial phase of the kth node be:

Ψk = −
2π

λ
dk(ϕ, θ) (9)

Then, the corresponding array factor AF at the lth BS can be rewritten as [11]:

AF(ϕl , θ, cP) =
O

∑
k=1

ck
√

PkejΨk ej 2π
λ dk(ϕl ,θ) +

F

∑
i=1

ck
√

PiejΨi ej 2π
λ di(ϕl ,θ) (10)

Similar to Mudumbai [11], we focus on the radiation pattern in the far-field region. Thus, we also
assume that the far-field condition holds, i.e., the distance between the origin of coordinates and the
lth base station is far greater than the rk, Al � rk. Then, dk(ϕl , θ) can be approximated as

dk(ϕl , θ) =
√

A2 + r2
k − 2rk A sin θ cos (ϕ− ψk) ≈ Al − rk cos (ϕl − ψk) (11)

Without loss of generality, θ is set to π/2, which means the BS is in the same plane with the
sensor nodes. When the value of the initial phase in Equation (9) is met by the phase synchronization
technique, the amplitude of AF at the direction of the intended BS0 can be rewritten as

AF(ϕ0, cP) =
O

∑
k=1

ck
√

Pk +
F

∑
i=1

ci
√

Pi (12)

0 

ϕ 0 

(A0 , 0 ,ϕ 0 )

r1 , ψ1 

D

ψ1 

r1 

x

y

Social sensor 

node

Base station 

(BS)

(A1 , 1 ,ϕ 1 )

(A2 , 2 , ϕ 2 )

Physical 

sensor node

Figure 2. Social and physical sensing architecture based on CB for CPSS.

Next, we present the description of the received signal at intended BS and unintended BS. We
assume that all collaborative nodes receive the sending data symbol mi from source node, where
mi ∈ C and satisfies E{mi} = 0, |mi|2 = 1, and E{mimi′} = 0 for i 6= i′, where E{·} denotes the
expectation operation. Furthermore, the channel coefficient hkl is assumed to follow a lognormal
distribution [23], i.e., hkl ∼ exp{M(0, σ2)}, where σ2 is the variance of the corresponding distribution.
Then, the formula of the received signal at BS can be obtained as

x(ϕl , cP) =
O

∑
k=1

mkck
√

PkhklejΨk ej 2π
λ (Al−rk cos(ϕl−ψk)) +

F

∑
i=1

mici
√

PihilejΨi ej 2π
λ (Al−ri cos(ϕl−ψi)) + ω (13)
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where ω ∼ CN(0, σ2
ω) refers to the additive white Gaussian noise. According to Equation (12),

the received signal at the intended BS0 can be expressed as

s(ϕ0, cP) =
O

∑
k=1

mkck
√

Pkhk0 +
F

∑
i=1

mici
√

Pihi0 + ω. (14)

For the unintended BSs, the received signal can be written as

s(ϕl′ , cP) = ∑O
k=1 mkck

√
Pkhkl′ ejΨk ej 2π

λ (Al′−rk cos(ϕl′−ψk)) + ∑F
i=1 mici

√
Pihil′ ejΨi ej 2π

λ (Al′−ri cos(ϕl′−ψi)) + ω (15)

where l′ 6= 0. Correspondingly, the received interference power at the unintended BSs is given by

I(ϕl′ , cP) = |∑O
k=1 mkck

√
Pkhkl′ ejΨk ej 2π

λ (Al′−rk cos(ϕl′−ψk)) + ∑F
i=1 mici

√
Pihil′ ejΨi ej 2π

λ (Al′−ri cos(ϕl′−ψi))|2 (16)

According to Equation (15), the signal-to-noise ratio (SNR) at the intended BS0 can be calculated as

S(ϕ0, cP) =
|s(ϕ0, cP)|2

σ2
ω

. (17)

The interference-to-noise ratio (INR) at all unintended BSs can be written as

INR(ϕl , cP) =
1
D

D

∑
l=1

|I(ϕl , cP)|2
σ2

ω
. (18)

