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Abstract: In the past, Unmanned Aerial Vehicles (UAVs) were mostly used in military operations
to prevent pilot losses. Nowadays, the fast technological evolution has enabled the production of a
class of cost-effective UAVs that can service a plethora of public and civilian applications, especially
when configured to work cooperatively to accomplish a task. However, designing a communication
network among the UAVs is a challenging task. In this article, we propose a centralized UAV
placement strategy, where UAVs are used as flying access points forming a mesh network, providing
connectivity to ground nodes deployed in a target area. The geographical placement of UAVs is
optimized based on a Multi-Objective Evolutionary Algorithm (MOEA). The goal of the proposed
scheme is to cover all ground nodes using a minimum number of UAVs, while maximizing the
fulfillment of their data rate requirements. The UAVs can employ different data rates depending
on the channel conditions, which are expressed by the Signal-to-Noise-Ratio (SNR). In this work,
the elitist Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is used to find a set of optimal
positions to place UAVs, given the positions of the ground nodes. We evaluate the trade-off between
the number of UAVs used to cover the target area and the data rate requirement of the ground nodes.
Simulation results show that the proposed algorithm can optimize the UAV placement given the
requirement and the positions of the ground nodes in the geographical area.

Keywords: unmanned aerial vehicles; genetic algorithm; mesh networks; optimization; MOEA;
NSGA-II

1. Introduction

Unmanned Aerial Vehicles (UAVs), also known as drones, refer to aircraft with no human pilot
on board. These are either programmed and fully autonomous or remotely and fully controlled from
another location, e.g., ground or space station. There are various types of UAVs (e.g., fixed wing
and multi-rotor), and they come in different sizes, raging from small (less than 5 kg) to large (over
4332 kg) [1]. Large UAVs are commonly used singly, for instance, in military operations such as
border surveillance, strikes, and reconnaissance, whereas small UAVs may be utilized in swarms
to accomplish a mission. With advancement in electronics and sensor technology, small UAVs are
becoming massively present in many public and civilian applications, such as in search and rescue
operations [2], aerial surveillance [3], tracking targets [4], agriculture field monitoring [5], network
extension or compensation [6], and leisure, to mention a few.

The use of swarms of small UAVs has many advantages compared to a single and large UAV [7].
One of the key advantages is the cost to acquire and maintain small UAVs, which is generally much
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lower than the cost of a large UAV [8]. Swarms of UAVs can automatically reconfigure themselves
in case of node failure or link break and accomplish the designated task. That is not possible with
a single UAV. Additionally, when network coverage extension is needed, it may be easily achieved
with swarms of UAVs by positioning additional UAVs in the target area and allowing them to operate
through other already existing UAVs, unlike single UAV network coverage, which is limited by the
communication range between the infrastructure and the UAV itself.

Although swarms of UAVs present many advantages, an important aspect to be considered when
designing an application using multiple UAVs is the communication network, which poses many
challenging issues, as described in [9,10]. Depending on the purpose of the application at hand, UAVs
may be semi-stationary and hovering over the area of operations or move around at high speed,
changing their relative positions. In the latter scenario, frequent topology changes are observed, which
may lead to network partitioning and poor link quality. On the other hand, the commonly-used
wireless ad-hoc network communication protocols or algorithms (e.g., proactive and reactive routing)
cannot be directly used for UAVs [11]. For instance, since proactive routing protocols need to update
the routing tables periodically, in the presence of a high degree of mobility and topology changes,
it increases the number of control messages to be exchanged, which degrades the network performance.
On the other hand, reactive protocols may introduce higher packet delivery delay each time they
compute a new route to the destination node.

UAV placement schemes can help to mitigate the aforementioned issues by finding suitable
positions to place UAVs while maintaining connectivity and improving the network performance.
The UAV placement optimization schemes can be classified as centralized or distributed. The former
assumes that the UAV positions are selected by a centralized entity and conveyed to the UAVs by
means of a special purpose long-range low bit rate radio interface. On the other hand, in distributed
approaches, UAVs work cooperatively to adjust their position based on local interactions to achieve
optimal coverage. This work extends our previous work [12], where we considered the use of a swarm
of UAVs as flying access points forming a mesh network among themselves, providing connectivity to
ground nodes (GNs). Our main goal is to optimize the placement of the UAVs by choosing deployment
positions for the UAVs in order to provide adequate wireless communication coverage to GNs in a
target area, while fulfilling their Quality of Service (QoS) requirements.

This work is more related to centralized placement optimization. Given the nature of the problem
requirements, we use Multi-Objective Evolutionary Algorithm (MOEA) techniques to optimize the
UAV node placement considering the following objectives and constraints:

• Minimization of the number of UAVs needed to service the GN, while ensuring that the QoS
requirements (here, measured as the physical data rate) are properly met.

• Minimization of the degree of dissatisfaction regarding the required data rate.
• The number of available UAVs is limited and must not be exceeded.
• The inter-UAV links do not necessarily employ the same technology as GN-UAV links. Inter-UAV

links are considered in an abstract way, but constrained to a maximum range.
• It is assumed that the throughput values of the links between UAVs are high enough not to

constrain end-to-end inter-GN traffic. Only GN-UAV links impose limits to the satisfaction of
QoS requirements (end-to-end QoS shall be addressed in future work);

• GN-UAV links are orthogonal. This can be achieved, for example, by assigning different
frequencies or orthogonal channel codes.

The main contribution of this work is to provide a meta-heuristic algorithm, which takes into
account more than one objective and multiple constraints to best position the UAVs. Additionally,
to reduce the search space and accelerate the convergence of the algorithm, we propose the use of
convex hull algorithms to delimit the total area to be covered into a sub-area inside the convex hull
formed by the 2D positions of the GNs as explained later in this paper. The remainder of this paper is
structured as follows: Section 2 presents the related work. In Section 3, the system model is presented.
Section 4 presents the problem definition and formulation as a Multi-Objective Optimization Problem
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(MOP). Section 5 presents our MOAEA implementation. The simulation results are presented in
Section 6. Section 7 presents the simulation results’ discussion, and Section 8 concludes the paper.

