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Abstract: Device-free localization (DFL) is a new technique which can estimate the target location
through analyzing the shadowing effect on surrounding radio frequency (RF) links. In a relatively
complex environment, the influences of random disturbance and the multipath effect are more
serious. There are kinds of noises and disturbances in the received signal strength (RSS) data of RF
links and the data itself can even be distorted, which will seriously affect the DFL accuracy. Most
of the common filtering methods adopted in DFL field are not targeted and the filtering effects
are unstable. This paper researches the characteristics of RSS data with random disturbances and
proposes two-dimensional double correlation (TDDC) distributed wavelet filtering. It can filter
out the random disturbances and noise while preserving the RSS fluctuations which are helpful
for the DFL, thus improving the quality of RSS data and localization accuracy. Furthermore, RSS
variation rules for the links are different in complex environments and hence, it is difficult for the
collected training samples to cover all possible patterns. Therefore, a single machine learning model
with poor generalization ability finds it difficult to achieve ideal localization results. In this paper,
the Adaboost.M2 ensemble learning model based on the Gini decision tree (GDTE) is proposed to
improve the generalization ability for unknown patterns. Extensive experiments performed in two
different drawing rooms demonstrate that the TDDC distributed wavelet filtering and the GDTE
localization model have obvious advantages compared with other methods. The localization accuracy
rates of 87% and 95% can be achieved respectively in the two environments.

Keywords: device-free localization (DFL); RSS filtering; data correlation; ensemble learning

1. Introduction

Device-free Localization (DFL) based on the shadow effect of the received signal strength (RSS)
has been widely studied [1]. The localization result of DFL is greatly influenced by the layout of
the monitoring area. Generally, a household environment—which has various building structures,
materials, and sizes of furniture—can be regarded as a complex indoor environment and is different
from specific experimental environments. Hence, the deep fade and anti-fade of RF links [2], and the
multipath effect of the RF signal in different indoor environments will be very different.

All kinds of noises and distortions will be mixed into the collected RSS data. It is difficult to predict
the time-frequency characteristics of disturbances and noises due to their variety. Their occurrences
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are random, and the frequencies and amplitudes are varied and unknown. The fluctuations of the RSS
data caused by the above disturbances have a great influence on the localization accuracy, and the
characteristics of these events are difficult to estimate. We call such fluctuations random disturbances
or abnormal fluctuations in this paper.

In the localization process, the moving speed of the personnel target is not constant, and the
swings of different parts of the body are various. These also make RSS data fluctuate. And the
time-frequency characteristics of these fluctuations are difficult to estimate too. However, unlike the
above-mentioned fluctuations, these are helpful and meaningful to localization, hence, we call them
normal or helpful fluctuations in this paper.

Overall, the frequencies and amplitudes of normal fluctuations and random disturbances are
unknown and difficult to distinguish through common filtering methods.

At present, many researchers have focused on the localization method and model, but there have
been few studies on filtering and optimization for RSS data specifically. The simple or common
filters such as moving average, Gaussian filtering, wavelet filtering, etc. [2,3] do not take into
account the specific relationship between the two kinds of fluctuations mentioned above, so their
effects are unstable. In relatively complex environments, high-quality RSS data is the prerequisite
to achieve effective localization. Therefore, a targeted filtering method, two-dimensional double
correlation (TDDC) distributed wavelet filtering, is proposed in this paper, aimed at achieving a better
filtering effect.

TDDC wavelet filtering is more focused on time-series data correlation than simply wavelet
filtering. In order to estimate characteristics of the random disturbances, we refine the detailed
coefficient in the wavelet coefficients by analyzing the correlation of the detailed components after
wavelet decomposition. At the same time, two kinds of transverse correlation coefficients are calculated
to avoid the pseudo-correlation problem [4,5], and further improve RSS data processing.

Given the fixed mathematical model for links in a household environment, it is difficult to
correctly represent the relationship between the change of the RSS and the change of the target location.
Therefore, it is a good choice to adopt a localization method based on machine learning. However,
sometimes the links are not sensitive to target locations or are even “blind links”, which will affect
model training. Additionally, the number of the collected training samples is very limited, which
makes it difficult to cover all the possible sample patterns. In the actual monitoring process, the target
position is arbitrary; it will not always locate at the marked coordinates. When the target locates
between the marked coordinates (non-marked coordinate areas) the model must have the ability to
output the results closest to the actual target location. One example is shown in Figure 1.
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Figure 1. An illustration of target locating at the non-marked coordinate position. 

When a target stands at a position between coordinates 3 and 4, a model with poor generalization 
ability may locate it at coordinate 10 or some other coordinates, which are far from the actual position. 
But we expect the model to output coordinate 3 or 4, which is nearest to the actual position of the 
target. In this regard, the Adaboost.M2 [6,7] ensemble learning model based on the Gini decision tree 
(GDTE) is proposed in this paper. 

Figure 1. An illustration of target locating at the non-marked coordinate position.

When a target stands at a position between coordinates 3 and 4, a model with poor generalization
ability may locate it at coordinate 10 or some other coordinates, which are far from the actual position.
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But we expect the model to output coordinate 3 or 4, which is nearest to the actual position of the
target. In this regard, the Adaboost.M2 [6,7] ensemble learning model based on the Gini decision tree
(GDTE) is proposed in this paper.