3.4. Problem Formulation

In this section, we formulate the transmission optimization problem. For a WSN using CB
technique in CPSS, the following features should be considered. Firstly, since social sensor nodes
have dynamic mobility, the CB transmission in WSN needs to consider the integration of the fixed
physical sensors and the mobile social sensor nodes. Secondly, the location of each node determines
the CB performance. Thus, the proposed method is required to capture the dynamic mobility for
social nodes and reduce its impact on the beampattern performance of CB in WSN. In addition,
to increase data transmission rate, the SNR performance at the intended BS needs to be considered,
and the INR at unintended BS is required to meet the specific requirement. From Equation (9), if the
transmission power of each node only has two levels, i.e., zero and Pmax, then the number of the
selected collaborative nodes determines the value of SNR. Therefore, the objective of our transmission
optimization problem is to maximize the SNR at intended BS while considering the dynamic mobility
of social sensor nodes, given the requirement that the INR at unintended BS should be greater than
a specific value INR0. The optimization problem can be formulated as follows:

max
c

T

∑
t=1
S(ϕ0, cP) (19)

subject to INR(ϕl , cP) < INR0 (20)

Pi(sj|sk) = F i
jk, i ∈ 1, · · · , O (21)

ci = 0 or 1, i = 1, 2, ..., M (22)

where c={c1, c2, · · · , cM} (with ci ∈ {0, 1} the vector of node selection), ci = 1 denotes that the ith
node is selected into the candidate collaborative node set, and F i

jk represents the probability from
the location k return to location j for social sensor node zi. In Equation (19), we assume the time
period is divided into T time slots. Thus, the T in Equation (19) denotes the number of time slots in
the time period. From above objective function, we can see that this is a non-linear and non-convex
optimization problem. As a result, it is difficult to derive an optimal algorithm to solve this problem as
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the computational complexity grows exponentially with the number of nodes and BSs. Furthermore,
the location of social sensor nodes is changing based on the probability of social dynamic mobility
F i

j,k, which is stochastic in nature. At the same time, the characteristics of social dynamic mobility for
social sensor nodes have great impacts on the INR. To address these issues, we use a stochastic game
approach in this paper to maximize the SNR performance under the INR constraint in the directions of
unintended BSs (INR0). In addition, considering the practical implementation WSN, it is necessary to
develop an effective learning algorithm to tackle the social dynamic mobility.

4. The Propose Transmission Optimization Algorithm

In this section, we solve the above-mentioned transmission optimization problem based on
a dynamic learning algorithm. Then, the corresponding implementation scheme is presented.

4.1. Dynamic Learning Algorithm

A game theoretical approached is used to solve this problem. Each sensor nodes in this system
acts as a game player to interact with other sensors. In a dynamic environment, the reactive action
of the game can obtain better performance than a deterministic method. For the problem under
investigation, the location of each social sensor node follows a dynamic process. Hence, we use
a dynamic learning algorithm to solve this problem. In this work, we first present the game as
Γ =< M, {Ai}i∈M, X, {µi}i∈M >, where M denotes the number of players, X represents the state of
dynamic environment, and µi, i = 1, · · · , M is the utility function of the player. In this work, the action
set of sensor node includes the two transmission power levels Ai = {0, Pmax}, which refer to the sleep
and active states of each sensor node, respectively. For the utility function µi, we first analyze the
optimization objective and the constraints. In particular, the objective is to maximize the SNR at the
intended BS, which is proportional to the transmission rate. The action of each sensor node, i.e., ci = 1
or ci = 0, determines the value of the SNR. When ci = 1, the transmission power is Pmax, otherwise,
it is 0. We consider the INR for the unintended BSs as a penalty term of the objective function. Then,
the corresponding utility function µi can be derived as follows:

µi = S(ϕ0, cP)− κ(INR(ϕl , cP)− INR0). (23)

Here, since all M sensor nodes use the collaborative beamforming technique to achieve
cooperatively the same optimization objective, the utility function of each node is the same,
i.e., µ1 = µ2 = · · · = µM.

