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Abstract: For monitoring of trace amounts of hydrofluoric acid in the organic fluorine chemical
industry, a facile method for determination of the hydrofluoric acid in an ethanol solution of lithium
chloride, by coulometric titration, was proposed. Relying on homemade acid–base coulometric
autotitrator, the electrolyte was 0.50 mol·L−1 LiCl ethanol solution and the constant current intensity
was 0.2–2 mA. As for the working electrode pair, a platinum plate was used as a working electrode,
and a platinum wire was used as an auxiliary electrode. The indicating electrode was the pH
composite glass electrode and the titration endpoint was pH 5.50. The results showed that the
relative standard deviation was below 2.0%, as the content of the hydrofluoric acid was between
2 µg to 100 µg. The recovery rate was 99.0–102.0%. This proposed route has the advantages of
simplicity, convenience, quickness, accuracy, and automation, which can be applied to the accurate
determination of trace amounts of hydrofluoric acid, in non-aqueous solutions.

Keywords: hydrofluoric acid; non-aqueous solution; coulometric titration; acid–base coulometric
autotitrator

1. Introduction

Fluorine gas and anhydrous hydrogen fluoride are important raw materials in the organic fluorine
chemical industry. They are used to prepare many fluorine compounds with different types and
functions. The products are widely applied in the fields of chemical industry, machinery, electronics,
energy, metallurgy, medicine, pesticides, etc. [1–7]. However, due to the hydrolysis of fluorine gas or
the residue within the productive process, the inevitable, existing hydrogen fluoride will affect the
quality of the organic fluoride products. For example, 1,1,1,3,3-pentafluoropropane (HFC-245fa), which
can be substituted for refrigerants, detergents, and foaming agents, is generally fluorinated by the
reaction between anhydrous hydrogen fluoride and the pentachloropropane in carbon tetrachloride.
The remaining hydrogen fluoride must be removed [8]. In the process of preparing trifluoroacetic acid
by electrofluorination, electrochemical fluorination of acetic acid or acetic anhydride, with hydrofluoric
acid, is carried out, and then is hydrolyzed to form trifluoroacetic acid. The by-product—hydrofluoric
acid—accompanies the hydrolysis process, which also affects the quality of the product [9]. Under
normal circumstances, the content of hydrofluoric acid in ordinary fluoride products is required to
be less than 0.010%, and the superior grade fluoride products is even required to be less than 0.001%.
All these demand a rapid and accurate method for the determination of the trace hydrofluoric acid in a
non-aqueous solution.

At present, the traditional acid–base titration and potentiometric titration are generally used
to determine hydrofluoric acid [10,11]. Although the methods are simple and convenient, they are
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not suitable for the determination of the trace hydrofluoric acid. Ion chromatography, fluorescence
analysis, infrared spectroscopy, etc., have also been proposed [12–14]. However, those applications are
limited by the expensive equipment. Therefore, it is necessary to propose a simple, rapid, and accurate
method for the determination of the trace hydrofluoric acid in non-aqueous solution.

Coulometric titration is based on a quantitative reaction between the investigated substance and
the titrant generated from the electrolyzation of the solution, under a constant current. The content of
measured substance can be obtained directly or indirectly, by the electric quantity. It is the most accurate
macro analysis method, so far, and it is also a sensitive method for the accurate determination of trace
substances. It has the advantages of simplicity, convenience, quickness, accuracy, and automation [15].
The determination of acid and alkali in non-aqueous solutions, through coulometric titration, has been
reported in a previous study. Mihajlović [16] proposed that the alkaline ions (m-cresolate ions) could
be electrogenerated to determine acid in a γ-butyrolactone solution, by using m-cresol as the cathodic
depolarizing agent, and tetrabutylammonium perchlorate as the supporting electrolyte. Johansson [17]
titrated acids by generating OH− in isopropanol or a mixture of isopropanol and methylacetone, which
contained a trace of water. Champion [18] determined organic acids by a coulometric generation of
the base, at a platinum cathode, in tetrahydrofuran containing about 0.2% of water. Gonzaga [19]
used lithium chloride as a supporting electrolyte to determine the acid content of the ethanol fuel.
Mihajlović [20] summarized the studies of certain strong acid or base, which can be generated through
electro-oxidation or a reduction in non-aqueous solvents. These compounds were used as anodic or
cathodic depolarizers for coulometric titrations of acids, bases, and salts. All the above work proved
that the coulometric titration has a high accuracy in the determination of acid–base substances in
non-aqueous solution. A method for the determination of trace amounts of hydrofluoric acid in an
ethanol solution of lithium chloride, by coulometric titration, is proposed in this paper. Satisfactory
results are obtained, which lays a good foundation for further in-depth study.