In order to verify and evaluate the proposed filtering method and localization model, some DFL
experiments have been performed in two different ordinary drawing rooms. Since the localization
problem is transformed into the multi-classification problem in this manuscript, all the algorithms
discussed always return the coordinates of a marked location to represent the target position.
Compared with the filtering methods and localization models based on machine learning commonly
employed in this field, the proposed TDDC distributed wavelet filtering and the GDTE localization
model have some obvious advantages. The main contributions of the paper can be summarized as
follows:

(1) With studies of correlations and pseudo-correlations of time-series data, a TDDC distributed
wavelet filtering algorithm is proposed, which can better refine the detailed coefficient in the
wavelet coefficients, and obtain more accurate characteristics of the interference to achieve the
adaptive filtering threshold. It can also preserve the normal fluctuations, as much as possible.
Compared with other common filtering methods in this field, the filtering algorithm provides
more excellent RSS data for the DFL process and improves the localization accuracy rate.

(2) GDTE can improve the unsatisfactory localization results of single machine learning models,
which do not have enough generalization ability and adaptability. The GDTE localization model
chooses the more helpful sample attributes for localization and pay more attention to the samples
that are more difficult to classify. These characteristics enable the model to deal with the complex
relationship between the RSS and the target location. At the same time, weights are updated for
RSS samples and weak classifiers (decision trees in this paper). Then, multiple classification results
with different weights are generated and the final result is judged by voting. This mechanism can
make the model have stronger generalization ability.

(3) We conducted experiments with the hardware test bed in different drawing room environments
and evaluated the proposed schemes extensively.

The rest of the paper is structured as follows: Section 2 reviews the related work on device-free
wireless localization and RSS filter. Section 3 introduces the system architecture and the motivation
behind the proposed schemes. Section 4 presents the detailed methodology of the two-dimensional
double correlation distributed wavelet filtering algorithm and the Adaboost.M2 ensemble learning
localization model based on the Gini decision tree. Section 5 validates the proposed schemes with
extensive experimental evaluations. Finally, the conclusions are drawn in Section 6.

2. Related Work

In view of the great significance and broad application prospects in the field of security monitoring
and special personnel monitoring, the DFL based on RF network is becoming a research hotspot.
Youssef [8] and Zhang [9,10] were the first to propose the concept of device-free localization which
establishes the foundation for subsequent research.

Currently, some researches are devoted to establishing a mathematical model that can represent
the relationship between the target location and the link RSS value. Wilson and Patwari proposed
the RTI approach based on the differential RSS measurements [11–13] via the reconstruction of the
tomography image for the locations of target. Zhao et al. proposed an RTI model based on the
least square variance [14]. Banerjee et al. [15] employed variance-based RTI in target tracking and
localization. Kaltiokallio et al. established a fade level-based spatial model for radio tomographic
imaging [16]. Lei et al. proposed a new elliptical model for DFL [17], and Yuan et al. improved it [18].
Zhang et al. [19,20] proposed geometrical methods based on the influential links. Xiao et al. proposed
a nonlinear optimization model and an outlier rejection method based on the geometrical positional
relationship among links [21]. The models based on the exponential-Rayleigh were proposed and
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used by Guo et al. [22–25]. These researches represented the relationship among the change in the
target position, the distance between the target and the link, and the RSS value from different aspects.
Similarly, Hong, Wan and some other researchers have also put forward corresponding localization
models and feature extraction methods [26,27]. In addition, methods based on statistical learning also
require model-based algorithms. Song et al. [28] proposed a Gaussian process model enabled particle
filter for DFL. Savazzi et al. [29] studied the diffraction principle to deal with the average path loss,
and proposed a modified stochastic Bayesian approach for real-time target localization. Wang et al.
proposed a saddle model [30] and improved ellipse model [31], and achieved localization through
improved Bayesian filtering and particle filtering. Ruan et al. presented and realized a data-driven
approach which is based on the Gaussian Mixture Model (GMM)-Hidden Markov Model (HMM) and
k Nearest Neighbor (KNN)-HMM model [32].

When the environment becomes relatively complex, the fixed model-based DFL methods often fail
to achieve a good localization effect. Therefore, some scholars have also proposed localization methods
based on machine learning. Initially, Youssef started the DFL research with a method similar to
fingerprint identification [33]. Aly et al. [34] leveraged an automation tool for fingerprint construction
to study modified scenarios for WiFi-based DFL. Chiang et al. [35] proposed a modified fuzzy SVM
for DFL. Wagner et al. employed the various artificial neural network models to achieve the DFL
process [36]. Wang et al. proposed a DFL method based on deep learning [3]. Zhang et al. implemented
the DFL via an extreme learning machine with parameterized geometrical feature extraction [37].
Ke et al. have also carried out the similar research recently [38,39]. However, the generalization
of a single machine learning models is not strong enough, which makes them poorly adaptable
to the environment. Additionally, sometimes, unwanted links also affect the training process and
localization results.