For the game theoretical approach, reinforcement learning methods are generally used to solve
the problem. Although the Markov decision process (MDP) can also be used to solve the problem,
the accurate state information is required, which is difficult to obtain in practical applications.
In addition, the implementation of MDP is centralized. For the CPSS, the state of each social sensor
node is determined by human activity. Thus, the accurate prior knowledge is hardly obtained in
dynamic environment. In addition, the centralized optimization is hard to be implemented due
to the difficulty of collecting the global state information of all sensor nodes. For the WSN with
a distributed architecture in CPSS, a distributed scheme needs to be considered. Therefore, we first
present a distributed reinforcement learning algorithm based on regret matching to improve the
transmission performance of the WSN with social and physical sensor nodes in CPSS. The regret
matching scheme focuses on the regret related to the actions of each player. For any time, each player
(node) calculates the regret value by adjusting its strategy. The specific definition is given by

Rai
i (t) =

1
t

t

∑
τ=1

[µi(ai, a−i(τ))− µi(a(τ))] (24)
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where µi(a(τ)) denotes the received utility for each player at time τ, and µ(ai, a−i(τ)) is the utility
when the player switch to action ai while other players retaining theirs unchanged. Then, each player
updates its strategy pi(t) as follows:

pai
i (t) =

[Rai
i (t)]+

∑a′i∈Ai
[R

a′i
i (t)]+

(25)

where [Rai
i (t)]+ = max{Rai

i (t), 0}.
The proposed algorithm is presented in Algorithm 1, where the regret matching method is used

to maximize the utility in Equation (23). In the initialization stage, each social or physical sensor node
initializes the location of node, state, and probability of action selection. Then, each sensor node selects
the specific action (corresponding to the transmission power) according to the initial probability. After
that, the learning function in Equation (24) is used to update the regret value based on the utility
function. The probability of action selection is recalculated based on Equation (25). Then, the location
of social sensor nodes is changed according to the model of social dynamic mobility in Section 3.
Finally, when the number of iteration meets the stopping condition, the result is returned and the
algorithm stops. Otherwise, the above procedure is repeated.

Algorithm 1 The proposed algorithm based on regret matching.

Input: The number of sensor nodes M; The coordinates of nodes and BSs {rk, ϕk}, k = 1, 2, · · · , M;

Rl , l = 0, 1, · · · , D; The number of iteration T
Output: The probability of action selection P i

ai
= 1/2, i = 1, 2, · · · , M, ai ∈ Ai

1: Initialization: The regret value of social sensor nodes Rai
i (t, n) = 0, i ∈ {1, 2, · · · , O},n =

{1, 2, · · · , S}, where n is the location label of social sensor node; The regret value of physical

sensor nodes R
aj
j (t) = 0, j ∈ {O + 1, O + 2, · · · , M}; The probability of action selection P i

ai
= 1/2,

i = 1, 2, · · · , M,ai ∈ Ai; t = 1
2: Calculate the transition probability F i

jk, i ∈ {1, · · · , O} based on Equations (3)–(5) of the model of

dynamic mobility in Section 3.2
3: Repeat
4: For each sensor node zi do
5: Select a action ai for Ai based on the P i

ai
(t)

6: EndFor
7: Calculate the utility based on the Equation (23)
8: For each sensor node zi do
9: If zi is social node, i ∈ {1, 2, · · · , O}

10: Calculate the corresponding regret value Rai
i (t, n) of different action at location n according to

Equation (23)
11: else
12: Calculate the corresponding regret value Rai

i (t) of different action using Equation (24)
13: EndIf
14: Update the probability of action selection P i

ai
(t) using Equation (25).