2. Materials and Methods

2.1. Reagents and Chemicals

0.10 mol·L−1 NaOH ethanol solution: The accurate concentration was determined by using
benzoic acid as the reference substance and bromothymol blue as the indicator.

0.10 mol·L−1 HF ethanol solution: The accurate concentration was determined by an NaOH
ethanol solution and bromothymol blue as the indicator.

2–100 µg·mL−1 HF solution: The solution was diluted by 0.10 mol·L−1 HF ethanol solution step
by step, the diluent was anhydrous ethanol.

Anhydrous methanol, anhydrous ethanol, isopropanol, acetone: AR, treated with 3A molecular
sieve, to remove the residue of water before use.

0.50 mol·L−1 LiCl ethanol solution: About 10.6 g lithium chloride was weighed and dissolved in
500 mL anhydrous ethanol.

All other chemicals were of the analytical grade, or above.

2.2. Instrumentation

Homemade automatic acid–base coulometric titration instrument, platinum electrode
(5 mm × 2 mm × 0.1 mm, Jiangsu Analysis Instrument Factory, Jiangsu, China); platinum wire
auxiliary electrode (Φ 1 mm × 120 mm, Jiangsu Analysis Instrument Factory, Jiangsu, China); pH
composite glass electrode (InLab Expert Pro, METTLER TOLEDO, Zurich, Switzerland).

The schematic diagram of the automatic acid–base coulometric titration instrument is shown in
Figure 1. It consisted of three parts—the electrolysis loop system, the indicating loop system, and
the computer control system. The electrolysis loop system consisted of a digital constant current
source, a platinum working electrode, and a platinum wire auxiliary electrode. The platinum wire
auxiliary electrode was mounted in a glass sleeve and connected with the working electrode, through
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a ceramic sand core. The indicating loop system was composed of pH composite glass electrode, a
signal conditioning circuit, and a data acquisition card NI6009. The signal conditioning circuit was
used for amplification, filtering, and impedance conversion. The data acquisition card completed data
acquisition, A/D conversion, and uploads to the computer, through an USB interface. The computer
control system relied on a desktop computer and used LabView as a software development platform
to realize the system parameter settings, pH conversion, electrolysis loop control, electrolysis timing,
result calculations, and the output.
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Figure 1. Acid–base coulometric autotitrator of constant current.

2.3. Determination Method

About 50 mL 0.50 mol·L−1 LiCl ethanol solution was prepared in a 100 mL PTFE beaker. Platinum
electrode, platinum wire auxiliary electrode (filled with 0.50 mol·L−1 LiCl ethanol solution), and pH
composite glass electrode were inserted into the solution.

A certain amount of the HF ethanol solution was accurately pipetted into the above solution,
which was pre-deaerated by nitrogen and pre-titrated. The electrolysis was carried out on an automatic
acid–base coulometric titration instrument. Instruction to stop the electrolysis would be sent to the
electrolysis loop system, from the computer control system, when the titration endpoint was reached.
The electrolysis process would be stopped, immediately, and the results were output automatically.
The content of the HF was calculated using a constant current and electrolysis time. The corresponding
formula is presented as follows:

ρHF =
It
F × M × 103

VS

where I (mA) is the constant current, t (s) is the electrolysis time, F (96,500 C·mol−1) is the Faraday’s
constant, M is the molar mass of the HF, Vs (mL) is the volume of the added HF ethanol solution, ρHF

(µg·mL−1) is the mass of the HF in the HF ethanol solution.