2. Related Work

Optimal placement of UAVs has already been studied in the literature, whether considering
single or multi-UAV scenarios. In [2], a single UAV was proposed for search and rescue application
such as earthquake, flood, or bomb blast. The goal is to deploy a UAV to a position where it can
bridge communication between two static nodes on the ground. It is assumed that the UAV hovers
over the area in spiral or ladder search mode, sending hello/beacon messages at a regular interval.
Upon receiving such a message, the GNs respond by sending their GPS positions back to the UAV.
The UAV stores this information and continues hovering in the immediate surroundings to find a
position based on the Received Signal Strength (RSS) and distance between the UAV and nodes on the
ground. Simulation results showed that the algorithm provides maximum throughput and a low Bit
Error Rate (BER) once the UAV is fixed at an optimal position. The drawback of this system is that it is
only validated for two GNs. Therefore, as the number of GNs grows, the solution should consider
energy constraints during the search process and bandwidth constraints when providing network
access to GNs.

The authors in [13] have developed a framework named UAVNet. It is capable of autonomously
deploying a wireless mesh network to interconnect two end systems using small quadrocopter-based
UAVs with 802.11 s nodes on board. Each UAV would act as the access point and provide network
access for regular IEEE 802.11 g wireless devices. There are two positioning modes to place the UAVs
between the end systems. The first one is the location-based positioning mode. The latter uses the
submitted GPS locations of the end systems and directs the UAV to the exact geographical position
between these two GPS coordinates. The second one is the signal strength positioning mode. It extends
the location positioning mode and includes also the received signal strength of the two end systems to
calculate a more accurate position for the UAV. This takes the quality of the wireless link and other
environmental factors into account.

Usually, the process of network densification in cellular networks uses fixed small cells
(e.g., picocells and femtocells) to increase the network capacity based on the expected formation of
hotspots. In places where temporary hotspots are formed, fixed small cells would remain under-utilized
once the hotspots have moved to a different location or disappeared. The authors in [14] proposed small
cells mounted on UAVs to offload User Equipment (UE) from the microcell infrastructure. The optimum
placement points of the UAVs are determined using the K-means clustering algorithm. In their work,
the performance metric was measured based on the RSS experienced by the UE. The simulation results
have shown that as UAVs are able to position themselves in real time around the actual UE position
rather than expected UE hotspots, they outperform equivalent small cell deployment.

In [15], Al-Hourani et al. presented a mathematical model that aims to optimize the flying altitude
of UAV-based Base Stations (BSs) to maximize the coverage area on the ground. The Air-to-Ground
(A2G) path loss model is based on their previous work [16]. The A2G path loss in [16] considered some
parameters (αo, βo, and γo) that describe to a fair extent the general geometrical statistics of a certain
urban area in which the Radio Frequency (RF) signal propagates. The authors refer to the additive loss
incurred on top of the Free Space Path Loss (FSPL) as the excessive path loss (η), which has a Gaussian
distribution. In the model, η is used to identify three different groups of GNs, namely G1, which is the
group favoring the Line-of-Sight (LoS) condition; group G2 corresponds to GNs with No Line-of-Sight
(NLoS), but still receiving coverage via strong reflection and diffraction; and lastly, group G3, which
suffer from deep fading conditions. The probability of a certain propagation group (excluding G3)
to occur at a certain elevation angle is computed. Differently from [16], in [15], η refers to the mean
value of the excessive path loss rather than its random behavior. The authors were able to present a
closed-form equation based on the elevation angle and the urban statistical parameters (αo, βo, γo).
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In [17], Kalantari et al. proposed a 3D UAV placement scheme using the Particle Swarm
Optimization (PSO) algorithm. Their system model envisioned the use of UAVs as flying base stations
(referred to as drone-BSs) and limited their analysis to the downlink communications. The main goal
of the proposed algorithm is to find the minimum number of drone-BSs and their 3D placement to
service all GNs with some target QoS requirement. The A2G channel model is similar to the one
presented by Al-Hourani et al. in [16], where the probability of LoS and NLoS connectivity between
the drone-BSs and GNs was studied as explained previously.

Chen et al. [18] studied the optimum altitude to place a UAV when it is used to relay data from GN
to a remote ground station for further processing. The new proposed model derives from the seminal
A2G channel models [15,16]. Differently from the former models, the proposed model accounts for the
hop from the UAV to the remote station. The study was limited to a single UAV, which in turn may
limit the coverage area.

Mozaffari et al. [19] proposed a method to deploy multiple UAVs equipped with directional
antennas. The aim was to maximize the coverage performance while ensuring that the coverage areas
of UAVs do not overlap. The path loss model considered here is based on the model proposed in [16].
Although the A2G models and coverage schemes presented in [15–17,19] may be a good approximation
in an urban environment, they do not address the coordination mechanism or connectivity among
UAVs, i.e., the Air-to-Air (A2A) connectivity, which is important for network reliability. In another
work, Mozaffari et al. [20] presented a study in which the main contribution was to analyze the
coverage and rate performance of UAV-based wireless communication in the presence of underlying
device-to device (D2D) communication links.

In [21], the authors presented a model for an optimal placement of UAVs to cover a set of targets,
i.e., GNs. They considered two cost metrics, namely the number of UAVs and energy consumption,
seeking to minimize both metrics. The authors assumed that each UAV had a minimum and maximum
observation altitude. They also assured that the UAV’s energy consumption was related to this altitude,
since the higher the altitude, the larger the observed area, but also the higher the energy consumption.
The optimization problem was mathematically solved by defining an integer linear and a mixed
non-linear optimization model.