In pre-processing process, the most important thing is to filter the RSS data properly, but this
process is rarely explored in depth. Most of the related literature pays more attention to research on
the localization model, and adopts some simple or untargeted filter, such as moving average, Gaussian
filtering, common wavelet filtering and so forth [2,3]. It is difficult to obtain suitable filter templates or
cut-off frequencies for these filters in different environments. Some adaptive threshold filters, such as
some wavelet filters, do not take into account the correlation between normal fluctuations and random
disturbances mixed into the RSS data. Therefore, it is difficult for them to effectively filter random
disturbances and preserve the valid RSS data as much as possible.

Based on the above discussion, a two-dimensional double correlation (TDDC) distributed wavelet
filtering and the localization model of Adaboost.M2 ensemble learning model based on the Gini
decision tree (GDTE) are proposed in this paper. The TDDC filtering method is chosen in view of the
fact that the occurrences and amplitudes of the disturbances are random, and it is difficult to estimate
their characteristics. Compared with a single machine learning model, the GDTE localization model
has stronger generalization ability and higher positioning accuracy.

3. System Architecture and Motivation

The overall architecture of the DFL algorithm based on the two-dimensional double correlation
distributed wavelet filtering (TDDC) and the Adaboost.M2 ensemble learning model based on the Gini
decision tree localization model (GDTE) is introduced in this part. The main idea and the calculation
process of the TDDC are also described in this part.

3.1. System Architecture

The overall architecture of the DFL algorithm proposed in this paper is shown in Figure 2.
The localization process includes online and offline stages. In the offline stages, we collect the RSS data
for the training of the TDDC and GDTE models. In the online stage, the trained localization models
begin to work when target is at any position in the monitored area. But before that, we need to do
some preparations. We arrange a certain number of RF sensors around the monitoring area according
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to its size, and mark coordinates at certain intervals in the area where the target may appear. Then we
collect RSS data of all RF links when the personal target is at different coordinates and organize them
into an RSS training sample matrix.Sensors 2018, 18, x FOR PEER REVIEW    5 of 20 
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In the offline phase, the TDDC wavelet filtering method is applied to each RSS training sample
to filter the random disturbances and reserve the helpful RSS fluctuations. Then we train the GDTE
localization model using the filtered RSS samples to update the model parameters. In the online stage,
the collected RSS test samples are also filtered by the TDDC distributed wavelet filter, and then the
filtered test samples are fed to the trained GDTE model to get location information.

3.2. Main Idea of TDDC Distributed Wavelet Filtering

The key of the TDDC algorithm focuses on multiple correlations of the detailed wavelet coefficients
rather than the wavelet transform itself.

Wavelet analysis can not only express the time domain characteristics of the data, but also express
the frequency domain characteristics. The wavelet transform represents a signal as the approximation
coefficients (ca) and the detailed coefficients (cd) on different wavelet scales. However, not all of the
information provided by the cd is interference; some information helpful for localization may also
be included. Therefore, we need to refine the cd in order to obtain the detailed coefficients that can
estimate the characteristics of the random disturbance more accurately.

The main tasks of TDDC are to obtain the detailed coefficients that can be used to estimate the
random disturbance characteristics and get the adaptive filter threshold. Figure 3 expresses the two
key steps of the algorithm.

First, we need to eliminate the obvious target motion components contained in cdo by calculating
the longitudinal correlation coefficients of the cdo in adjacent wavelet levels, where o is the index of
wavelet decomposition level. Second, we divide the remaining detailed coefficients into small segments,
and calculate the transverse time shift and the transverse zero-time shift correlation coefficients for
the adjacent segments. We avoid the pseudo-correlation problem [4,5] by analyzing two kinds of
transverse correlation coefficients, and further remove the target motion components. Then the
random disturbance characteristics can be estimated better by calculating the final remaining detailed
coefficients and an adaptive filter threshold can be achieved. Finally, the filtered RSS data can be
recovered through wavelet reconstruction.
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The theory of calculating the longitudinal correlation coefficients is as follows: the energy of
the available information is relatively concentrated in the wavelet domain, which results in that
the absolute values of the wavelet coefficients being relatively large after the wavelet decomposing.
However, the energy of the disturbance signal is relatively decentralized, which results in that the
absolute values of these wavelet coefficients being relatively small. For a complete theory of the
longitudinal correlation, refer to Reference [40]. Therefore, the longitudinal correlation coefficient can
be used as a threshold to determine which detailed wavelet coefficients are disturbance components
and reserve them for the disturbance characteristics estimation.

The remaining detailed coefficients may still contain the information of the target movement. If all
of them are used to estimate the characteristics of disturbances and noises, a portion of the available
information, which is helpful for the localization, will be lost and the localization accuracy will be
affected. Therefore, we propose a method to further process the reserved detailed coefficients by
calculating the transverse zero time-shift correlation coefficients. We divide the remaining detailed
coefficients into small segments, refer to Figure 3, and ensure that the coefficient number of each
segment is small enough. Due to the limited moving speed and continuous trajectory of the target,
the correlations of the adjacent segments would be high without disturbance interference. However,
if a certain segment contains interference information due to random disturbances, the correlation
between this segment and its neighboring segments should be small relatively. This method can be
used to filter the detailed coefficients that can better represent the noise and random disturbance.