3. Results and Discussion

3.1. Selection of Organic Solvents

The ideal non-aqueous solvent for coulometric titration should have a high solubility for
supporting the electrolyte and the conductivity of the resulting electrolyte solution should be high,
which ensures that large currents can pass through the solution. Here, anhydrous methanol, anhydrous
ethanol, isopropanol, and acetone were investigated as potential solvents. It was found that the current



Sensors 2018, 18, 4439 4 of 8

efficiency of acetone and isopropanol was less than 100%, and the maximum current intensity was
less than 1 mA. In anhydrous methanol and anhydrous ethanol, the current intensity was very stable,
the maximum value reached 3 mA, and the current efficiency was close to 100%. Table 1 shows the
determination of hydrofluoric acid, with a known content, using an LiCl solution of different solvents.

Table 1. Determination of the presence of HF with different solvents (n = 5, vs. = 1.00 mL).

Solvents
Concentration of

HF Solution
(µg·mL−1)

Current
(mA) Time (s)

Determination
Results

(µg·mL−1)

Er
(%) RSD (%)

Acetone 50.35 - * - - - -
Isopropanol 50.35 0.502 472.98 49.23 2.22 1.89

Methanol 50.35 2.005 120.2 49.97 0.75 0.73
Ethanol 50.35 2.005 121.48 50.51 0.32 0.39

* When acetone was used as an organic solvent, it could not be determined because the current intensity was
too small.

Table 1 shows that the precision and accuracy of the determination of HF in the anhydrous ethanol
were higher than those in the anhydrous methanol. Furthermore, compared with anhydrous methanol,
anhydrous ethanol was less harmful and more environment-friendly. So, anhydrous ethanol was
chosen as the organic solvent in this study.

3.2. Selection of Supporting Electrolytes and their Concentrations

Lithium chloride, sodium perchlorate, tetraethyl ammonium bromide, and tetraethyl ammonium
perchlorate were selected as the supporting electrolytes. Their current efficiencies were investigated
during electrolysis. The results showed that a yellow deposit was formed on the anode when
tetraethyl ammonium bromide or tetraethyl ammonium perchlorate were used, which caused the
continuous drop of current intensity. The current efficiency reached 100% when lithium chloride or
sodium perchlorate was used. As sodium perchlorate is a dangerous strong oxidant, lithium chloride
was chosen as the supporting electrolyte. Table 2 shows the determination of hydrofluoric acid in
LiCl solutions, with different concentrations. When the concentration of lithium chloride reached
0.50 mol·L−1 and above, the precision and accuracy were below 0.50%. Therefore, 0.50 mol·L−1 LiCl
ethanol solution was selected as the supporting electrolyte solution.

Table 2. Selection of the concentration of LiCl supporting electrolyte (n = 5, I = 2.005 mA, vs. = 1.00 mL).

Concentration of
LiCl (mol·L−1)

Concentration of HF
Solution (µg·mL−1) Time (s) Determination

Results (µg·mL−1)
Er

(%) RSD (%)

0.10 50.35 120.14 49.95 0.79 1.03
0.30 50.35 120.43 50.07 0.56 0.66
0.50 50.35 121.48 50.51 0.32 0.39
0.80 50.35 121.40 50.47 0.24 0.43
1.0 50.35 121.56 50.54 0.38 0.42

3.3. Selection of the Indicating Electrode Couples

Indicating electrode couples are very important in coulometric titration. They should have a quick
response to the change of H+ activity and an obvious titration jump of the pH. The pH composite glass
electrode (CGE) and the glass electrode (GE)-saturated calomel electrode (SCE) were investigated.
It was found that their accuracy and precision met the experimental requirements. Since both electrodes
had similar characteristics, the pH composite glass electrode was selected as the indicating electrode,
in this study, due to its simplicity.
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3.4. Selection of the Titration End-Point

Certain amount of 0.10 mol·L−1 HF ethanol solution was placed into a 100 mL PTFE beaker and
potentiometric titration was carried out with 0.10 mol·L−1 NaOH ethanol solution. Figure 2 shows the
potentiometric titration curve of 0.10 mol·L−1 HF ethanol solution. It clearly shows that the ranges
of titration jump was around pH 3.0–7.0. Its maximum jump was determined to be around pH 5.50,
through its first order differential curve. Thus, pH 5.50 was used as the titration end-point of the
coulometric titration for the determination of trace hydrofluoric acid, in a non-aqueous solution.
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Figure 2. 0.10 mol·L−1 HF potentiometric titration curve. (1. pH-V; 2. ∆pH/∆V-V).