The authors in [22] used the same assumption as in [21] to model an optimized UAV placement
and formulate it as a multi-objective linear problem. The main difference is that, in [22], the connectivity
among UAVs was considered as an additional constraint. In [22], the following objectives were to be
minimized: the number of UAVs and the maximum flying altitude. Our work is closer to [22], though
with some differences. Firstly, we consider using omni-directional antennas instead of directional.
Secondly, one of our objectives is to minimize the difference between the assigned and required data
rate, whereas one of their objectives is to maximize the flying altitude. Table 1 presents the main
characteristics of the related work.

Table 1. Main characteristics of the related work on UAV placement optimization.

Reference No. of UAVs A2G Propag.Model Antenna Type Environment A2A Communication

[2] Single LoS - - -
[13] Multiple LoS - - Yes
[14] Multiple LoS, NLoS - Urban No

[15–17] Multiple LoS, NLoS Isotropic Urban No
[18] Single LoS, NLoS - Suburban No
[19] Multiple LoS, NLoS Directional Urban No
[20] Single LoS, NLoS - Urban No
[21] Multiple LoS - - No
[22] Multiple LoS Directional - Yes
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3. System Model

We consider a wireless network consisting of two kinds of nodes, GNs and UAVs, which are
represented by the sets V and U, respectively. All nodes are assumed to be located in a rectangular
area A with length Xmax and width Ymax. Nodes are equipped with omni-directional transceivers
and a GPS. Therefore, they know their positions in the aforementioned rectangular area at any time.
The position of a GN v is assumed to be on the ground with coordinates qv

(x,y,0), while the position of a
UAV node u is represented in the 3D plane as qu

(x,y,h), where h is the flying altitude of u. We consider
A as a suburban area and that the main factor affecting the service quality offered by a UAV is path
loss. Furthermore, orthogonal channel codes are used to avoid interference between concurrent
transmissions. Similar to [23], we employed the log-distance path loss model, where the received
power is calculated according to the following expression:

Pr(d) = Pr(d0)− 10α log10

(
d
d0

)
(1)

where Pr(.) is the received power at a given distance. In Equation (1), d0 is the reference distance and α

is the path loss exponent. UAVs are assumed to have the same operating characteristics, featuring the
same transmit power, antenna gains, and enough energy storage to complete the mission, and they
may fly at different altitudes. GNs can only communicate with each other through UAVs. Assuming
communication between a GN and a UAV, d is computed as the Euclidean distance between their
transceivers as follows:

d =
√
(xu − xv)2 + (yu − yv)2 + h2

u (2)

We define Di as the maximum achievable communication range for a given transmission mode
i by simply manipulating Equation (1). Di is computed considering Pr(d) as the receiver sensitivity
at transmission mode i, and Pr(d0) is the received power at a reference distance d0. The distance d
between the transmitter and the receiver should not be greater than the maximum communication
range Di for the required communication mode i. An overview of the proposed system is shown in
Figure 1.

UAV (x,y,h)

GN (x,y,0) 

LOS link

Flyin
g altitu

d
e

 (h
)

Control 
station

Figure 1. System model overview.

4. Problem Definition

Consider the network model presented in Section 3. The goal is to ensure that all GNs are covered
and that the data rate requirements are met as much as possible when UAVs are used as relay nodes.
We assume that there is a cost associated with each used UAV. Thus, minimizing the number of UAVs
is desirable. On the other hand, GNs may have different data rate requirements. The satisfaction
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of data rate as GN requirements is closely dependent on the channel conditions (e.g., SNR), which
also depends on the communication distance, which results from the number and placement of the
serving UAV in the network. We intend to deploy as few connected UAVs as possible in suitable
locations to enable communication between GNs, while satisfying multiple independent data rate
requirements. In some instances, the QoS demands are competitive, i.e., one cannot satisfy them
simultaneously. This gives rise to the need for finding solutions that try to balance them. This problem
can be modeled meta-heuristically as a multi-objective optimization problem to find the trade-off
among non-dominated solutions. In the rest of this section, we define the Multi-Objective Optimization
Problem (MOP) and present the formulation of our UAV placement optimization problem as an MOP.

4.1. Multi-Objective Optimization Problem

A MOP can be stated as follows [24]:

Minimize/Maximize f (ε), m=1, 2,..., M

subject to : gj(ε) ≥ 0, j=1, 2,..., J

hk(ε) = 0, k=1, 2,..., K

ε
(L)
i ≤ εi ≤ ε

(U)
i , n=1, 2,..., n


(3)

where M is the number of objective functions subject to J inequalities and K equality constraints.
A solution ε is a vector of n decision variables, i.e., ε = (ε1, ε2, ..., εn)T . Each variable is subjected to a
constraint called variable bounds. ε

(L)
i represents the lower (L) bound, and ε

(U)
i corresponds to the

upper (U) bound. The set of all variable bounds defines the decision variable space Ω.
A solution ε that satisfies all constraints and variable bounds is named a feasible solution. The set

of all feasible solutions is called the feasible region (or search space S).

Definition 1. Domination: A solution ε(1) is said to dominate the other solution ε(2), if the following conditions
are verified:

• The solution ε(1) is no worse than ε(2) in all objectives, or fm(ε(1)) is no worse than fm(ε(2)) for all
m = 1, 2, ..., M;

• The solution ε(1) is strictly better than ε(2) in at least one objective, or fm(ε
(1)) is better than fm(ε

(2)) for
at least one m = 1, 2, ..., M;

Definition 2. Non-dominated set: Among a set of solutions P, the non-dominated set of solutions P’ is comprised
of those that are not dominated by any member of the set P.

Definition 3. Globally Pareto-optimal: This refers to the non-dominated set of the entire feasible space S.

4.2. Formulation of UAV Placement Optimization as an MOP

In this section, we formulate the problem in R2 objective space. We seek to minimize the number
of deployed UAVs and simultaneously minimize the difference between the data rate required by the
GNs to transmit data and the data rates that result from the MOP solution.

4.2.1. Minimize the Number of UAVs

We start by identifying a set of potential UAV placement points Q, by finding a sub-area a′ ⊂ A,
which corresponds to the area inside the convex hull (convex envelope) [25] formed by the GNs in A,
as shown in Figure 2. We compute the convex hull to reduce the search space of the UAVs’ placement
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points in the target area. We intend to cover all GNs in a′. Therefore, we discretize a′ in a grid layout
according to Equation (4).