Because the frequency and amplitude of random disturbances are unknown, the situation that
the disturbances cause adjacent small segments to coincidentally have strong correlations should
be considered. This is the pseudo-correlation problem [4,5]. If the pseudo-correlation is not taken
into consideration, we will miss some random disturbance and noise information. For this reason,
transverse time-shifted correlation coefficients of the adjacent segments are proposed in this paper.
The detailed implementation process of the algorithm is described in Section 4.

Through the above preprocessing of RSS data, random disturbance characteristics can be better
estimated. The precision of the filtering threshold can be improved and the better filtering effects can
be achieved.

4. Two-Dimensional Double Correlation Distributed Wavelet Filtering and Adaboost.M2
Ensemble Learning Model Based on the Gini Decision Tree

The detailed calculation processes of the TDDC and GDTE are described in this part. And the
in-depth explanations are also included.
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4.1. TDDC Distributed Wavelet Filtering

The overall architecture of the filtering algorithm is shown in Figure 4.Sensors 2018, 18, x FOR PEER REVIEW  7 of 20 
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The RSS is a 3D mathematical entity that may be expressed as rssijl where i is the coordinate index
(index 0 refers to the background case with no people inside the area); j is the index of RSS value
and l is the link index. In the sample collection process, the RSS value of link l is rssjl at a certain
moment, and rssj+1l is the RSS value of the same link at the next moment, and so on. Therefore, the set
of training samples collected at coordinate i are denoted Ri = {Ri1, Ri2, . . . , RiM} = {[rssi11, . . . , rssi1l],
[rssi21, . . . , rssi2l], . . . , [rssiM1, . . . , rssiMl]} where M is the total number of the collected samples at
coordinate i, and the corresponding labels of the set are Yi = {y1, y2, . . . , yM} where y1 = y2 = . . . = yM
= i. Then all training sample sets collected at every coordinate are denoted by R = {R1, R2, . . . , RN}
where N is the number of marked coordinates, and their corresponding labels are Y = {Y1, Y2, . . . , YN}.
The mean values of the RSS for each link when there is no target in the monitor area are denoted by
R0. The differential training samples are ∆R = {R11 − R0, R12 − R0, . . . , RNM − R0}, which form the
training sample matrix. One column of the matrix represents a training sample. We process the test
samples with the same method.

First, we use wavelet decomposition to process the RSS data with a decomposition level of o.
For the results in this paper, we take o = 4. The wavelet mother function we utilize is the Daubechies
wavelet and we adopt the wavelet basis Db1. After the decomposition, we obtain the approximation
coefficient vector ca4 and the detailed coefficient vectors cd1, cd2, cd3, and cd4.

Next, we calculate the correlation coefficients corro for the detailed coefficients of adjacent wavelet
levels. The corro is obtained by element-wise product of the cdo and cdo+1 and the product symbol is
represented by �:

corro = cdo � cdo+1 (1)

where o is the index of the wavelet decomposition level. Then, we calculate the energy of the detailed
coefficients, Pcdo, and the energy of the correlation coefficients, Pcorro, via:

Pcdo =
n

∑
g=1

cdo
2(g) (2)

Pcorro =
n

∑
g=1

corro
2(g) (3)
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where n is the number of detailed coefficients for each level and g is the index. Finally, we obtain the
normalized longitudinal correlation coefficients, corrno, based on the two energy parameters:

corrno = corro·

√
Pcdo

Pcorro
(4)

The purpose of this step is to ensure the corro have the same energy level as the detailed
coefficients, which allows them to be compared.

Then we get the remaining detailed coefficients, cdso, via:{
cdso(g) = 0, if |cdo(g)| ≥ |corrno(g)|
cdso(g) =cdo(g), if |cdo(g)| < |corrno(g)|

(5)

Most coefficients of the cdso can be regarded as disturbances and noises related.
In order to obtain the appropriate filtering threshold, we will refine the cdso in the following steps.

Divide the cdso into U equal segments, referred to as the “small segments” in Figure 5, and assume
each small segment contains d coefficients, where U ≥ 2 and d = 10 in this paper. The transverse zero
time-shift correlation coefficients R1o,p is obtained using the cdso of segment p and its adjacent segment
p + 1:

R1o,p =
Cov(cdso,p, cdso,p+1

)√
Var(cdso,p)×Var(cdso,p+1

) (6)

where Cov and Var are the covariance and variance of the corresponding cdso,p and p is the index of
the small segment.

Assume that the monitor area is noiseless; all the cdso coefficients are then only related to the
movement of the target. If the speed of the target movement is limited and the number of coefficients
in each small segment is very small, then the correlation of the adjacent segments will be strong.
This means that the value of R1o,p is relatively larger. However, once random disturbances occur,
they will weaken the correlations, which means that the value of R1o,p will be relatively small.

In order to verify the correlations between two small segments more accurately, the
pseudo-correlation problem [4,5] must be avoided. We slide the clipping windows of the small
segments in time sequence, as shown in Figure 5.

