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Abstract: Landmark-based vehicle localization is a key component of both autonomous driving and
advanced driver assistance systems (ADAS). Previously used landmarks in highways such as lane
markings lack information on longitudinal positions. To address this problem, lane endpoints can
be used as landmarks. This paper proposes two essential components when using lane endpoints
as landmarks: lane endpoint detection and its accuracy evaluation. First, it proposes a method
to efficiently detect lane endpoints using a monocular forward-looking camera, which is the most
widely installed perception sensor. Lane endpoints are detected with a small amount of computation
based on the following steps: lane detection, lane endpoint candidate generation, and lane endpoint
candidate verification. Second, it proposes a method to reliably measure the position accuracy of the
lane endpoints detected from images taken while the camera is moving at high speed. A camera is
installed with a mobile mapping system (MMS) in a vehicle, and the position accuracy of the lane
endpoints detected by the camera is measured by comparing their positions with ground truths
obtained by the MMS. In the experiment, the proposed methods were evaluated and compared with
previous methods based on a dataset acquired while driving on 80 km of highway in both daytime
and nighttime.

Keywords: lane endpoint detection; position accuracy evaluation; vehicle localization; sensor fusion;
intelligent vehicle

1. Introduction

Vehicle localization is one of the key components of both autonomous driving and advanced
driver assistance systems (ADAS). Accurate localization results can improve performances of other
key components such as perception, planning, and control. The most widely used vehicle localization
method is global navigation satellite systems (GNSS). This method provides global positions and its
error is not accumulated, but produces inaccurate results when the GNSS signal is reflected or blocked.
To alleviate this problem, GNSS has often been fused with dead reckoning (DR). This method is robust
against the status of the GNSS signal and provides accurate results in a short period of time, but its
error can accumulate over time. Recently, to overcome these drawbacks, localization methods that
utilize a perception sensor and digital map have been widely researched [1]. These methods localize
the ego-vehicle by matching the landmarks detected by the perception sensor and the landmarks
stored in the digital map.
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Various types of landmarks have been used, and road markings are one of the most widely used
landmarks for vehicle localization. In terms of the perception sensor, road markings are relatively
easy to detect because their shapes are predetermined by regulations and their color and reflectivity
are significantly different from those of the road surface. In terms of the digital map, road markings
can be stored at low capacity because their shapes are relatively simple compared with other road
structures. Among road markings, lane markings are most widely used for vehicle localization. Lane
markings provide abundant information on lateral position, but lack information on longitudinal
position. To alleviate the drawback of lane markings, methods that utilize stop lines, crosswalks,
arrows, and letters have been suggested. Those road markings are useful in urban situations because
they frequently appear on urban roads. However, in highway situations, stop lines and crosswalks
rarely exist, and arrows and letters seldom appear. Figure 1 shows the results of analyzing sequential
images taken from approximately 40 km of highway from the viewpoint of road markings. First of
all, this highway does not include any stop lines and crosswalks. In general, there are no stop lines
and crosswalks on Korean highways. Red points in Figure 1 indicate the locations where arrows and
letters were captured by the front camera. The arrows and letters were observed only in approximately
3% of the entire images. Furthermore, the arrows and letters are concentrated in specific areas such
as intersections. The roads where the arrows and letters are not continuously observed reach up to
7.8 km. This analysis clearly shows that stop lines, crosswalks, arrows, and letters have limitations of
improving longitudinal positioning accuracy in highway situations.
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Figure 1. Analysis of distributions of road markings in highway situations.

To overcome the limitations of the abovementioned road markings, lane endpoints can be used
as landmarks to improve longitudinal positioning accuracy. The lane endpoint indicates the location
where a lane marking starts or ends, so this paper classifies it into a lane starting point and a lane
ending point. Figure 2a shows lane endpoints taken in a highway. Red and blue crosses indicate the
starting and ending points, respectively. As a landmark for vehicle localization in highway situations,
the lane endpoint has the following advantages: (1) Since it represents a specific point, it provides
information on both lateral and longitudinal positions; (2) Since it has a simple and distinct shape,
it can effectively be detected using a conventional automotive front camera; (3) Since it can be captured
at a close distance, its position accuracy is guaranteed; (4) It frequently appears in highway situations.
In Figure 1, blue points indicate the locations where the lane endpoints were captured by the front
camera while driving on approximately 40 km of highway. The lane endpoints were observed in
approximately 88% of the entire images, and the roads where the lane endpoints are not continuously
observed reach at most to 1.7 km in a tunnel. According to Korean regulations, the length of a single
dashed lane marking is 8.0 m, longitudinal distance between two dashed lane markings is 12.0 m,
and the width of the driving lane is at least 3.5 m as shown in Figure 2b. This means that the lane
endpoints of the same type (staring or ending point) appear every 20.0 m in the longitudinal direction
and every 3.5 m in the lateral direction. Because there is enough space between adjacent lane endpoints,
there is little confusion between adjacent lane endpoints when matching them with those stored in the
digital map. The effect of using a specific location of a road marking for vehicle localization has been
verified in [2] where arrow endpoints are used instead of lane endpoints. Note that this paper suggests
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that the lane endpoints are used as one of several landmarks, rather than suggesting the use of lane
endpoints alone.

Sensors 2018, 18, x FOR PEER REVIEW  3 of 23 

 

 

(a)                                                 (b) 

Figure 2. (a) Two types of lane endpoints; (b) Installation regulation of dashed lane marking. 

This paper proposes two methods concerning the use of the lane endpoints as landmarks for 
vehicle localization. First, it proposes a method to efficiently detect the lane endpoints using a 
vehicle-mounted monocular forward-looking (front) camera, which is the most widely installed 
perception sensor. Second, it proposes a method to reliably measure the position accuracy of the lane 
endpoints detected from images taken while the ego-vehicle is moving at high speed. 

Since the front camera module is responsible for detecting various objects such as lane 
markings, vehicles, pedestrians, traffic signs, etc., an algorithm added to this module should require 
less computational costs. Thus, this paper proposes a method that can efficiently detect lane 
endpoints by combining simple algorithms. The proposed method first extracts lane pixels using a 
top-hat filter, and detects left and right lanes based on RANSAC. Once the lanes are detected, 
profiles of the top-hat filter response are generated along the detected lanes. Lane endpoint 
candidates are generated by finding local minima and maxima from differentiation results of the 
profiles. The lane endpoint candidates are verified by a two-class classifier after converting them 
into bird’s-eye view images. Finally, the positions of the lane endpoints from the camera are 
calculated based on the camera’s intrinsic and extrinsic parameters. 