∆ = µD; µ ∈ [0, 1] (4)

where ∆ is the distance between two neighboring UAVs, which is adjusted using µ. Let qj ∈ Q be the
jth potential UAV placement point. We define δu

qj
as a binary variable to indicate which points are

currently being used by a UAV as presented bellow.

δu
qj
=


1 if UAV u is located at qj

0 Otherwise

Ground node
 Candidate UAV placement point

Y-Axis

X-Axis

Convex hull

Figure 2. Convex hull formed by the GNs.

We also define ζu
v as a binary variable to indicate which GNs are being serviced by each deployed

UAV. It is assumed that a GN will be connected to the closest deployed UAV.

ζu
v =


1 if v is connected to UAV u

0 Otherwise

Our objective is to select points in Q such that:

min ∑
qj∈Q

∑
u∈U

δu
qj

(5)

subject to:

∑
qj∈Q

δu
qj
≤ 1, ∀u ∈ U (6)

∑
v∈V

ζu
v ≥ 1, ∀v ∈ V (7)

Constraint (6) indicates that each UAV u cannot be placed in more than one point at the same time.
Constraint (7) ensures that a GN is in the communication range of at least one UAV. The cardinality
of the set Q defines the maximum number of UAVs that can be used for each formed convex hull.
In order to ensure connectivity among UAVs, we have considered using Algorithm 1, which verifies if
each UAV has a path to the selected destination, which may be used as the control station. UAVs are
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assumed to have two main attributes: serving, when the UAV is used to serve GNs and to connect the
network, and bridging, when it is solely being used to connect the serving UAVs.

Algorithm 1 Construction of the connected UAV network.
1: Input: udest, adjacency matrix
2: Result: Connected UAV network
3: For each u ∈ U
4: IF u is serving, and u is not bridging
5: qcurr = qu; /*qcurr ∈ Q is the current point towards the destination*/
6: Until not reachable (u,udest)

6.1 Find the closest point q′ ∈ Q to qudest, which is within distance D from qcurr

6.2 If q′ is not in use

6.2.1 qcurr = q′

6.2.2 Find u′ ∈ U, which is not serving or bridging
6.2.3 Set: u′ to bridging
6.2.4 qu′ = qcurr

6.2.5 Update the adjacency matrix

4.2.2. Minimizing the Degree of Dissatisfaction of the Required Data Rate

Consider a set of transmission modes B comprising the possible bit rates bi. We denote the
transmission modes in use by a UAV and requested by a GN as bu

i and bv
i , respectively. We define the

degree of dissatisfaction as follows:

γv =


|bu

i − bv
i |

bv
i

if (bu
i − bv

i ) < 0

0 Otherwise

(8)

We consider that the use of a bi depends on the SNR. Usually, GNs experiencing a relatively low
SNR will have their receiver interface tuned to a robust (with lower BER when compared with other
modes under the same channel conditions) transmission mode with a lower data rate. On the other
hand, if the SNR is relatively high, the receiver may be tuned to a transmission mode that offers a
higher data rate. Essentially, from Equation (8), we measure the difference between the required data
rate by the GN and the one that is delivered by the serving UAV given the current distance between
them. As previously stated, LoS links are assumed between GNs and UAVs, and orthogonal channel
codes are used to avoid interference between concurrent transmissions. Thus, if the distance between
the UAV and GN is within the admissible distance for the required transmission mode bv

i , then the GN
can transmit at the required data rate, i.e., the degree of dissatisfaction is zero. In this work, we try to
minimize the maximum dissatisfaction value as follows:

min (maxv∈V γv) (9)

5. UAV Placement Based on NSGA-II

In this section, we present the terminologies used by NSGA-II [26] and the main genetic algorithm
elements (individual or chromosome, fitness, selection, population, and genetic operators). The term
solutions and individuals are interchangeably used along the remaining part of this paper.

NSGA-II is an elitist MOEA, which comprises two main procedures. One is the Pareto ranking
procedure, which aims at sorting the population into different non-domination levels (irank) in ascending
order. The lowest ranking level contains the best solution. In order to identify solutions of the first
non-dominated front in a population of size N, each solution is compared with every other solution
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in the population to find if it is dominated. After all members of the first non-dominated front are
found, they are discounted temporally so that the next non-dominated front could be found by repeating
this first procedure. The other procedure is the diversity preservation, which is used to maintain
a good spread of solutions in the obtained set of solutions. Members in each non-dominated front
are assigned a value called crowding distance (idistance). This value gives an estimate of the density of
solutions surrounding a particular solution in the population. A solution with a smaller value of this
distance measure is, in some sense, more crowded by other solutions. The crowded-comparison operator,
denoted as≺n, is used to distinguish the best solution during the selection process. It assumes that every
individual i in the population has two attributes, irank and idistance. The partial order ≺n is defined as:

i ≺n j if (irank < jrank)

or ((irank = jrank) and (idistance > jdistance))
(10)

That is, between two solutions with differing non-domination ranks, we prefer the solution with
the lower (better) rank. Otherwise, if both solutions belong to the same front, then we prefer the
solution that is located in a less crowded region.