15: EndFor
16: Update the location information of each social node based on the transition probability F i

jk, i ∈

{1, · · · , O} of social dynamic mobility
17: t = t + 1
18: Until t >= T
19: return the probability of action selection P i

ai
i ∈ {1, 2, · · · , M}
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In Algorithm 1, some initial variables are initialized on Line 1. The calculation of transition
probability is presented on Line 2. On Lines 3–6, each node selects a action from action set based
on the probability of action selection, i.e., selecting a transmission power level (zero or Pmax). Then,
the corresponding utility is calculated based on Equation (23) on Line 7. On Lines 8-013, the regret
value Rai

i (t, n) or Rai
i (t) for social or physical sensor node is calculated based on Equation (24). Based

on the regret value, the probability of action selection of each node is recalculated according to Equation
(25). Next, the location of social sensor node is updated based on the transition probability of social
dynamic mobility. Note that the location for physical sensor node is static. Thus, the location is
unchanged. After this, it returns to Line 3 to repeat the calculation procedure. On Lines 18–19, when
t > T, the algorithm stops and returns the probability of action selection of each node.

4.2. The Implementation Scheme

To implement the proposed CB transmission scheme of sensor nodes in CPSS, we present the
message exchange process for communications. Then, the proposed algorithm can be implemented
in a decentralized way. Let CZ be collaborative node set with O social sensor nodes and (M −O)

physical nodes; our objective is to select a collaborative node set from M candidate nodes including
social and physical sensor nodes. The detail implementation procedure is given as follows:

Step 1: Initialization. Source node s sends the Initialization Messages to each node zm

(m = 1, 2, ..., M) in the deployment area. Each node initializes its regret value by Rai
i (t, l) = 0 or

Rai
i (t) = 0 with i ∈ {1, 2, · · · , O} and l = {1, 2, · · · , S}, as well as the probability of action selection
P i

ai
= 1/2. The iteration index is set to t = 1.
Step 2: Collect Node Information. Source node s sends an Information Collection Message

to each node zm (m = 1, 2, ..., M) in the deployment area. When a node receives the Information
Collection Message, its sends the State Information Message including its node location, node ID,
and current strategy as a response to source node. The source node saves the state information of all
candidate nodes and broadcasts the information to each sensor node and then carries out the next step.

Step 3: Establish Collaborative Node Set. Source node sends Node Selection Messages to
all social and physical sensor nodes in transmission range of source node. When the sensor node
zi can receive the message, it selects an action ai according to the probability of action selection
and responds by an Action Selection Message. This step repeats until all neighbouring sensor
nodes of the source node have responded. Then, the selected nodes use CB to transmit the
State and Strategy Information to the intended BS.

Step 4: Calculate the Utility. The intended BS calculates the utility according Equation (23). Then,
the intended BS returns the result through an Utility Information Message to each collaborative
node.

Step 5: Calculate Regret Value and Update the Probability of Action Selection. Each node
calculates the regret value based on the received utility using Equation (24). Then, the probability of
action selection are updated using Equation (25).

Step 6: Update the Social Sensor Node Location. The social sensor nodes update the current
location information based on the social dynamic mobility.

Step 7: Repeat Iteration. If the number of iterations is less than the maximum number, then
t = t + 1 and return to Step 2. Otherwise, the learning process stops and go to the next step.

Step 8: Data Transmission. Source node s broadcasts the Sensing Information Message to all
collaborative nodes with ci = 1. Then, each candidate node responds by a confirmation Message.
Then, the phase synchronization and CB technique are used to send the data symbol to the intended BS.
When the intended BS successfully receives the signal and the interference power at the unintended
BS is lower than the required value, each collaborative node will implement the transmission of data
symbol based on the current strategy.
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4.3. The Complexity of the Proposed Algorithm

Here, we analyze the complexity of the proposed algorithm. According to the description
of implementation for the proposed algorithm, each sensor node needs to execute the following
operations. First, the transition probability is required to be calculated. In this procedure,
we consider the complexity of the calculation is U. Moreover, the main calculation in
Algorithm has the calculation of utility in Equation (23) and regret value in Equation (24).
The corresponding complexity is denoted by Cu and Cr. We know the iteration number
is T. Thus, the total computational complexity is U + T(Cu + Cr). In terms of energy
consumption, we assume the consumed energy of the computation is Ec. In procedure
of implementation, the messages mainly have Information and State Collection Messages,
Node and Action Selection Messages, State and Strategy Information Messages, Utility
Information Message, Sensing Information Message, and Confirmation Message. We assume
the energy consumptions of these messages are denoted by EIS, ENA, ESS, EUI , ESI , and ECM. The
total energy consumption is Ec + EIS + ENA + ESS + EUI + ESI + ECM. We know from that the CB
itself is a technique of improving energy efficiency and the consumed energy of each node can be
reduced by an order of 1

M for the consumed energy without using CB. From the implementation
scheme, the State and Strategy Information Messages and Sensing Information Message are
transmitted to sink node by CB. Therefore, the proposed algorithm can reduce the energy consumption
of M − 1

M (ESS + ESI).