Sensors 2018, 18, x FOR PEER REVIEW    8 of 20 

 

The  purpose  of  this  step  is  to  ensure  the  corro  have  the  same  energy  level  as  the  detailed 

coefficients, which allows them to be compared. 

Then we get the remaining detailed coefficients, cdso, via:   

( ) = 0, if ( ) ( )

( ) = ( ), if ( ) ( )

g g g

g g g g





o o o

o o o o

cds cd corrn

cds cd cd corrn

 ≥ 

 ＜ 
  (5) 

Most coefficients of the cdso can be regarded as disturbances and noises related. 

In order to obtain the appropriate filtering threshold, we will refine the cdso  in the following 

steps. Divide the cdso into U equal segments, referred to as the “small segments” in Figure 5, and 

assume each small segment contains d coefficients, where U ≥ 2 and d = 10 in this paper. The transverse 

zero time‐shift correlation coefficients R1o,p is obtained using the cdso of segment p and its adjacent 

segment p + 1: 

Cov( )
 = 

Var( ) Var( )
o,p o,p+1

o,p o,p+1

cds cds

cds cds
o,p

,
R1   (6) 

where Cov and Var are the covariance and variance of the corresponding cdso,p and p is the index of 

the small segment.   

Assume that the monitor area is noiseless; all the cdso coefficients are then only related to the 

movement of the target. If the speed of the target movement is limited and the number of coefficients 

in each small segment is very small, then the correlation of the adjacent segments will be strong. This 

means that the value of R1o,p is relatively larger. However, once random disturbances occur, they will 

weaken the correlations, which means that the value of R1o,p will be relatively small. 

In order  to verify  the correlations between  two small segments more accurately,  the pseudo‐

correlation problem [4,5] must be avoided. We slide the clipping windows of the small segments in 

time sequence, as shown in Figure 5.   

 

Figure 5. The process schematic diagram of sliding clipping window. 

In the proposed method, the clipping windows of cdso,p+1 are slid to the right by b data points, 

while  the  sizes of  the  clipping windows  are kept unchanged. The obtained new  small  segments 

cds′o,p+1 will be used as parameters for calculating the transverse time‐shifted correlation coefficient 

R2o,p via: 

,

Cov( )
 = 

Var( ) Var( )
o p

,
R2


o,p o,p+1

o,p o,p+1

cds cds'

cds cds'
  (7) 

Figure 5. The process schematic diagram of sliding clipping window.



Sensors 2018, 18, 4419 9 of 20

In the proposed method, the clipping windows of cdso,p+1 are slid to the right by b data points,
while the sizes of the clipping windows are kept unchanged. The obtained new small segments
cds′o,p+1 will be used as parameters for calculating the transverse time-shifted correlation coefficient
R2o,p via:

R2o,p =
Cov(cdso,p, cds

′
o,p+1

)
√

Var(cdso,p)×Var(cds
′
o,p+1

) (7)

Note, b is less than or equal to d/2, and d is the length of small segment. Through the above
processing, the coefficients in cdso,p+1 and cds’o,p+1 related to the random disturbances and the helpful
fluctuations will both change. Thus, if the R1o,p is pseudo-correlational, R2o,p will change compared
to R1o,p. If R2o,p changes little or does not change, the R1o,p obtained before can be regarded as
the pseudo-correlation, which means that the coefficients in cdso,p contain disturbance components.
Of course, if R1o,p itself is very small, it can be directly demonstrated that the coefficients in cdso,p

contain disturbance components.
Through the above-mentioned double correlation processing, the negative effect of

pseudo-correlation can be minimized and the detailed wavelet coefficients related to the disturbances
can be chosen more precisely.

The next step is to refine the detailed coefficients according to R1o,p and R2o,p, in order to estimate
the disturbance characteristics. We select the segments causing the smallest R1o,p and |R1o,p − R2o,p|
to form the new segments, which are formally shown in Equations (8)–(11):

Rco,p =
∣∣R1o,p − R2o,p

∣∣ (8)

cdrco = cdso,p, where Rccdo,p = min(Rco,p) (9)

cdro = cdso,p, where R1cdo,p = min(R1o,p) (10)

cdco = {cdrco, cdro} (11)

where the cdco is the new detailed wavelet coefficient array.
According to improvements of the empirical formula, we can estimate the random disturbance

characteristics and the filtering threshold according to:

σo= 2×median(1/m
m

∑
i=1

cdco)/0.6745 (12)

thro= σo

√
2lg(n) (13)

where m is the number of data points in segment cdco.
The frequency of the coefficients in cd1 is too high to be caused by the target, so these coefficients

can all be set to zero. The detailed coefficients of other levels can be filtered through the above filtering
threshold. The distributed filtering process is then:

cdf1= 0

cdfo =

{
cdo(g) = 0, if |cdo(g)| ≥ thro

cdo(g) =|cdo(g)| − thro, if |cdo(g)| ≥ thro

(14)

where cdf1 is the detailed wavelet coefficient vector of the first level, filtered to zero, and cdfo are the
filtered detailed wavelet coefficient vectors of other levels.