Algorithm 2 shows the main loop of NSGA-II proposed by the authors in [26], where the call of
the routines fast-non-dominated-sort (Rt) and crowding-distance-assignment (Fi) corresponds to the
first and second procedure described above, respectively. Rt is of size 2N formed by combining parent
St and offspring Zt populations. Fi refers to the ith front or level. The detailed explanation of the
aforementioned procedures is also available in [26]. We describe the main loop of NSGA-II as follows:

Algorithm 2 NSGA-II main loop.
1: Rt = St ∪ Zt
2: F = fast-non-dominated-sort (Rt)
3: St+1 = ∅ and i = 1
4: Until |St+1|+Fi ≤ N

4.1. crowding-distance-assignment (Fi)
4.2. St+1 = St+1 +Fi
4.3. i = i + 1

5: Sort(Fi,≺n)
6: St+1 = St+1 ∪ Fi[1 : (N − |St+1|)]
7: Zt+1 = make-new-population (St+1)
8: t = t + 1

Step 1. Combine parent and offspring population;
Step 2. F = (F1,F2, ...); sort Rt according to non-domination procedure;
Step 3. Initialize an empty set for the parent population Pt+1 = ∅, and set a counter i to one;
Step 4. Until the parent population is filled;

4.1. Calculate crowding-distance in Fi;
4.2. Include the ith non-dominated front in the parent population;
4.3. Check the next front for inclusion. The best solutions are in F1. If the size of F1

is smaller than N, we choose all the members of the set F1 for the new population
St+1. The remaining members of the population St+1 are chosen from the subsequent
non-dominated front in the ascending order of their ranking, (F2,F3, ...). Say that the
set Fl is the last non-dominated set beyond which no other set can be accommodated.
In general, the count of solutions in all sets from F1 to Fl would be larger than the
population size. In order to choose exactly N population members, we sort the solutions
of the front Fl using the crowded-comparison operator (≺n) in descending order and
choose the best solution needed to fill all population slots;
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Step 5. Sort in descending order using ≺n;
Step 6. Choose the first (N − |St+1|) elements of Fi;
Step 7. Use selection, crossover, and mutation to create a new population Zt+1;
Step 8. Increment the generation counter.

5.1. Individual and Initial Population

An individual encodes a candidate solution to the problem. Our proposed individual stores the
UAVs positions qu

j ∈ Q inside the discretized convex hull area a′ for each deployed or serving UAV.
The length of the individual (see Figure 3) represents the number of deployed UAVs or points used in
Q; therefore, the length of one individual may differ from another in the population. If it is detected
that some GNs are not covered in an individual, then the corresponding individual is considered
as invalid, i.e., cannot be used in any step of the NSGA-II algorithm. Algorithm 1 ensures that all
individuals are valid during the creation of the initial population.

qu(x,y,h) qu'(x,y,h)

Length

qu(x,y,h) qu'(x,y,h) qu''(x,y,h) q
u'''

(x,y,h)...

Figure 3. Individual.

In our implementation of NSGA-II, the initial population is a set of N randomly-generated valid
individuals, i.e., random solutions to cover the target area.

5.2. Objective or Fitness Function

A fitness function decodes the solution represented by a chromosome and lets us know how far
we are from the optimal/ideal solution if it is known. In MOEA, there will be a fitness function for
each objective space. Equations (5) and (9) compute the fitness for the number of UAVs and degree of
dissatisfaction, respectively. Values scored from both objective functions are used by NSGA-II to set
the ith front.

5.3. Selection

The goal of selection procedure is to pick the best individuals for the next generation. We use
binary tournament selection based on crowded-comparison operator ≺n, as described in Section 5.

5.4. Genetic Operators

Genetic operators are responsible for generating new solutions to populate the next generations.
In the next sections, we present how they are performed.

5.4.1. Crossover

Two parents are chosen to exchange their genes with a probability pc. We rely on 2D representation
of each parent (see Figure 4) to show how crossover is conducted. In this procedure, we find the
midpoint in a′ and draw a separation or cutting line to divide the area into two parts in each of the
parents. The cutting line may be drawn diagonally in 45/−45 degrees or horizontally or vertically.
Next, we remove all UAVs that are within a 1

2D distance radius along the cutting line within a′. If the
separation line is either diagonally or vertically drawn, the leftmost part of one parent is joined with
the rightmost part of the other to form an offspring. On the other hand, if it is horizontally drawn,
the uppermost and bottommost will be joined instead. There may be some uncovered GNs in the
vicinity of the separation line, since we have removed some UAVs, which makes the resulting offspring
an invalid individual. In this case, we repair the offspring by repeatedly choosing a random uncovered
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GN and place a UAV in a closest available point qu
(x,y,h) until all GNs are covered and the connectivity

among UAVs is verified by Algorithm 1. UAVs that are not serving or bridging any GNs are removed.

Ground node

Parent A

 UAV coverage radius

Parent B

Offspring

Crossover point

Figure 4. Crossover procedure.

5.4.2. Mutation

For each individual, a UAV is randomly chosen based on a probability pm. Next, either it is
temporarilyremoved from the network or reallocated to a new available placement point with 50%
chance for each procedure to be performed. If the above procedures fail to produce a valid individual,
then the UAV is put back in its initial position. Figure 5a,b shows the removal and reallocation
procedures, respectively.

Ground node
 UAV coverage radius

Individual before mutation Individual after mutation

To be removed

(a) Removal of UAV

Ground node
 UAV coverage radius

Individual before mutation Individual after mutation

To be reallocated

(b) Reallocation of UAV

Figure 5. UAV removal and reallocation procedures during mutation.
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5.5. Complexity

Determining the computational complexity of MOEA is difficult [27], since it depends on the
specific problem setting. According to [26], the computational complexity of a faster algorithm such
as NSGA-II is O(MN2), where M is the number of objective functions and N is the population size.
On the other hand, the authors in [27] have considered the computational complexity as O(ng MN2),
where ng is the number of generations. Depending on the stopping criteria used, ng can have any
complexity from constant to NP. It should be noted that when ng is not constant or otherwise limited,
it is a function of the chromosome size. In this work, although we define a fixed cut-off value, as we
will see later, the number of generations ng will be variable due to the variable length/size of the
chromosome. The size of the chromosome is defined by the current number of deployed UAVs
(candidate solution). In a population of size N, we may have many different solutions, which in turn
makes it difficult to determine the computational complexity of our MOEA-NSGA-II implementation.