5. Performance Evaluation

In this section, we present the performance evaluation of the proposed algorithm for CB in WSN.
We know from the work in [10] that the real experimentation of collaborative beamforming in WSN
needs the support of carrier, phase, and time synchronization technique. Although various phase
synchronization approaches of CB are presented in the literature [10], the synchronization is still
under study. Therefore, we assume the synchronization can be performed and use the simulation
experiment to evaluate the CB transmission performance of the proposed algorithm in CPSS. We
first consider a WSN with 5 social sensor nodes and 25 physical sensor nodes, which are randomly
deployed in a circular area with R = 2λ radius. We assume that each social sensor node has S = 8
locations in this area. The movement is based on the model of the social dynamic mobility. The location
of each physical sensor nodes remains unchanged in the whole process. We first consider the INR
threshold INR0 = 4 dB. The transmit power of each node has two levels, i.e., zero and Pmax = δ2

ωξ/N,
where ξ is normalized by δ2

ω. The value of ξ is the same as that in [11,23], which is set as 20 dB. The
channel coefficient follows a distribution with a zero-mean and σ2 = 0.2. Moreover, the direction of
the intended BS is ϕ0 = 0◦, and other three unintended BSs are located at ϕ1 = −130◦, ϕ2 = −50◦,
and ϕ3 = 120◦, respectively.

We first analyze the beam pattern performance. Based on the above setting, we present the beam
pattern performance for 10 time slots in Figure 3. As we can see, the interference powers for all three
unintended BSs are less than the required INR0 = 4 dB. The result shows the proposed algorithm can
adapt to the location change of social sensor nodes.
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Figure 3. Beam patterns for 10 time slots. The direction of intended BS is ϕ0 = 0◦, and the other three
directions for unintended BSs are ϕ1 = −130◦, ϕ2 = −50◦, and ϕ3 = 120◦, respectively.

To further analyze the performance, we compare the proposed algorithm with log linear learning
(LLL) method [29] and the random node selection algorithm [22]. The LLL is often used to optimize
the game theoretical problem [30,31]. The method focuses on the updating of the action selection
probability based on the received utility. The random node selection is to choose L nodes to meet
the requirement of transmission gain in the direction of intended BS or low interference power for
the directions of the unintended BSs. The comparison result of average beampattern performance
is shown in Figure 4. It can be observed that, when the INR0 is set as 4, the result indicates that the
INR at the three unintended BSs of the proposed algorithm is much lower than that of the log-linear
learning method and the random node selection algorithm. In addition, the SNR of the mainlobe
of our proposed algorithm at the direction of the intended BS is much higher than that of the other
algorithms. This is because the proposed algorithm considers the utility of all different position for all
previous time slots based on regret matching. For the LLL method, the utilities of different actions are
calculated and then the action selection probability is updated based on the current utility. Since the
location of social sensor node is dynamic, the LLL method can hardly capture such location change.

Figure 4. Average beam patterns of 10 time slots for different methods. The direction of intended BS is
ϕ0 = 0◦, and the other three directions for unintended BSs are ϕ1 = −130◦, ϕ2 = −50◦, and ϕ3 = 120◦,
respectively.
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Figure 5 shows the average SNR performance for different thresholds of INR0. It can be seen that
the proposed algorithm has higher SNR performance than the other two algorithms. When the INR0 is
set to 8, the proposed algorithm obtains the maximum SNR amplitude. The LLL method achieves the
best performance only when INR0 = 9. In addition, when the INR0 is in the range 3–9, the proposed
algorithm has a better SNR than the LLL method. Because the method of random node selection can
hardly meet the requirement of INR0, the SNR performance for the situation without considering
INR0 falls in the area between 11.5 dB and 12 dB. It can be seen in Figure 5 that the proposed algorithm
can effectively improve the SNR performance under the given different INR0.  