In general, the landmark-based localization system estimates the position of the ego-vehicle by 
comparing the positions of the detected landmarks from the ego-vehicle and those stored in the 
digital map. This means the position accuracy of the detected landmark is directly related to the 
performance of the vehicle localization system. In addition, it is necessary to have a distribution of 
the position error of the detected landmark in order to effectively apply extended Kalman or particle 
filtering methods. However, it is quite difficult to precisely measure the position accuracy of the 
landmarks, which are detected from images taken while the ego-vehicle is moving on a highway at 
high speed. According to our literature review, there has been no previous work attempting it. To 
reliably measure the position accuracy of the landmark, this paper proposes a method that uses a 
mobile mapping system (MMS) after examining various approaches. Since the MMS consists of 
high-precision positioning equipment and high performance LIDARs, it produces highly accurate 
positions and dense 3D points with reflectivities. If the front camera is attached to the MMS, 3D 
locations of the detected lane endpoints from the front camera can be accurately obtained while the 
ego-vehicle is moving at high speed by using the precise positions and dense 3D points produced by 
the MMS. Thus, this paper reliably measures the position accuracy of the lane endpoints by 
comparing its position obtained from the camera and the corresponding position obtained from the 
MMS. 

In the experiment, the proposed method was evaluated based on a dataset acquired while 
driving on approximately 80 km of highway. Half of the dataset was acquired during daytime and 
the other half at night. The proposed lane endpoint detection method shows 96.1% recall and 99.7% 
precision in daytime, and 94.7% recall and 100% precision at night. As a result of the MMS-based 
position accuracy evaluation, the detected lane endpoints show 7.8 cm and 21.6 cm average position 
errors in lateral and longitudinal directions during daytime, and 8.2 cm and 48.2 cm average 
position errors in lateral and longitudinal directions at night. In terms of execution time, this method 
requires only 4.35 ms per image so that it can handle 230 frames per second. 

Figure 2. (a) Two types of lane endpoints; (b) Installation regulation of dashed lane marking.

This paper proposes two methods concerning the use of the lane endpoints as landmarks
for vehicle localization. First, it proposes a method to efficiently detect the lane endpoints using
a vehicle-mounted monocular forward-looking (front) camera, which is the most widely installed
perception sensor. Second, it proposes a method to reliably measure the position accuracy of the lane
endpoints detected from images taken while the ego-vehicle is moving at high speed.

Since the front camera module is responsible for detecting various objects such as lane markings,
vehicles, pedestrians, traffic signs, etc., an algorithm added to this module should require less
computational costs. Thus, this paper proposes a method that can efficiently detect lane endpoints
by combining simple algorithms. The proposed method first extracts lane pixels using a top-hat
filter, and detects left and right lanes based on RANSAC. Once the lanes are detected, profiles of the
top-hat filter response are generated along the detected lanes. Lane endpoint candidates are generated
by finding local minima and maxima from differentiation results of the profiles. The lane endpoint
candidates are verified by a two-class classifier after converting them into bird’s-eye view images.
Finally, the positions of the lane endpoints from the camera are calculated based on the camera’s
intrinsic and extrinsic parameters.

In general, the landmark-based localization system estimates the position of the ego-vehicle
by comparing the positions of the detected landmarks from the ego-vehicle and those stored in the
digital map. This means the position accuracy of the detected landmark is directly related to the
performance of the vehicle localization system. In addition, it is necessary to have a distribution of
the position error of the detected landmark in order to effectively apply extended Kalman or particle
filtering methods. However, it is quite difficult to precisely measure the position accuracy of the
landmarks, which are detected from images taken while the ego-vehicle is moving on a highway
at high speed. According to our literature review, there has been no previous work attempting it.
To reliably measure the position accuracy of the landmark, this paper proposes a method that uses
a mobile mapping system (MMS) after examining various approaches. Since the MMS consists of
high-precision positioning equipment and high performance LIDARs, it produces highly accurate
positions and dense 3D points with reflectivities. If the front camera is attached to the MMS, 3D
locations of the detected lane endpoints from the front camera can be accurately obtained while the
ego-vehicle is moving at high speed by using the precise positions and dense 3D points produced by
the MMS. Thus, this paper reliably measures the position accuracy of the lane endpoints by comparing
its position obtained from the camera and the corresponding position obtained from the MMS.

In the experiment, the proposed method was evaluated based on a dataset acquired while driving
on approximately 80 km of highway. Half of the dataset was acquired during daytime and the other
half at night. The proposed lane endpoint detection method shows 96.1% recall and 99.7% precision in
daytime, and 94.7% recall and 100% precision at night. As a result of the MMS-based position accuracy
evaluation, the detected lane endpoints show 7.8 cm and 21.6 cm average position errors in lateral and
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longitudinal directions during daytime, and 8.2 cm and 48.2 cm average position errors in lateral and
longitudinal directions at night. In terms of execution time, this method requires only 4.35 ms per
image so that it can handle 230 frames per second.

The rest of this paper is organized as follows: Section 2 explains related research. Sections 3
and 4 describe the proposed lane endpoint detection method and the MMS-based position accuracy
evaluation method, respectively. Section 5 presents experimental results and analyses. Finally,
this paper is concluded with future works in Section 6.

2. Related Research

The perception sensor and digital map-based vehicle location methods can be categorized based
on the information acquired by the perception sensor and stored in the digital map. According to this
criterion, previous methods can be categorized into range data-based, feature point-based, and road
marking-based approaches. Since the proposed system is categorized into the road marking-based
approach, the other two approaches are briefly introduced in this section. Figure 3 shows the taxonomy
of the vehicle localization methods.
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The range data-based approach acquires range data using perception sensors and matches them
with range information stored in the digital map. Since this approach mostly utilizes active sensors
such as LIDARs and Radars, it is robust against illumination conditions and textures of surrounding
objects. However, its performance can be degraded in cases where a few fixed objects and many
moving obstacles are presented on a broad road. The methods in this approach recognize specific
objects (e.g., curbs [3], building facades [4], pole-like objects [5], or guardrails [6]), or directly utilize
3D point clouds [7] to match them with the digital map.

The feature point-based approach extracts feature points mostly from images and matches them
with feature points stored in the digital map by comparing their descriptors. Because this approach
utilizes a large number of feature points on various surrounding objects, it can achieve high localization
accuracy. However, its performance can be affected by appearance and position changes of obstacles.
In addition, it requires a large storage volume to store numerous feature points along with their
high-dimensional descriptors in the digital map. The methods in this approach utilize various types
of interest point detectors and feature descriptors: maximally stable extremal regions (MSER) with
moment invariants [8], difference of Gaussians (DoG) with scale-invariant feature transform (SIFT),
fast Hessian detector with speeded up robust features (SURF) [9], and DIRD (Dird is an illumination
robust descriptor) [10].

The road marking-based approach extracts markings on road surfaces and matches them with
road markings stored in the digital map. Since road markings are visually distinctive and under
government regulations, they can be reliably detected compared to other objects. However, localization
performance can be degraded when the road markings are worn or covered with snow. The road
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marking-based approach can further be categorized into signal-level, feature-level, and symbol-level
approaches according to the level of information being used.