6. Simulation Results

In this section, we present the simulation results of our implementation of NSGA-II. We have
two objective functions. The first one aims at reducing the cost in terms of the number of deployed
UAVs used to service GNs, and the second one is intended to reduce the maximum dissatisfaction of
GNs in terms of the required data rate. We have developed the algorithm in the C++ programming
language. We assume that there will be a centralized entity (eventually located on one of the ground
vehicles, or on the cloud) responsible for running the algorithm and delivering the configuration to the
UAVs. The setup of the proposed scenarios, the MOEA termination criterion, and the dominated and
non-dominated sets are presented in Sections 6.1–6.3, respectively.

6.1. Scenario Setup

We considered a network with 100 fixed GNs uniformly distributed in a rectangular area of size
5000 m × 5000 m. We set three different scenarios by varying the value of µ. This parameter is used to
discretize the area inside the convex hull formed by the GNs. Different from our previous work [12]
where UAVs were only allowed to fly at a fixed altitude, here, a UAV may fly at a given altitude h
uniformly selected from the set H= {40, 80, 120} m. We assume that the transmit power among the
nodes is fixed at 23 dBm. Previously, in Section 4, it was stated that potential UAV placement points
will be identified within a convex hull formed by the GNs. The convex hull is found by the Graham
scan algorithm [28] based on the GN deployment positions qv

(x,y,0).
Our scenarios consider a suburban environment and use log-distance path loss model for the

signal attenuation. Table 2 shows all possible data rates and their corresponding minimum sensitivities
at the receiver, i.e., Pr(d). These values were used to compute the maximum achievable distance Di
with α in Equation (1) set to 2.2 [23] and d0 fixed at 1 m. We compute Pr(d0) using the free space
propagation model, Pr(d0) = PtGtGr(c/4πd0 f )2 [29], where Pt is the transmit power, Gt and Gr are
the transmitter and receiver antenna gains, respectively, and c and f are the speed of light and carrier
frequency, respectively. We set Gt = Gr = 1 (0 dBm). Moreover, each data rate in Table 2 is considered
to be using a different transmission mode.

For the set of UAV candidate position Q, we chose Di with the lowest minimum sensitivity and
adjusted it by using the parameter µ to ensure that two UAVs positioned side by side can communicate
with each other. As already stated, we assumed that there was a wireless communication technology
between UAVs that was capable of efficiently relaying all the traffic from the GNs, never causing a
bottleneck. The parameters that were common in different scenario are detailed in Table 3 as follows.

We have adjusted NSGA-II parameters such as the probability of crossover (pc) and mutation (pm)
and the population size so that the algorithm did not prematurely converge or perform an excessive
number of computations due to either low values of the probability of crossover or a high population
size. The NSGA-II parameters are summarized in Table 4.
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Table 2. Maximum achievable distance of each transmission mode based on the minimum sensitivity
of the receiver antenna.

Data Rate (Mbits/s) Min. Sensitivity (dBm) Di (m)

6 −82 892.24
9 −81 803.58

12 −79 651.81
18 −77 528.70
24 −74 386.23
36 −70 254.11
48 −66 167.19
54 −65 150.57

Table 3. Parameters in each scenario.

Parameters Value

Transmit Power (Pt) 23 dBm
Antenna model Omni-directional

Propagation model Log-distance
Area A, (Xmax× Ymax) 5000 m × 5000 m

No. of GNs 100
α 2.2
d0 1 m
c 3× 108 m/s
f 2.412× 109 Hz

Pr(d0) −47 dBm
µ [0.15, 0.30, 0.45]
D 892.24 m

Table 4. NSGA-II setup parameters.

Parameters Value

NSGA-II Population Size 80
NSGA-II pc 0.9
NSGA-II pm 0.6

6.2. MOEA Termination Criterion

The MOEA termination adopted in this work is similar to that used in [30], in the sense that we
also maintained an external archive of non-dominated solutions obtained at some predefined steps
at earlier generations, and it was subject to be updated some generations later. However, instead of
computing the ratio of the number of solutions in the archive that were dominated by the new ones of
the current generation and the ratio of the number of solutions that were also present in the new set of
non-dominated solutions, we computed the ratio of new solutions, which were not present in both
dominated and non-dominated sets of the archive, and we used it to define our stopping criterion.
We used τ = 0.05 as the cut-off value for the new solutions. However, the choice of the exact cut-off
value may depend on the problem and may require some trial and error. Figure 6 shows the ratio of
new solutions at every tenth generation (i.e., step = 10). The ratio was significantly high in the first
generation when the algorithm was evolving and decreased with the generation, as new solutions were
not frequent. We also observed that depending on µ, NSGA-II took a different number of generations
to achieve the cut-off value. In fact, the value of µ affected the cardinality of Q, hence increasing
or decreasing the search space, i.e., the higher the cardinality of Q, the higher was the number of
generations to achieve the cut-off value. On the other hand, the lower the cardinality of Q, the lower
was the number of generations to achieve the cut-off value. These results are shown in Table 5.
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Figure 6. Ratio of new solutions.

Table 5. Number of generations achieved for cut-off τ = 0.05 for each µ.

µ = 0.15 µ = 0.30 µ = 0.45

# of generations 330 240 180

6.3. Dominated and Non-Dominated Sets

For each value of µ, all dominated and non-dominated solutions are presented in Figure 7.
From each Pareto front set, we can clearly see the trade-off between the number of UAVs that are flying
in the area and the degree of dissatisfaction of the GNs in terms of the required data rate, i.e., when
few UAVs are deployed, a high degree of the maximum dissatisfaction was observed. On the other
hand, when the number of UAVs increased, the degree of the maximum dissatisfaction decreased.

(a) µ = 0.15 (b) µ = 0.30

Figure 7. Cont.
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(c) µ = 0.45

Figure 7. Trade-off between the number of UAVs and the degree of dissatisfaction of the GNs.

Table 6 presents the maximum and minimum number of UAVs and their respective degrees of
dissatisfaction from the Pareto front set of each value of µ presented in Figure 7. These results show
that the proposed algorithm can optimize the UAV placement given the requirement and the positions
of the GNs in the target area.

Table 6. Maximum and minimum No. of UAVs for each scenario.