3.5. Pre-Titration

In order to eliminate the hysteresis effect of the pH composite electrode, in the process of
electrolysis, pre-titration must be carried out before the determination process. A small and
unmeasured amount of the HF ethanol solution was injected into the 0.50 mol·L−1 LiCl ethanol
solution, and it was pre-titrated to the end-point. The solution of the HF sample was then added and
the instrument was set to titrate automatically.

3.6. Results of Determination

Based on the investigations above, the optimized experimental conditions were obtained.
The electrolyte was 0.50 mol·L−1 LiCl ethanol solution. The constant current intensity was 0.2–2 mA.
The working electrode pair was a platinum working electrode and a platinum wire auxiliary electrode.
The indicating electrode was a pH composite glass electrode and the titration end-point was pH 5.50.

Table 3 shows the determination results of the HF ethanol solution, with a different HF content.
The accuracy and precision of the results were below 1.0%, when the HF content was 10 µg and above.
Although the accuracy and precision of the determination of the HF content around 2 µg were slightly
lower than 2.0%, it could still meet the actual measurement requirements, at such a low HF content.
The corresponding coulometric titration curves are shown in Figure 3.

When the content of the hydrofluoric acid was too low, the decrease range of the pH of the
solution became smaller, after pre-titration. When 2 µg was added, the pH only decreased from 5.5 to
5.4, and the relative standard deviation of the results reached 1.12%, and the relative error reached
1.90%. If 2.0% was used as a benchmark, the detection limit of the coulometric titrator was 2 µg.
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Table 3. Determination results of the different HF content (n = 5, vs. = 1.00 mL).

Concentration of HF
Solution (µg·mL−1)

Current
(mA) Time (s) Determination

Results (µg·mL−1) Er (%) RSD (%)

1.995 0.201 46.95 1.957 1.9 1.12
4.966 0.507 46.37 4.875 1.83 1.07
9.931 0.507 95.12 10 0.69 0.72
19.86 1.005 94.63 19.72 0.7 0.57
50.49 2.004 121.94 50.67 0.36 0.4
101 2.004 244.02 101.4 0.4 0.44
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Figure 3. Coulometric titration curves of the hydrofluoric acid with different contents. vs. = 1.00 mL. (a)
ρHF = 1.995 µg·mL−1, I = 0.201 mA; (b) ρHF = 4.966 µg·mL−1, I = 0.507 mA; (c) ρHF = 9.931 µg·mL−1,
I = 0.507 mA; (d) ρHF = 19.86 µg·mL−1, I = 1.005 mA; (e) ρHF = 50.49 µg·mL−1, I = 2.004 mA;
and (f) ρHF = 101.0 µg·mL−1, I = 2.004 mA.

3.7. Recovery

Table 4 shows the recovery after adding different contents of HF in the HF ethanol solution.
The recovery rates were between 99.0–102.0%, which shows that the proposed method had no
systematic errors and the determination was accurate and reliable.
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Table 4. Determination results of recovery (n = 5, vs. = 1.00 mL).

Measured
(µg·mL−1)

Amount-Added
(µg·mL−1) Current (mA) Time (s) Amount-in Total

(µg·mL−1) Recovery (%)

9.543 4.828 0.505 138.09 14.46 101.8
9.657 0.505 183.16 19.18 99.8

18.80 9.657 1.001 137.45 28.53 100.8
19.31 1.001 182.79 37.94 99.1

49.72 25.03 2.010 179.52 74.82 100.3
50.07 2.010 241.13 100.5 101.4

4. Conclusions

Coulometric titration was adopted to determine trace amounts of HF in non-aqueous solution.
It could be accomplished within 5 min, the precision and accuracy were below 2.0%, and the titration
end-point could be detected automatically. It has the advantages of simplicity, convenience, quickness,
accuracy, and automation. Compared with the traditional acid–base titration and potentiometric
titration, the analysis time was notably shortened. As the titrant was produced through electrolysis,
the preparation, standardization, and storage of the standard solution were avoided, and the endpoint
could be automatically determined. Therefore, the results were more objective and accurate. Compared
with ion chromatography, fluorescence analysis, and infrared spectroscopy, the experimental device
was simpler, the operation was more convenient, the endpoint could be automatically judged, the
influence factors were fewer, and the precision was higher.

Further applications for the determination of trace HF in non-aqueous solutions will be studied
in-depth and reported in the follow-up work.
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