The signal-level approach uses raw data of road surfaces obtained from the perception sensor.
Mattern et al. [11] matches intensities of image pixels with a virtual road surface image generated from
the digital map. Levinson and Thrun [12] compares infrared reflectivities of a LIDAR with their means
and standard deviations stored in the digital map. The feature-level approach utilizes features of the
road marking extracted from raw data of the perception sensor. Hata and Wolf [13], Kim et al. [14], and
Suganuma and Uozumi [15] find road marking features by comparing infrared reflectivities acquired
by LIDARs with neighboring reflectivities or threshold values. Schreiber et al. [16] extracts road
marking features by applying the oriented matched filter to free space obtained by a stereo camera.
Deusch et al. [17] uses the maximally stable extremal regions to find road marking features from
images of a front camera. Jo et al. [18] utilizes the top-hat filter to extract road marking features from
bird’s-eye view images. The signal-level and feature-level approaches require less effort to handle
the outputs of the perception sensors. However, since the raw data and road marking features have
a large amount of information, these approaches require a high computational cost for the matching
procedure and a large storage volume for the digital map.

The symbol-level approach recognizes a variety of types of road markings and matches them
with those stored in the digital map. Lane markings are the most popularly used symbols for vehicle
localization. Nedevschi et al. [19], Jo et al. [20], Lu et al. [21], Gruyer et al. [22], Tao et al. [23], Shunsuke
et al. [24], and Suhr et al. [2] utilize a variety of types of cameras to detect lane markings for vehicle
localization purposes. In particular, Nedevschi et al. [19] not only recognize positions of lanes but
also their types (e.g., double, single, interrupted, and merge) as additional information. Even though
the lane markings provide abundant information on the lateral position, they lack information on
the longitudinal position. To complement this, stop lines, crosswalks, arrows, and letters have been
utilized as well. Nedevschi et al. [19] recognizes stop-lines using a stereo camera and Jo et al. [20]
recognize crosswalks using a front camera in order to enhance longitudinal localization accuracies.
Nedevschi et al. [19] detect five types of arrows using a stereo camera to recognize the driving lane of
the ego-vehicle. Wu and Ranganathan [25] recognize ten types of arrows and letters using a stereo
camera and extract corner features from them. Suhr et al. [2] recognize nine types of arrows and
diamond along with their starting points using a single front camera. The symbol-level approach
requires a low computational cost for the matching procedure and a small storage volume for the
digital map because it simply matches and stores locations and types of symbols. However, it requires
additional computing resources to reliably recognize specific symbols. Thus, the symbol recognition
procedure should be designed to be cost-effective.

The lane endpoints are expected to be good landmarks for vehicle localization when applying the
symbol-level approach to highway situations. This paper proposes two essential components for its
application: a cost-effective method to detect the lane endpoints using a conventional monocular front
camera and a reliable method to measure the position accuracy of the lane endpoints based on the
MMS. According to our literature review, there has been no previous work that explicitly detects the
lane endpoint for vehicle localization purposes and measures its position accuracy.

3. Lane Endpoint Detection

3.1. Lane Detection

For lane departure warning (LDW) and lane keeping assist (LKA) systems, distant lanes and
their curvatures should be obtained. However, in this paper, lane detection results are used only to
restrict the search range of lane endpoints. For this purpose, it is enough to detect the lanes close to
the ego-vehicle. Since the highway has a large turning radius, the lanes close to the ego-vehicle can
be approximated as straight lines. Thus, the lanes within 20 m of the front camera are detected by
finding a pair of straight lines. To detect left and right lanes, this paper first designates regions of
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interest (ROIs) for both lanes by considering the camera’s intrinsic and extrinsic parameters and the
lane width of the highway in the regulation. Two pairs of blue lines in Figure 4a indicate the ROIs
for left and right lanes. Lane candidate pixels are extracted by applying a horizontal top-hat filter to
the ROIs shown in Figure 4a [26]. To reduce the computational cost, the top-hat filter is not applied to
bird’s-eye view images but to the original images. The horizontal top-hat filter, h can be described as

h = [−1w/2, 1w, 1w/2] (1)

where 1n is an n-dimensional row vector whose elements are all ones. The top-hat filter can successfully
detect lane candidate pixels if w fits the lane marking width. The lane marking width changes
according to the vertical coordinate of the image because of the perspective projection. Thus, this paper
pre-calculates the lane marking widths at different vertical coordinates based on the camera’s intrinsic
and extrinsic parameters and the width of the lane marking in the regulation. In this pre-calculation,
it is assumed that the roll and yaw angles of the camera are close to zero and only markings of the
ego-lane are considered. The response of the top-hat filter at location (u,v), r(u,v) can be cost-efficiently
calculated using only four operations regardless of w when a horizontal integral image, Ih is used as:

r(u, v) = 2[Ih(u + w/2, v)− Ih(u− w/2, v)]− [Ih(u + w, v)− Ih(u− w, v)] (2)

Figure 4b shows the result of applying the top-hat filter to the ROIs in Figure 4a. Once the top-hat
filter response is obtained, local maxima are searched for each row of the image to find the center
pixels of the lane markings. Yellow points in Figure 4c indicate the locations of the extracted local
maxima whose top-hat filter responses are larger than a predetermined value. Finally, a pair of lines is
estimated by separately applying the RANSAC-based line detector to the local maxima found from
the left and right ROIs [27]. Two red lines in Figure 4d show the detected left and right lanes. The lane
markings are considered to be stably detected if the vanishing point calculated by a pair of two lines
is located at a similar position more than N (in this paper, =3) consecutive images. Two consecutive
vanishing points are considered to be located in a similar position if the distance between them is less
than a predetermined value. Once the lane markings are stably detected, the ROIs for left and right
lanes are limited to the narrow areas near the lane markings detected in the previous image. Even
though this paper detects lanes using a combination of simple algorithms to reduce computational
cost, more sophisticated methods can also be used.
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3.2. Lane Endpoint Candidate Generation