Finally, the low-frequency coefficients and the filtered detailed coefficients are combined into the
new wavelet coefficients to recover the filtered RSS data through wavelet reconstruction. All the RSS
training samples and testing samples should be filtered by the above method.
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4.2. GDTE Localization Model

The ensemble learning model is a strong classifier composed of multiple weak classifiers,
as Figure 6 shows. It is r round during the iteration process in the figure. We update the weights
of the samples and the weak classifiers according to the classification error rate of each iteration.
Then, we make the next weak classifier focus on the samples which have been misclassified in the last
iteration by increasing their weights. In the testing phase, the final classification results of test samples
are determined by comprehensive statistics on the all weighted weak classifiers.Sensors 2018, 18, x FOR PEER REVIEW    10 of 20 
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The decision tree is chosen as a weak classifier in this paper. As mentioned above, when the
environment is relatively complex, the relationships between the RSS variation of each RF link and
the change of the target location are indefinite; the importance of each attribute (each link) of the RSS
sample is different. Therefore, in order to generate a suitable decision tree, an appropriate metric needs
to be chosen to evaluate importance of the attributes. The Gini coefficient indicates the purity of the
sample categories. And the more uniform the sample categories are, the smaller the Gini coefficient
is. The attributes that minimize the Gini coefficient are regarded as the optimal branch attributes for
decision tree growth. The Gini coefficient is defined by:

Gini(A) =
v

∑
c=1

Sc
E

[
1−

N

∑
b=1

(S
bc

Sc

)2
]

(15)

where V is the branch number of one internal node (it means that the samples in it can be classified into
V categories), E is the total number of the samples contained in the node, and N is the total number
of coordinates in the monitored area (the same as the total number of the RSS sample categories).
Assume that link A of the RSS sample is chosen as a branch attribute for decision tree growth and the
samples contained in the node can be classified into V categories, then the sample number of each
category is Sc, which also acts as a label of this category. Sbc is the number of RSS samples belonging to
coordinate b in each Sc. When link A is considered as a branch attribute, it can be seen that the more
uniform (that is, the higher purity) the categories of the RSS samples contained in the internal node of
the decision tree are, the smaller the Gini coefficient of the attribute A is. With this calculation, we can
choose the links that are more sensitive, and thus more helpful to localization, as the best attributes for
the current classification.

After formulating the rules of generating the weak classifiers, we need to build a final ensemble
learning model based on the Adaboost.M2 algorithm. Starting from the first decision tree, the new
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decision tree is generated and trained through iteration. During the initialization phase, the weight of
a mislabel y of sample q can be written as:

w1
q,y =

1
M(N − 1)

(16)

where q is the index of the RSS sample, N is the number of coordinates, and M is the number of training
samples collected at each coordinate. N − 1 in the denominator is the total number of mislabels.

For each round of iteration, the RSS sample weights are updated, and the corresponding decision
tree weights are obtained according to the following equations:

Wt
q = ∑

y 6=yq

wt
q,y

Dt
q =

Wt
q

MN
∑
q

Wt
q

wt+1
q,y = wt

q,y × βt
(1/2)(1+ht(RSSq,yq)−ht(RSSq,y))

(17)

et =
1
2

MN

∑
q

Dt
q(1− ht(RSSq, yq) + ht(RSSq, y)) (18)

βt =
et

1− et
(19)

HWt= log(
1
βt

)
(20)

where wt
q is the sum of the weights of all mislabels of sample q in the tth iteration, Dt

q is the weight ratio
of sample q to all samples in iteration t, the mislabel distribution, ht(xq, y) is the possibility of the weak
classifier getting back a hypothesis y for the sample q at iteration t, where y is the mislabel of the xq,
ht(xq, yq) is the possibility of the weak classifier getting back the correct label yq for sample q at iteration
t. εt is the error rate of the tth decision tree, which is computed with related distribution Dt

q over the
training examples and incorrect labels obtained in the previous iteration. HWt is the weight of the
hypothesis, such that greater weight is given to a hypothesis with lower error. The final classification
result of the ensemble learning model is formulated as:

hfin(RSSx) = argmaxy∈Y

T

∑
t=1

(HWt)ht(RSSx, y) (21)

That is, for an RSS sample, hfin outputs the label y that maximizes the sum of the weights of the
weak hypotheses predicting that label. For more detailed description of the Adaboost.M2 algorithm,
see [5,6].

Through the above algorithmic processing, an ensemble learning model is generated and trained.
During the online phase, the RSS samples are filtered and fed to the localization model one by one.
The final localization results can be determined through comprehensive statistics of the classification
results returned by different decision trees and their different weights.

5. Experimental Evaluation

This section introduces the experimental environments, multiple experimental processes,
the result comparing and analyzing with similar algorithms commonly adopted in the DFL field,
and demonstrating the advantages of the proposed localization algorithms.
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5.1. Description of the Experiment

The core chip of the RF sensor node is TI’s CC2530 chipset (Texas Instruments corp., Dallas, TX,
USA) which could transmit and receive signals in the 2.4 GHz ISM band, and for more information
about the node, refer to Reference [41]. According to the size of the experimental monitoring area,
some sensor nodes are arranged around the area and communicate with each other through different
channels so as to avoid mutual interference. There are 48 RF links in the monitoring area, and the RSS
data of all the links are transmitted to a PC through a data collection node, in real time. The layouts of
the two experiments are illustrated in Figure 7 and the coordinates are marked every 0.5 m in the area
where the target may appear. Eighteen coordinates numbered from 1 to 18 are marked in drawing
room 1, and 12 coordinates are numbered and marked from 1 to 12 in drawing room 2.
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In the offline phase, the RSS data of a personnel target standing at each coordinate is collected
to form the training sample matrix; in the online phase, the test RSS samples are collected when the
target walks from one position to another arbitrarily and stands at each coordinate. Compared to
drawing room 1, the noise and disturbances in drawing room 2 are stronger, so the experimental
results obtained in drawing room 2 can better show the filtering and localization advantages of the
proposed algorithm.