Max. UAVs Degree.Dissat(%) Min. UAV Degree. Dissat (%)

µ = 0.15 38 55.55 34 83.33
µ = 0.30 43 55.55 35 88.88
µ = 0.45 56 33.33 43 87.50

7. Discussion

As shown above, varying µ affects the objective functions, though we have computed the convex
hull to reduce the search space to some extent. However, this parameter may still reduce or increase
the number of candidate points to place UAVs in the target area. The choice of µ depends on the
requirement such as the area to be covered, the maximum transmission range, and also the number of
available UAVs to cover the GNs to meet the QoS requirements.

In this work, varying the flying altitude would not significantly affect the objective functions given
the order of magnitude between the communication range of omni-directional antennas considered in
the simulations and the allowed flying altitudes from the setH, i.e., picking uniformly any value from
the setH, there will be a slight difference between the covered areas.

The use of NSGA-II as an optimization tool allows us to produce a set of solutions that are better
and spread as observed in our simulations results. It enables us to have options to select a solution
according to the requirement of the application or problem at hand. For instance, if it is not acceptable
that any GN communicates beyond 75% of the degree of dissatisfaction and there are no more than
60 available UAVs, then they can easily be configured with solutions that respect these requirements
from our Pareto-optimal (non-dominated) set chosen from Figure 7.

The experimental results presented in the previous section are specific to the proposed scenarios
and assumptions that were considered in our system model. In a realistic environment, one should
take into account additional constraints such as the effect of interference, GN mobility, number of GNs
to be covered, terrain conditions, etc.

• Interference: Nodes may be positioned within an acceptable distance for the required data
rate, but may fail to achieve it due to interference caused by ongoing transmission of their
neighboring nodes.
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• GN mobility: Although the mobility is not considered in this work, it is worth mentioning that it
would at least demand scheduling of periodic updates and computation of new solutions due to
topology changes. As was previously mentioned, that is a challenging issue, namely because of
the need to minimize temporary connectivity disruption due to UAV position changes.

• Number of GNs: UAVs have a limited capacity to service a certain number of GNs efficiently, and
if this capacity is exceed, additional UAVs may be needed.

• Terrain conditions/ structure: UAVs may not fly at the desired altitude due to the existence of
obstacles (e.g., trees, mountains, buildings, etc.), which may require the addition of more UAVs to
maintain the connectivity among the nodes.

Algorithm 1 was used to ensure the connectivity of the network and produce valid solutions.
We used the Breadth First Search (BFS) algorithm to check if there is a path to the destination. If a
path is not found, it adds a new UAV to connect it, as explained in Section 4.2.1. This procedure is not
optimized, which may conflict with the objective of minimizing the number of UAVs. However, it may
eventually reduce the degree of dissatisfaction of the GNs.

8. Conclusions

This paper presents an optimized placement scheme for UAV access points providing network
connectivity to GNs with differentiated data rate requirements. The goal of the proposed algorithm is
to deploy as few as possible connected UAVs to cover and simultaneously satisfy the aforementioned
requirements of the GNs. In order to attain this goal, we have mathematically formulated the problem
and used an MOEA named NSGA-II to run the simulations. In order for NSGA-II to work, we proposed
a chromosome structure, crossover scheme, and mutation procedure. Simulations were performed
considering Wi-Fi (802.11g) technology, where GNs would request to turn to a given transmission
mode within a set of available ones. Simulation results show that the algorithm optimizes the UAV
placement given the requirements and positions of the GNs, considering the trade-off between the
number of UAVs and the quality of the coverage.

In future work, we will consider additional constrains such as limited inter-UAV link capacity
and interference. We will also consider joint topology and routing optimization.

Author Contributions: Conceptualization: S.S., N.H. and A.G., Writing-Original Draft Preparation: S.S,
Writing-Review: S.S., N.H. and A.G., Supervision and Validation: N.H and A.G.

Funding: This work was partially supported by Fundação Calouste Gulbenkian and by Portuguese national
funds through Fundação para a Ciência e Tecnologia (FCT) with reference UID/CEC/50021/2013.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

A2A Air-to-Air
A2G Air-to-Ground
BER Bit Error Rate
BFS Breadth First Search
BS Base Station
D2D Device-to-Device
FSPL Free Space Path Loss
GN Ground Node
GPS Global Positioning System
IEEE Institute of Electrical and Electronics Engineers
LoS Line-of-Sight
MOEA Multi-Objective Evolutionary Algorithm
MOP Multi-objective Optimization Problem
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NLoS No Line-of-Sight
NSGA-II Non-dominated Sorting Genetic Algorithm II
QoS Quality of Service
PSO Particle Swarm Optimization
RF Radio Frequency
RSS Received Signal Strength
SNR Signal-to-Noise-Ratio
UAV Unmanned Aerial Vehicles
UE User Equipment
Wi-Fi Wireless Fidelity
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7. Bekmezci, I.; Sahingoz, O.K.; Temel, Ş. Flying ad-hoc networks (fanets): A survey. Ad Hoc Netw. 2013, 11,
1254–1270. [CrossRef]

8. Anderson, K.; Gaston, K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology.
Front. Ecol. Environ. 2013, 11, 138–146. [CrossRef]

9. Gupta, L.; Jain, R.; Vaszkun, G. Survey of important issues in uav communication networks. IEEE Commun.
Surv. Tutor. 2016, 18, 1123–1152. [CrossRef]

10. Zeng, Y.; Zhang, R.; Lim, T.J. Wireless communications with unmanned aerial vehicles: opportunities and
challenges. IEEE Commun. Mag. 2016, 54, 36–42. [CrossRef]

11. Jiang, J.; Han, G. Routing protocols for unmanned aerial vehicles. IEEE Commun. Mag. 2018, 56, 58–63.
[CrossRef]

12. Sabino, S.; Grilo, A. Topology control of unmanned aerial vehicle (uav) mesh networks: A multi-objective
evolutionary algorithm approach. In Proceedings of the 4th ACM Workshop on Micro Aerial Vehicle
Networks, Systems, and Applications, Munich, Germany, 10–15 June 2018; ACM: New York, NY, USA, 2018;
pp. 45–50.