The lane endpoint candidates are generated along the detected lanes. To this end, lane profiles
are first calculated by following the detected left and right lanes. Those profiles are not generated
based on the brightness values of the image, but the response of the top-hat filter already obtained
in the lane detection procedure. Direct use of the brightness values is sensitive to lighting conditions
because even objects of the same color in the real world can have different brightness values in images
depending on local lighting conditions. However, since the response of the top-hat filter is calculated
based on the brightness difference between surrounding areas, it is relatively robust against lighting
conditions. The lane profile, p can be represented as:

p = [p(N), p(N + 1), . . . , p(M− 1), p(M)] (3)

where p(y) indicates the value of the lane profile at the vertical image location, y. N and M are the
starting and ending locations of the lane profile, and they correspond to the road surface of 5 m and
20 m in front of the front camera, respectively. p(y) is calculated from the top-hat filter response as:

p(y) = max{r(Lx(y)− 1, y), r(Lx(y), y), r(Lx(y) + 1, y)} (4)

where r(x,y) is the value of the top-hat filter response at the image location (x,y), and Lx(y) is the
horizontal image location of the lane marking at y. p(y) is calculated not only using r(Lx(y),y) but
also using its horizontally neighboring values, r(Lx(y) − 1,y) and r(Lx(y) + 1,y) in order to reduce the
influence of the lane detection error on the generation of the lane profile. Figure 5a shows an example
of the lane detection result, and black dotted lines in Figure 5b show the lane profiles extracted from
the left and right lane markings detected in Figure 5a. It can be seen that the lane profiles have large
values at lane marking locations. The extracted lane profiles are clipped to make their maximum and
minimum values become predetermined values, and filtered by the median filter to alleviate the noise.
Blue solid lines in Figure 5b show the lane profiles after the clipping and filtering. Once the lane profile
is extracted and preprocessed, it is differentiated to find the lane endpoints. The differential value at y,
d(y) is calculated by subtracting the averages of the lane profile values before and after 1 m from y as:

d(y) =

 1
y−m−1

y

y−1

∑
i=m−1

y

p(i)

−
 1

m+1
y − y

i=m+1
y

∑
i=y+1

p(i)

 (5)

where my
−1 and my

+1 are the vertical image locations before and after 1 m from y, respectively.
Figure 5c shows the derivatives of the lane profiles. In the derivative, a peak indicates the location
where the lane profile value abruptly increases, which is the starting point of the lane, and a valley is
the location where the lane profile value abruptly decreases, which is the ending point of the lane. Thus,
local maxima and minima whose absolute values exceed a predetermined value in the derivatives
are extracted and designated as candidates of the starting and ending points. To prevent multiple
starting or ending points from being generated at similar locations, the non-maxima (or non-minima)
suppression is conducted.

Red and blue triangles in Figure 5c show the generated candidates of the starting and ending
points, and red and blue crosses in Figure 5d show the corresponding locations in the image. Since
the proposed method detects the lane endpoint based on the lane marking detection result, the lane
endpoints cannot be detected when both the left and right lane markings are not stably detected.
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3.3. Lane Endpoint Candidate Verification

In real situations, the candidates of the lane endpoints (including starting and ending points) may
include some false detections due to preceding vehicles, stains, shadows, etc. From the viewpoint of
the vehicle localization, the false detections can more severely degrade the localization accuracy than
the miss detections. If landmarks are miss-detected, the matching between the map and landmarks is
omitted and the vehicle localization is performed with DR, which slightly degrades the localization
accuracy. However, if landmarks are falsely detected, the localization accuracy may be significantly
degraded due to the matching of the map with the wrong landmarks [2]. Therefore, this paper verifies
the generated lane endpoint candidates in order to eliminate the falsely generated candidates.

To this end, the area of 1 m × 2 m around the lane endpoint candidate is first transformed
into a bird’s-eye view image. In this transformation, the vertical direction of the bird’s-eye view
image is set to coincide with the direction of the detected lane. Crosses in Figure 6a are four lane
endpoint candidates generated from the procedure shown in Figure 5, and green rectangles are 1 m
× 2 m areas around the candidates. Figure 6b shows four bird’s-eye view images generated from
the green rectangles in Figure 6a. Since this transformation removes the perspective distortion, it can
increase the verification performance by reducing the inter-class variation of the correctly generated
candidates. After the transformation, the feature extraction and classification are conducted based on
the bird’s-eye view image to determine whether the candidate is correct. The histogram of oriented
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gradients (HOG) [28] and support vector machine (SVM) [29] are used for the feature extraction and
classification, respectively. The HOG-SVM is a long-proven method and has been widely used for
various classification tasks such as vehicle, pedestrian, traffic sign, etc. It has an advantage that a high
classification performance can be achieved with a small amount of computation when applied to
a problem in which the degree of difficulty is not high. In this paper, the HOG-SVM is selected after
comparing it with the convolutional neural network (CNN), which is a class of deep learning, which is
known to provide the highest classification performance in image classification [30]. Both methods
provided similar classification performance, but the HOG-SVM is far ahead in terms of computational
cost. This will be explained in detail in the experimental section.
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The resolution of the bird’s-eye view image is 48 × 96 pixels, and the parameters of the HOG
are as follows: number of orientation bin: 9; cell size: 8 × 8 pixels; block size: 2 × 2 cells; and block
overlapping: 50%. Thus, the HOG feature dimension is 1980. After extracting the HOG feature,
the SVM is used to determine whether the candidate is correct. In order to reduce the computational
cost, the linear SVM is selected. In general, the classification function of the SVM is defined as:

f (x) =
N

∑
i

αiyiΦ(xi)
TΦ(x)+b (6)

where xi is the i-th support vector and N is the number of support vectors. αi is a coefficient of xi, and
b is a bias. x is an input feature vector and yi indicates the class of xi, which is either −1 or +1. Φ is
a kernel function. In case of the linear SVM, (6) can be simplified as:

f (x) =
N
∑
i

αiyixT
i x + b = wTx + b,

w =
N
∑
i

αiyixi

(7)

Since αi, yi, and xi can all be determined at the learning stage, w can be calculated in advance.
Therefore, the test stage can be simplified by adding the bias, b to the inner product of two vectors,
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w and x regardless of the number of support vectors. This simplification significantly reduces the
computational cost. If a lane endpoint candidate is classified as a correct one based on the HOG-SVM
classifier, it is confirmed as a final detection result. Details of the learning and evaluation of the
HOG-SVM classifier will be described in the experimental section. Figure 6c shows the lane endpoint
verification result. It can be seen that one falsely generated lane endpoint candidate is correctly
removed during the lane endpoint verification procedure.

3.4. Calculation of Lane Endpoint Location

To effectively utilize the detected lane endpoints for vehicle localization, their locations with
respect to the camera should be calculated. This paper calculates the location of the lane endpoint
based on the camera’s intrinsic and extrinsic parameters, which are obtained during the precalibration
stage using planar checkerboards. In case of calibrating the extrinsic parameters, the longitudinal
direction of the vehicle is set to the Y-axis, the ground to the XY-plane, and the direction perpendicular
to the ground to Z-axis in the checkerboard coordinate system. If RB2C and tB2C are rotation matrix
and translation vector that represent a rigid transformation between the checkerboard and camera
coordinate systems, an image location, (x,y) and a 2D location in the XY-plane of the checkerboard
coordinate system, (XB,YB) are related by a homography, H:

H = K
[

r1 r2 tB2C

]
,

RB2C = [ r1 r2 r3 ]
(8)

Since the origin of the 2D location of the lane endpoint should be the origin of the camera, H in (8)
is manipulated as:

H′ = K
[

r1 r2 t
′
B2C

]
,

t
′
B2C = r3rT

3 tB2C
(9)

Based on (9), the 2D location of the lane endpoint having the camera location as its origin, (XC,
ZC) can be calculated from the image location, (x,y) using the homography, H’ as:

XC = a
c , ZC = b

c ,[
a b c

]T
= H′−1

[
x y 1

]T (10)

XC and ZC are called the lateral and longitudinal locations of the lane endpoint, respectively.