Figure 5. Average SNR performance for different INR0.

The above analysis mainly focuses on a fixed number of social and physical sensor nodes.
To further analyze the performance with respect to different number of social sensor nodes, we
consider 4–12 social sensor nodes. Then, the SNR performance under INR0 = 5 dB is presented
in Figure 6. The SNR performance of the proposed algorithm and LLL method decreases with the
number of social sensor nodes. Specifically, when the number of social sensor nodes is greater than
9, the SNR amplitude reduces significantly for the proposed algorithm. Similarly, this situation also
happens in LLL method. It shows that, although some social sensor nodes integrated into physical
sensor nodes have positive role for the CB transmission in CPSS, excessive social sensor nodes have
a negative impact on the transmission of CB. The reason is because the movements of excessive social
sensor nodes can hardly meet the condition of INR0. When the INR0 is set as 7 dB, the impact on the
transmission of CB is weakened. As shown in Figure 7, the SNR performance reduces slowly with
the number of social sensor nodes. It is evident in Figures 6 and 7 that the number of social sensor
nodes has an impact on the CB transmission. However, as the value of INR0 increases, the impact is
weakened gradually.
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Figure 6. SNR performance for different numbers of social sensor nodes (INR0 = 5 dB).

Figure 7. SNR performance for different numbers of social sensor nodes (INR0 = 7 dB).

Next, we analyze the influence of different values of γ and ρ for the dynamic mobility model.
According to the model of dynamic mobility in [25], we consider two groups of model parameters:
(a) γ = 0.2 and ρ = 0.5; and (b) γ = 0.2 and ρ = 0.1. The values of γ and ρ can determine the
probability of preferential return. Based on the two groups of parameters, we can obtain different
transition probabilities of social sensor nodes. The corresponding SNR performance for different
mobility parameters is shown in Figure 8. It can be seen that the SNR performance when ρ = 0.1 is
better than that of ρ = 0.5, for both the proposed algorithm and the LLL method. As the increase of
the threshold INR0, the difference between the two groups of parameters reduces gradually. This is
due to the following reasons. First, ρ = 0.1 means each social sensor node has greater probability
to return to the previously visited nodes than that of ρ = 0.5. It reduces the difficulty of capturing
the dynamic mobility for the proposed learning method. Second, as the value of the threshold INR0

increases, the constraint is weakened. The proposed algorithm can adapt to the change such that the
difference of the SNR performance is reduced.
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Figure 8. SNR performance for different mobility parameters.

6. Conclusions

In the CPSS, the WSN with both social and physical sensor nodes plays an important role in
terms of data monitoring and sensing. Due to the characteristics of dynamic mobility for the social
sensor nodes, the transmission optimization methods of traditional WSN cannot be directly applied to
such novel WSN in CPSS. To solve this problem, we investigated the transmission optimization of the
novel WSN based on CB technique in CPSS. According to the model of social dynamic mobility for
social sensor nodes, we formulated the transmission optimization problem as a game and proposed
a dynamic reinforcement learning algorithm based on regret matching to solve it. The corresponding
implementation scheme is presented by designing the message exchange procedure. Extensive
simulation results show that the proposed algorithm has better SNR performance than the LLL
method and the random node selection algorithm. Moreover, we present the detailed performance
analysis of the proposed algorithm for different numbers of social sensor nodes and dynamic mobility
parameters. The results indicate that the proposed algorithm can better adapt to the dynamic location
changes, in comparison with the existing schemes. In future work, we will consider the effects of
the imperfect phase synchronization in reality. Then, we will use the approach of synchronization
based on the feedback scheme and employ mobile sensors carried by people to further proceed with
real-world validation of this proposed method for the CB transmission optimization in CPSS.
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