13. Morgenthaler, S.; Braun, T.; Zhao, Z.; Staub, T.; Anwander, M. Uavnet: A mobile wireless mesh network
using unmanned aerial vehicles. In In Proceedings of the 2012 IEEE Globecom Workshops, Anaheim, CA,
USA, 3–7 December 2012; pp. 1603–1608.

14. Galkin, B.; Kibilda, J.; DaSilva, L.A. Deployment of uav-mounted access points according to spatial user
locations in two-tier cellular networks. In Proceedings of the Wireless Days (WD), Toulouse, France, 23–25
March 2016; pp. 1–6.

15. Al-Hourani, A.; Kandeepan, S.; Lardner, S. Optimal lap altitude for maximum Coverage. IEEE Wirel.
Commun. Lett. 2014, 3, 569–572. [CrossRef]

16. Al-Hourani, A.; Kandeepan, S.; Jamalipour, A. Modeling air-to-ground path loss for low altitude platforms
in urban environments. In Proceedings of the 2014 IEEE Global Communications Conference (GLOBECOM),
Austin, TX, USA, 8–12 December 2014; pp. 2898–2904.

http://dx.doi.org/10.1007/s10846-008-9213-x
http://dx.doi.org/10.1109/JPROC.2006.876930
http://dx.doi.org/10.1016/j.adhoc.2016.09.005
http://dx.doi.org/10.1016/j.biosystemseng.2010.11.010
http://dx.doi.org/10.1016/j.adhoc.2012.06.014
http://dx.doi.org/10.1016/j.adhoc.2012.12.004
http://dx.doi.org/10.1890/120150
http://dx.doi.org/10.1109/COMST.2015.2495297
http://dx.doi.org/10.1109/MCOM.2016.7470933
http://dx.doi.org/10.1109/MCOM.2017.1700326
http://dx.doi.org/10.1109/LWC.2014.2342736


Sensors 2018, 18, 4387 18 of 18

17. Kalantari, E.; Yanikomeroglu, H.; Yongacoglu, A. On the number and 3d placement of drone base stations
in wireless cellular networks. In Proceedings of the 2016 IEEE 84th Conference on Vehicular Technology
Conference (VTC-Fall), Austin, TX, USA, 8–12 December 2016; pp. 1–6.

18. Chen, Y.; Feng, W.; Zheng, G. Optimum placement of uav as relays. IEEE Commun. Lett. 2018, 22, 248–251.
[CrossRef]

19. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Efficient deployment of multiple unmanned aerial vehicles
for optimal wireless coverage. IEEE Commun. Lett. 2016, 20, 1647–1650. [CrossRef]

20. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Unmanned aerial vehicle with underlaid device-to-device
communications: Performance and tradeoffs. IEEE Trans. Wirel. Commun. 2016, 15, 3949–3963. [CrossRef]

21. Zorbas, D.; Pugliese, L.D.P.; Razafindralambo, T.; Guerriero, F. Optimal drone placement and cost-efficient
target coverage. J. Netw. Comput. Appl. 2016, 75, 16–31. [CrossRef]

22. Caillouet, C.; Razafindralambo, T. Efficient deployment of connected unmanned aerial vehicles for optimal
target coverage. In Proceedings of the Global Information Infrastructure and Networking Symposium (GIIS),
St. Pierre, France, 25–27 October 2017; pp. 1–8.

23. Yanmaz, E.; Kuschnig, R.; Bettstetter, C. Channel measurements over 802.11 a-based uav-to-ground links.
In Proceedings of the GLOBECOM Workshops (GC Wkshps), Houston, TX, USA, 5–9 December 2011;
pp. 1280–1284.

24. Kalyanmoy, D. Multi Objective Optimization Using Evolutionary Algorithms; John Wiley and Sons: Hoboken,
NJ, USA, 2001.

25. Jarvis, R.A. On the identification of the convex hull of a finite set of points in the plane. Inf. Process. Lett.
1973, 2, 18–21. [CrossRef]

26. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: Nsga-ii.
IEEE Trans. Evol. Comput. 2002, 6, 182–197. [CrossRef]

27. Curry, D.M.; Dagli, C.H. Computational complexity measures for many-objective optimization problems.
Procedia Comput. Sci. 2014, 36, 185–191. [CrossRef]

28. Graham, R.L. An efficient algorith for determining the convex hull of a finite planar set. Inf. Process. Lett.
1972, 1, 132–133. [CrossRef]

29. Beard, C.; Stallings, W. Wireless Communication Networks and System, 5th ed.; Pearson Education: London,
UK, 2016; ISBN 10:1-292-1-10871-1.

30. Goel, T.; Stander, N. A study of the convergence characteristics of multiobjective evolutionary algorithms.
In Proceedings of the 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, Fort Worth,
TX, USA, 13–15 September 2010; p. 9233.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/LCOMM.2017.2776215
http://dx.doi.org/10.1109/LCOMM.2016.2578312
http://dx.doi.org/10.1109/TWC.2016.2531652
http://dx.doi.org/10.1016/j.jnca.2016.08.009
http://dx.doi.org/10.1016/0020-0190(73)90020-3
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1016/j.procs.2014.09.077
http://dx.doi.org/10.1016/0020-0190(72)90045-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	System Model
	Problem Definition
	Multi-Objective Optimization Problem
	Formulation of UAV Placement Optimization as an MOP 
	Minimize the Number of UAVs
	Minimizing the Degree of Dissatisfaction of the Required Data Rate


	UAV Placement Based on NSGA-II
	Individual and Initial Population
	Objective or Fitness Function
	Selection
	Genetic Operators
	Crossover
	Mutation

	Complexity

	Simulation Results
	Scenario Setup
	MOEA Termination Criterion
	Dominated and Non-Dominated Sets

	Discussion
	Conclusions
	References