4. Position Accuracy Evaluation

4.1. Candidates for Evaluation Methods

Unfortunately, after extensive literature review, we have not found any previous methods
for evaluating the position accuracy of the road markings, which are detected from images taken
during high-speed driving. Thus, this section introduces the methods considered as candidates for
position accuracy evaluation, and explains the reason why the MMS-based method is finally selected.
The following three methods have been considered as candidates: measuring instrument-based,
on-vehicle sensor-based, and MMS-based.

The measuring instrument-based method measures the relative position from the camera to the
road marking using various measuring devices. The terrestrial laser scanning (TLS) is one of the
most widely used instruments, and is mainly used for obtaining high resolution 3D models of large
structures such as dams, mines, and terrain. To evaluate the position accuracy of the road marking
using this method, TLS and the monocular front camera are first installed together and the rigid
transformation between them should be precalibrated. The ground truth position of the road marking
is obtained from 3D points produced by the TLS, and its position is transformed into the camera
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coordinate system using the rigid transformation between the TLS and camera. Finally, the position
accuracy is measured by comparing the transformed ground truth position and the position calculated
by the image of the camera. This method has an advantage of providing a dense and precise 3D shape
of the road marking. However, it can be used only in cases where the vehicle is stationary because
the TLS takes a long time to scan surrounding areas. For the same reason, it is difficult for the TLS to
scan long and narrow areas such as highways. Due to these limitations, it has been concluded that this
method is inappropriate to use in highway situations.

The on-vehicle sensor-based method measures the relative position from the camera to the
road marking using various ranging sensors that have already been mounted on commercialized or
autonomous vehicles. The most widely used ranging sensors mounted on those vehicles are a stereo
camera and multi-layer LIDAR. This method is similar to the measuring instrument-based method.
However, there is a major difference, which is the sensing speed. The sensing speed of the vehicle
mounted ranging sensors are designed to be fast so that they can quickly obtain the ranging data of
the surrounding area while the vehicle is moving at high speeds. To evaluate the position accuracy
of the road marking using this method, the stereo camera or LIDAR along with the monocular front
camera are first installed on the same vehicle and the rigid transformation between those sensors
should be precalibrated. The ground truth position of the road marking is obtained from a dense
disparity map of the stereo camera or 3D points produced by the multi-layer LIDAR, and its position is
transformed into the camera coordinate system using the rigid transformation between those sensors.
Finally, the position accuracy is measured by comparing the transformed ground truth position and
the position calculated by the image of the camera. This method has an advantage that it is applicable
to situations where the vehicle is moving at high speeds. However, in the case of the stereo camera, its
ranging accuracy severely deteriorates when the distance of the road marking increases. In the case of
the multi-layer LIDAR, it provides a high ranging accuracy, but its range data is not dense enough to
accurately localize the road marking. Due to these limitations, it has been concluded that this method
is inappropriate to use.

The MMS-based method measures the relative position from the camera to the road marking using
dense 3D points and accurate positions obtained by the MMS. The MMS consists of high-precision
positioning equipment and high performance LIDARs, and those sensors are usually mounted on
a vehicle. Since the MMS can measure dense and accurate 3D points while the vehicle is moving at
high speeds, it has an advantage of measuring long and wide areas such as highways. To evaluate the
position accuracy of the road marking using this method, the monocular front camera is first attached
to the MMS and the rigid transformation between the camera and MMS should be precalibrated.
The ground truth position of the road marking is obtained from 3D points and its position is
transformed into the camera coordinate system using the precalibrated rigid transformation and
accurate positions produced by the MMS. Finally, the position accuracy is measured by comparing the
transformed ground truth position and the position calculated by the image of the camera. Compared
to the measuring instrument-based method, the MMS-based method has an advantage that it can be
used while the vehicle is moving at high speeds. Compared to the on-vehicle sensor-based method,
its 3D structure is denser and more accurate. Because of these advantages, this paper has selected the
MMS-based method for evaluating the position accuracy of the road marking. A detailed explanation
of this method will be presented in the following sections.

4.2. Acquisition of 3D Points Using MMS

The MMS used in this paper consists of a high precision LIDAR as a ranging sensor and
a combination of real-time kinematic-global positioning system (RTK-GPS), high precision inertial
measurement unit (IMU), and distance measurement instrument (DMI) as a positioning sensor. Table 1
summarizes the specifications of these sensors.
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Table 1. Sensor specifications of the MMS.

Sensor Model Specification

Ranging sensor Velodyne HDL32E

Measurement range 5 cm~100 m

Field of view Horizontal 360◦

Vertical 40◦

Accuracy <2 cm
Angular resolution Vertical 1.25◦

Acquisition frequency 5~20 Hz

Positioning sensor Applanix POS LV 210

X, Y position 0.020 m (RMS)
Z position 0.050 m (RMS)

Roll & Pitch 0.020◦ (RMS)
Heading 0.050◦ (RMS)

Acquisition frequency 100 Hz

The mapping and positioning sensors are mounted on an off-the-shelf vehicle as shown in Figure 7.
3D structures surrounding the vehicle is obtained by registering 3D points acquired by the ranging
sensor using 6D positions produced by the positioning sensor while the vehicle is moving. The obtained
3D points include 3D locations and infrared reflectivities. The monocular camera used to detect the lane
endpoints is mounted on the vehicle equipped with the MMS, and the rigid transformation between
the camera and MMS is precalibrated. Since an image is captured by being triggered by the positioning
sensor, the precise camera position at the time of capturing the image are stored. Figure 8a,b show
an example 3D structure and image captured by the MMS and camera, respectively. The red point
and blue arrow in Figure 8a indicate the camera position at the time when the image in Figure 8b
is captured.
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4.3. Acquisition of Lane Endpoint Ground Truth

To evaluate the position accuracy of the lane endpoint, the ground truth position of the lane
endpoint is manually designated using the 3D points obtained by the MMS. Since the manually
designated position is in the 3D point cloud coordinate system, it is converted into the camera
coordinate system using the precise camera position at the time of capturing the image, which is
provided by the MMS. The position accuracy is evaluated by comparing the ground truth position and
the position produced by the proposed method.