5.2. Performance Comparison

First, in the two experiments, we collect the RSS data of a link when the target moves along the
projection on the ground of the link from one end to another and observe the changes of the RSS value,
as Figure 8 shows.

Figure 9 shows two instances, the black dots are the RSS values and the color curve is the fitting
curve for them. The horizontal axis indicates the sample indexes sorted according to the time of
collection and the vertical axis indicates the changes of the RSS values. It can be seen that the RSS
variation rules of different links are not uniform for the same target moving trajectory. A fixed
mathematical model finds it difficult to represent the relationship between the change of the target
location and the RSS variation of the corresponding links, since the relationship varies with different
scenarios and links. Therefore, it is a good choice to use machine learning to achieve target position.
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Gaussian filtering (Gauss) and moving average filtering (MA), which are commonly adopted
in this research field, are compared with the TDDC distributed wavelet filtering. The parameters of
the Gaussian filter and moving average filter are adjusted for two different monitoring scenarios to
achieve the best results. Other wavelet-based filtering methods are also involved in the comparison.
Single correlation soft-threshold wavelet filtering [42,43] (SC), correlation feature scale entropy wavelet
filtering [44] (CE), and detailed coefficients zero-setting wavelet filtering [3] (HFC) are compared
with TDDC wavelet filtering, respectively. The SC calculates the longitudinal correlation coefficients
only, and then obtains the filtering threshold according to the remaining detailed wavelet coefficients.
The CE refines the detailed wavelet coefficients by comparing the entropies of cDo, and then obtains
its filtering threshold. The HFC sets all the detailed wavelet coefficients to zero.

Since we cannot measure reliable noiseless RSS data, and the frequencies and amplitudes of
the random disturbances and noise are unknown, the traditional signal-to-noise ratio method is not
suitable to evaluate the effect of TDDC distributed wavelet filtering. Instead, we feed the filtered RSS
data into the same ensemble learning model and evaluate the filtering performance by comparing
the final localization accuracy directly. Their performances are compared through calculating the
accuracies of the localization results for multiple test samples.

Figure 10 shows classification results of two test samples filtered by different wavelet filters.
The two kinds of samples were collected when the target walked from one position to another
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arbitrarily, which can be regarded as the generic trajectories. But the coordinates of arbitrary positions
cannot be recorded precisely, so we use their closest mark coordinates to represent them.

The two samples are recorded as the coordinates 10-9-8-12-16-17 (Figure 10a) where the target
walked through in drawing room 1 and the coordinates 2-5-8-9-10-11 (Figure 10b) in drawing room 2.
The RSS data collected at non-marked coordinates are also included in the two samples.

Since this paper transforms the localization issue into a multi-classification issue, the final
localization result of each test sample is a coordinate index. If the test samples collected at non-marked
coordinates are classified as the coordinate point which is closest to the actual position of the target,
the location result will be regarded as correct. We use this rule to calculate and compare the localization
accuracy and generalization ability of various algorithms in this paper.

It can be seen from the Figure 10, comparing with the other filtering methods, the located trajectory
(solid red dots) using the TDDC has fewer “glitch impulses” and matches the actual moving track of
the target (solid black dots) more closely. In terms of filtering RSS data, the TDDC filtering method
has more advantages compared with the above filtering methods and can help obtain more accurate
location results.
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testing sample was collected in drawing room 1. (b) The testing sample was collected in drawing
room 2.

Table 1 records the statistical results for the accuracy rates of multiple test groups. In the same
environment and with 0.5 m resolution, the localization accuracy is higher when the RSS data is filtered
by TDDC wavelet filtering.

Table 1. The statistical results of the localization accuracy rates for multiple test samples filtered by
different methods.

Filter Accuracy Scenario TDDC SC CE HFC Gaus MA

Drawing room 1 95.28% 91.50% 93.89% 80.50% 89.50% 86.40%
Drawing room 2 87.67% 81.71% 83.23% 67.82% 80.74% 63.17%
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We have also tested GDTE localization model, and compared the localization effects with the
fingerprint model (FP), the SVM model, and the deep neural network (DNN) model which are
commonly used in this field. Experiments were carried out with and without TDDC filtering.
After repeating the experiments of the deep neural network model, the structure is finally identified
as the four neural network layers and the neurons are fully connected. We added a regularization
term and a dropout layer to avoid the local minimum and over fitting problems. Table 2 shows
the classification accuracy rate of the multi-group test samples without filtering. It can be seen that
compared with other models, the GDTE model has a higher accuracy rate in different test environments
under the resolution of 0.5 m.

Table 2. The localization accuracy of different localization models without filtering.

Filter Accuracy Scenario GDTE DNN FP SVM

Drawing room 1 90.67% 80.80% 80.77% 82.77%
Drawing room 2 82.49% 72.77% 74.55% 75.91%

The samples recorded as 11-12-13-14-6-7-8-9 in drawing room 1 are classified by different
localization models with (Figure 11a) and without (Figure 11b) filtering. The localization results
are shown in Figure 11.
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with and without the TDDC wavelet filter. (a) The testing sample was filtered by the TDDC wavelet
filter. (b) The testing sample was not filtered.

As can be seen from the figure, the results of the GDTE model (solid red dots) are more consistent
with the actual moving track of the target (solid black dots), no matter whether RSS data is filtered
or not. As the target moves continuously, the classification results of the samples which are collected
at non-marked coordinates processed by the GDTE model are more consistent with the expectation
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of the nearest coordinate compared to other localization models. Table 3 shows the statistical results
of the accuracy rate of multi-group test samples processed by the above localization models with the
TDDC filtering. From this, we can draw the same conclusions as above. From the comparison between
Tables 2 and 3, it also can be found that the localization accuracy rate of the same localization model
has been improved more or less through preprocessing the RSS data with the TDDC wavelet filtering.

Table 3. The localization accuracy rate of the different localization models with the same TDDC filtering.

Filter Accuracy Scenario TDDC-GDTE TDDC-DNN TDDC-FP TDDC-SVM

Drawing room 1 95.28% 84.61% 90.66% 87.22%
Drawing room 2 87.67% 77.11% 81.00% 77.46%

The number of links in the monitoring area usually affects the localization results for the DFL
method. We compared the localization accuracy rates of the different localization models with TDDC
filtering when the monitor area has a-different-number links. We only considered the situations where
the accuracy rates are greater than 60%. Since the DNN structure and parameters need be recalibrated
according to the variation dimensions of the samples, only the accuracy rates of the TDDC-GDTE,
TDDC-SVM, and TDDC-FP are compared. Figure 12 shows that due to the different multipath effects
in different environments, the influence of the number of links on localization are also quite different.
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The more complex the environment is, the more difficult it is to estimate the importance of the
links for localization. However, generally the higher the number of links, the higher the accuracy rate
is. In the case of different numbers of links, the TDDC-GDTE localization method proposed in this



Sensors 2018, 18, 4419 17 of 20

paper has the advantages in both the accuracy rate and stability, especially when the accuracy rate is
greater than 70%.

In statistics, we also found that the localization accuracy will be relatively low when the target
moves through some specific locations. This phenomenon occurs repeatedly near several specific
coordinates. Some of them are close to obstacles, but others are not. We suspect that in a complex
environment, due to the serious multipath effect and the noise caused by the target’s movement,
the RSS value may change more sharply even over a short distance in those specific areas. This causes
the positioning result to be non-ideal. Figure 13 shows the probability of mistakenly locating one
coordinate to another. The numbers surrounding the matrix are the coordinate indexes in drawing
room 2. The diagonal data of the matrix indicates the probability of correctly locating for each
coordinate point, and other data in the same row indicates the probability of mistakenly locating.
The sum of the data in each row is equal to 100%. It can be seen that the accuracy is low when the
target is near coordinate points 2 and 8. There are obstacles such as furniture and appliances near
coordinate 8, but there are no obstacles around coordinate 2.
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6. Conclusions

This paper explores the two-dimensional double correlation distributed wavelet filtering method
and the Adaboost.M2 ensemble learning localization model, based on the Gini decision tree, in order
to implement DFL in relatively complex environments. First, we analyzed the relationship between
the RSS change of the RF link and the change of the target location in the complex environment.
We pointed out that it is difficult to represent this relationship with fixed mathematical models, and
focused on the analysis of the RSS data filtering problem, which has great influence over the location
results. Compared with the traditional filters and other wavelet-based filtering methods, the TDDC
wavelet filtering method not only filters the random disturbances and noise, but also preserves the RSS
data that are helpful for localization, as much as possible. The GDTE localization model has a higher
localization accuracy and stronger anti-interference ability than the single machine learning models.
Experiments have been conducted in two drawing rooms with different furnishings. A localization
accuracy rate of 95.28% was obtained in the less disturbing environment. In the environment with
stronger disturbances, the TDDC-GDTE was still able to achieve an 87.67% localization accuracy rate.



Sensors 2018, 18, 4419 18 of 20

In the case of reducing the number of links in the monitoring area, the performance of the proposed
scheme is also better than other algorithms.

We found that the localization results when the target is near some coordinates in the monitoring
area are not always satisfactory. Some of these coordinates are surrounded by obstacles but others are
not close to any obstacles. In this regard, we have also made an assumption that the RSS values of
some links change sharply in those regions where the multipath effect is serious. Of course, in addition,
there are still many problems that need to be solved in the DFL process for complex environments,
such as the small sample problem of the DFL process in a large monitoring area and the problem of
multi-target localization. We will try to settle these problems in our future work.
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