To manually designate the lane endpoints in the 3D points, roads and lanes should be visually
distinguishable. However, since the roads and lanes are located on the same plane, it is hard to
distinguish between them using their 3D information. Thus, this paper utilizes the infrared reflectivities
provided by the LIDAR of the MMS to visually distinguish the roads and lanes. The 3D points of the
lanes have high infrared reflectivities compared with the roads because they are drawn with a highly
reflective paint. The positions of the lane endpoints are manually designated by displaying the 3D
points based on their infrared reflectivities. Figure 9a shows the displayed 3D points based on their
infrared reflectivities. In this figure, the larger the infrared reflectivity, the darker the 3D point is drawn.
It can be noticed that the lanes are darker than the roads. This paper randomly selected 100 camera
positions from approximately 40 km of highway, and manually designated four lane endpoints from
the closest pair of dashed lanes. Figure 9a shows the 3D points around a randomly chosen camera
position, which is depicted by a red point. In this figure, two green dashed lines indicate the selected
dashed lane pair, which is closest to the camera position. Figure 9b shows an enlargement of one of the
two selected lanes. Since the proposed method detects the center of the lane end as shown in Figure 5,
the same location should be designated in the 3D points. To this end, the left and right corners of the
lane end are manually designated and their center location is used as the ground truth of the lane
endpoint. Figure 9c shows an example of the lane endpoint designation. In this figure, two blue points
indicate two manually designated locations and a green point indicates the center of the two blue
points, which is the ground truth of the lane endpoint.
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4.4. Evaluation of Lane Endpoint Position Accuracy

Since the position of the lane endpoint is calculated with respect to the camera position in
Section 3.4, its ground truth position obtained in Section 4.3 should be transformed into the camera
coordinate system. To this end, the manually designated ground truth, GP in the point cloud coordinate
system is first transformed into the camera coordinate system, GC as:

GC = RP2C(GP − tP2C) (11)



Sensors 2018, 18, 4389 14 of 23

where RP2C and tP2C are the rotation matrix and translation vector that represent a rigid transformation
between the point cloud and camera coordinate systems. RP2C and tP2C are obtained from the high
precision positioning sensor of the MMS. GC is manipulated as:[

XG YG ZG

]T
= (RB2C)

T
(

GC − t
′
B2C

)
, (12)

where RB2C and t′B2C are the rotation matrix and the translation vector that represent a rigid
transformation between the camera and checkerboard coordinate systems, which has been already
explained in (8) and (9). XG and ZG are the ground truth position of the lane endpoint in lateral
and longitudinal directions, respectively. The position accuracy of the lane endpoint is calculated by
comparing (XG and ZG) in (12) and (XC and ZC) in (10).

5. Experiments

5.1. Experimental Environment

Experiments were conducted using a dataset acquired by the monocular forward-looking (front)
camera and the MMS mounted on the roof of the vehicle while driving on highways during the day
and night. The experimental setup has been shown in Figure 7. The resolution, horizontal field of
view, and acquisition frequency of the front camera are 1280 × 1024 pixels, 60 degrees, and 20 Hz,
respectively. The dataset was acquired while driving at approximately 70~80 km/hour on average.
It includes a total 80 km of driving. Half of the dataset was taken during daytime (13:00 p.m.) and half
at night (21:00 p.m.). Figure 10a shows the 3D points of three sample locations ( 1©, 2©, and 3©) included
in the test dataset. Figure 10b,c show images taken by the front camera at those three locations in
daytime and nighttime, respectively.
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5.2. Performance Evaluation and Comparison of Lane Endpoint Verification

This section presents the performance evaluation and comparison results of the lane endpoint
verification explained in Section 3.3. To train and test the lane endpoint verifier, this paper collected
training and test samples from images that are totally different from the test dataset introduced in
Section 5.1. The collected sample images were manually divided into positive and negative samples.
The lane endpoints are categorized into four types: left staring point (LSP), left ending point (LEP),
right starting point (RSP), and right ending point (REP) as shown in Figure 11. This paper trains one
classifier for each type of the lane endpoint so that a total of four classifiers are trained. Table 2 shows
the number of sample images used for training and testing the lane endpoint verifiers. Figure 12 shows
positive and negative samples images.
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Training Sample Test Sample

Positive Negative Positive Negative

LSP 5000 5202 5000 4582
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This paper compares two methods: the HOG-SVM and CNN. The CNN-based classifier has been
widely used for a variety of applications. This paper chose the one that has been used for classifying
road markings in [30] for performance comparison. The performances of the two methods were
evaluated based on the following three criteria: true positive rate (TPR), true negative rate (TNR),



Sensors 2018, 18, 4389 16 of 23

and classification accuracy. The better the classification performance, the greater the value of all
three criteria:

TPR =
No. of correctly classified positive samples

No. of positive samples

TNR =
No. of correctly classified negative samples

No. of negative samples

Accuracy =
No. of correctly classified samples

No. of all samples

(13)

Two classifiers were trained by the same training samples and tested by the same test samples
shown in Table 2. Tables 3 and 4 show the performances of the HOG-SVM and CNN in [30], respectively.
The HOG-SVM gives 98.2% TPR, 98.1% TNR, and 98.1% accuracy in Table 3, and the CNN gives 99.5%
TPR, 97.4% TNR, and 98.5% accuracy. In terms of the classification performance, two methods are
quite similar. However, in terms of the computational cost, the HOG-SVM requires 0.25 ms while
the CNN requires 3.10 ms to classify a single lane endpoint. This means that if four lane endpoint
candidates are generated, only the verification stage requires 12.40 ms in the case of using the CNN.
Considering that the total computation time of the proposed method is 4.35 ms, the computation time
of the CNN is too heavy as a part of the proposed method. Based on this performance evaluation, it is
found that the HOG-SVM is more cost-effective than the CNN in this application. The computation
time of the proposed method and specification of the used computer will be explained in Section 5.5.

Table 3. Performance of the HOG-SVM-based lane endpoint verifier.

No. of
Positive
Samples

No. of
Negative
Samples

No. of
True

Positives

No. of
True

Negatives

True
Positives

Rate

True
Negative

Rate
Accuracy

LSP 5000 4582 4810 4490 96.2% 98.0% 97.1%
LEP 5000 4582 4905 4408 98.1% 96.2% 97.2%
RSP 5000 4582 4955 4559 99.1% 99.5% 99.3%
REP 5000 4582 4960 4531 99.2% 98.9% 99.1%

Overall 20,000 18,328 19,630 17,988 98.2% 98.1% 98.1%

Table 4. Performance of the CNN-based lane endpoint verifier.

No. of
Positive
Samples

No. of
Negative
Samples

No. of
True

Positives

No. of
True

Negatives

True
Positives

Rate

True
Negative

Rate
Accuracy

LSP 5000 4582 4961 4368 99.2% 95.3% 97.4%
LEP 5000 4582 4978 4469 99.6% 97.5% 98.6%
RSP 5000 4582 4974 4485 99.5% 97.9% 98.7%
REP 5000 4582 4984 4527 99.7% 98.8% 99.3%

Overall 20,000 18,328 19,897 17,849 99.5% 97.4% 98.5%

5.3. Performance Evaluation of Lane Endpoint Detection

This section presents the performance evaluation and comparison results of the lane endpoint
detection, which consists of the lane endpoint candidate generation and verification. To this end,
this paper randomly selected 1200 images from the test dataset. Of these, 600 images are from the
dataset taken in daytime, and 600 images at night. The daytime and nighttime images include 1504
and 1290 lane endpoints, respectively. This paper manually confirms whether the locations of the
detected lane endpoints match the location of the actual lane endpoints. The performance evaluation
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and comparison were conducted based on the following three criteria: recall, precision, and F-measure.
The better the classification performance, the greater the value of all three criteria:

Recall = No. of true positives
No. of lane endpoints

Precision =
No. of true positives

No. of true positives + No. of false positives

F−measure = 2× precision × recall
precision + recall

(14)

Tables 5 and 6 show the performances of the proposed method in daytime and nighttime,
respectively. In the case of the daytime performance, this method gives 96.1% recall by correctly
detecting 1445 lane endpoints out of 1504, and gives 99.7% precision by producing only four false
detections. The F-measure that combines recall and precision is 97.9%. In the case of the nighttime,
this method gives 94.7% recall by correctly detecting 1222 lane endpoints out of 1290, and gives
100.0% precision by producing no false detection. The F-measure is 97.3%. These results show that the
proposed method successfully detects lane endpoints both in daytime and nighttime and produces
very few false detections. Figure 13a,b show the lane endpoint detection results of the proposed
method in daytime and nighttime, respectively. As aforementioned in Section 3.3, from a vehicle
localization perspective, it is a great advantage that the proposed method generates very few false
positives because falsely detected landmarks can cause a large localization error by being mismatched
with the landmarks stored in the digital map. As shown in Tables 5 and 6, the recall of the nighttime
performance is slightly lower than that of the daytime. This is because in daytime, illumination is
relatively uniform depending on the distance, but at night, the area at near and far distance from
the vehicle is dark due to lack of headlight lighting as shown in Figure 13b and this slightly hinders
detection. The precision of the nighttime is slightly higher than that of the daytime. This is because
objects in front of the ego-vehicle have low brightness values in images at night as shown in Figure 13b,
which reduces the possibility of producing false detections.

Table 5. Performance of the proposed lane endpoint detection method in daytime.

No. of
End-Points No. of True Positive No. of False Positive Recall Precision F-Measure

LSP 364 353 1 97.0% 99.7% 98.3%
LEP 360 334 1 92.8% 99.7% 96.1%
RSP 393 383 0 97.5% 100.0% 98.7%
REP 387 375 2 96.9% 99.5% 98.2%

Overall 1504 1445 4 96.1% 99.7% 97.9%

Table 6. Performance of the proposed lane endpoint detection method in nighttime.

No. of
End-Points No. of True Positive No. of False Positive Recall Precision F-Measure

LSP 355 335 0 94.4% 100.0% 97.1%
LEP 385 362 0 94.0% 100.0% 96.9%
RSP 250 235 0 94.0% 100.0% 96.9%
REP 300 290 0 96.7% 100.0% 98.3%

Overall 1290 1222 0 94.7% 100.0% 97.3%

The proposed method was quantitatively compared with the method suggested in [31].
The method in [31] detects the lane endpoint for camera calibration purposes. Tables 7 and 8 show
the performance of the method suggested in [31] in daytime and nighttime, respectively. In the
case of the daytime performance, this method gives 97.1% recall and 66.3% precision. In the case of
the nighttime performance, it gives 88.3% recall and 60.4% precision. Compared with the proposed
method, the method in [31] shows a similar recall, but there is a large difference (30%~40%) in precision.
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This difference is mainly caused by two reasons. One reason is because of the approach of measuring
the image brightness difference when detecting the lane endpoints. The proposed method measures
the brightness difference using neighboring pixels while adaptively changing the size of the top-hat
filter. However, the method in [31] measures the brightness difference using distant pixels in the areas
of fixed size. Due to the perspective distortion in images of the front camera, it is advantageous to
adaptively change the size of the area used to calculate the brightness difference. In addition, it is
preferred to use the neighboring pixels when calculating the brightness difference because other road
marking such as arrows or letters can degrade the detection performance if the distant pixels are used.
The other reason for the large difference in precision is the use of the learning-based lane endpoint
verifier. The method in [31] detects the lane endpoints using the image brightness difference and the
heuristically tuned threshold values. However, the proposed method utilizes the image brightness
difference along with the lane endpoint verifier trained based on a machine learning approach. These
are two main reasons why the proposed method produces a higher precision than the method in [31].
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Table 7. Performance of the method [31] in daytime.

No. of
End-Points No. of True Positive No. of False Positive Recall Precision F-Measure

LSP 364 345 204 94.8% 62.8% 75.6%
LEP 360 343 193 95.3% 64.0% 76.6%
RSP 393 391 208 99.5% 65.3% 78.8%
REP 387 381 138 98.4% 73.4% 84.1%

Overall 1504 1460 743 97.1% 66.3% 78.8%

Table 8. Performance of the method [31] in nighttime.

No. of
End-Points No. of True Positive No. of False Positive Recall Precision F-Measure

LSP 355 322 165 90.7% 66.1% 76.5%
LEP 385 323 214 83.9% 60.1% 70.1%
RSP 250 232 157 92.8% 59.6% 72.6%
REP 300 262 210 87.3% 55.5% 67.9%

Overall 1290 1139 746 88.3% 60.4% 71.7%

5.4. Position Accuracy Evaluation of Lane Endpoint

The position accuracy of the lane endpoint was evaluated using the MMS-based method explained
in Section 4. To this end, the ground truths of the lane endpoints were first acquired from the 3D points.
This paper randomly selected 100 locations and manually designated four endpoints for each location.
Thus, the total number of ground truths is 400. The lane endpoints automatically detected from the
front camera images based on the proposed method were compared with the corresponding ground
truths as explained in Section 4.4. Since the camera takes the same lane endpoint multiple times while
the ego-vehicle is moving, each ground truth is detected in multiple images. In this experiment, 400
ground truths correspond with 3829 lane endpoints detected in the daytime images and 4962 lane
endpoints detected in the nighttime images. Thus, a total of 8791 lane endpoints detected by the
proposed method were used for the position accuracy evaluation. This paper utilizes three criteria
for evaluating the position accuracy: longitudinal error (elon), lateral error (elat), and Euclidean error
(eeuc) as:

elon = |ZG − ZC|
elat = |XG − XC|
eeuc =

√
(XG − XC)

2 + (ZG − ZC)
2

(15)

where (XG, ZG) and (XC, ZC) are the locations of the ground truth and detected lane endpoints,
respectively. elon indicates the position error in the vehicle traveling direction, elat indicates the position
error in the direction perpendicular to the vehicle traveling direction, and eeuc indicates the Euclidean
distance between two positions.

Table 9 shows the mean and standard deviation of the position errors for four types of lane
endpoints in daytime and nighttime. In daytime, the proposed method gives 21.6 cm, 7.8 cm,
and 24.2 cm for elon, elat, and eeuc, respectively. In nighttime, the proposed method gives 48.2 cm,
8.2 cm, and 49.9 cm for elon, elat, and eeuc, respectively. In the case of the highway situation, the
lane width is more than 3.5 m and the distance to the preceding vehicle is several tens of meters.
Therefore, it can be said that the longitudinal and lateral errors of the lane endpoints detected by the
proposed method are sufficient to be used as landmarks of the vehicle localization system for highway
autonomous driving. According to Table 9, in both daytime and nighttime, the longitudinal error is
much larger than the lateral error. This is because, in the case of using the front camera whose optical
axis is almost parallel to the road surface, the number of pixels per meter decreases more sharply in
the longitudinal direction compared with the lateral direction. In this table, it can be also found that
the longitudinal error of the nighttime (48.2 cm) is much larger than that of the daytime (21.6 cm). This
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is because the lane endpoints are clearly captured in daytime due to bright illumination but at night,
severe motion blurs occur near the lane endpoints due to dark illumination. Figure 14a,b show images
of the lane endpoints taken in daytime and nighttime, respectively. It can be clearly noticed that the
images taken at nighttime severely contaminated by the motion blur compared with those taken in
daytime. Unlike the longitudinal errors, the lateral errors measured in daytime and nighttime are quite
similar. This is because the motion blur occurs mainly in the moving direction of the ego-vehicle and
hardly occurs in the direction perpendicular to it.
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Furthermore, at night, the longitudinal errors of the LEP and REP are larger than those of the 
LSP and RSP by approximately 20 cm. This is due to the nature of the motion blur that occurs at the 
lane endpoints. When the front camera is moving at high speed and capturing images, the motion 
blur makes the brightness of the lane starting point (LSP or RSP) slightly dark. Since the lane 
marking is much brighter than surrounding areas, a slight darkening does not affect the locations of 
the detected lane starting points. However, in the same situation, the motion blur makes the 
brightness of the region near the lane ending point (LEP or REP) fairly bright. This makes the 
proposed method erroneously detect the location brightened by the motion blur and it leads to a 
relatively larger longitudinal error. 
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Table 9. Position Accuracy Evaluation Result in Daytime and Nighttime. [Mean (Standard Deviation)].

Type Daytime Nighttime

elon (cm) elat (cm) eeuc (cm) elon (cm) elat (cm) eeuc (cm)

LSP 20.9 (21.1) 6.9 (4.1) 23.5 (19.8) 36.3 (34.9) 8.5 (6.2) 38.2 (34.4)
LEP 22.0 (20.6) 7.8 (4.5) 24.7 (19.5) 55.9 (35.2) 8.1 (6.2 57.4 (34.3)
RSP 20.9 (18.0) 8.4 (5.5) 23.7 (17.2) 38.7 (29.5) 8.2 (5.9) 40.6 (28.7)
REP 22.5 (18.3) 8.0 (5.1) 25.0 (17.5) 59.4 (33.8) 8.2 (5.9) 60.9 (32.6)

Overall 21.6 (19.5) 7.8 (4.9) 24.2 (18.5) 48.2 (34.9) 8.2 (6.1) 49.9 (34.0)

Furthermore, at night, the longitudinal errors of the LEP and REP are larger than those of the LSP
and RSP by approximately 20 cm. This is due to the nature of the motion blur that occurs at the lane
endpoints. When the front camera is moving at high speed and capturing images, the motion blur
makes the brightness of the lane starting point (LSP or RSP) slightly dark. Since the lane marking is
much brighter than surrounding areas, a slight darkening does not affect the locations of the detected
lane starting points. However, in the same situation, the motion blur makes the brightness of the region
near the lane ending point (LEP or REP) fairly bright. This makes the proposed method erroneously
detect the location brightened by the motion blur and it leads to a relatively larger longitudinal error.

Figure 15 shows the changes in average position errors according to the distance from the camera
to the lane endpoint. In Figure 15a, solid and dashed lines indicate the lateral and longitudinal errors
in daytime, respectively. In daytime, the lateral error slightly increases and the longitudinal error
dramatically increases while the distance to the lane endpoint increases. This is because, in the case of
the front camera whose optical axis is almost parallel to the road surface, the number of pixels per
meter slightly decreases in the lateral direction and rapidly decreases in the longitudinal direction.
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In Figure 15b, solid and dashed lines indicate the lateral and longitudinal errors at night,
respectively. Similar to the daytime case, the lateral error slightly increases while the distance to
the lane endpoint increases. However, the longitudinal error shows a tendency different from that of
the daytime. The longitudinal error becomes large at the location near the front camera. This is because
the motion blur more severely occurs on images of objects that are closer to the camera. Objects that are
closer to the camera move faster in a captured image compared with those that are far from the camera.

5.5. Execution Time

Table 10 shows the execution times of the main modules of the proposed method. These times
were measured on an Intel Core i7-7700 CPU with 16 GB RAM using only a single core. The proposed
method requires a total execution time of 4.35 ms, which means that it can process 230 frames per
second in real time. Since the proposed method requires only a tiny amount of computation cost, it is
possible to be inserted as an additional function of the existing multi-functional front camera module.
Note that the image acquisition time is not included in the execution time.

Table 10. Execution time.

Module Time (ms)

Integral image generation 1.51
Top-hat filtering 1.46

RANSAC-based lane detection 0.35
Lane endpoint candidate generation 0.08
Lane endpoint candidate verification 0.95

Overall 4.35

6. Conclusions and Future Works

To increase the accuracy of landmark-based vehicle localization, this paper proposes using lane
endpoints as landmarks. Two methods are proposed regarding the lane endpoints. One is to efficiently
detect the lane endpoints using a conventional front camera, and the other is to reliably measure the
position accuracy of the detected lane endpoints. In the experiment, it was found that the proposed
detection method can accurately find the lane endpoints in both daytime and nighttime with a small
amount of computation and the proposed MMS-based method can reliably measure the position
accuracy of the lane endpoints detected from images taken while the vehicle is moving at high speed.
In the future, we are planning to develop a method that can reduce the influence of the motion blur
when calculating the positions of the lane endpoints at night, and extend the proposed position
accuracy evaluation method to other landmarks such as arrows, letters, and traffic signs.
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