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Abstract: Wireless sensor networks are commonly applied in environmental monitoring applications.
The crucial factor in such applications is to accurately retrieve the location of a monitoring event.
Although many technologies have been proposed for target positioning, the devices used in such
methods require better computational abilities or special hardware that is unsuitable for sensor
networks with limited ability. Therefore, a range-free positioning algorithm, named coverage area
pruning positioning system (CAPPS), is proposed in this study. First, the proposed CAPPS approach
determines the area that includes the target approximately by using sensor nodes that can detect
the target. Next, CAPPS uses sensor nodes that cannot detect the target to prune the area to
improve positioning accuracy. The radio coverage variation is evaluated in a practical scenario,
and a heuristic mechanism is proposed to reduce false positioning probability. Simulation results
show that the size of the positioning area computed by CAPPS is smaller than that computed using
distance vector hop, angle of arrival, and received signal strength indicator by approximately 98%,
97%, and 93%, respectively. In the radio variation scenario, the probability of determining an area
excluding the target can be reduced from 50%–95% to 10%–30% by applying the proposed centroid
point mechanism.

Keywords: range-free positioning; coverage area pruning; degree of irregularity; centroid point;
wireless sensor networks

1. Introduction

Wireless sensor networks (WSNs) are commonly applied to all types of environmental monitoring,
such as agricultural status monitoring [1], animal habitat observation [2,3], climate monitoring [4,5],
and forest fire warning [6,7]. Essentially, a wireless sensor network consists of many sensor nodes that
are tiny devices with simple computational abilities and specific sensing devices installed. Sensor nodes
also include a wireless communication module for delivering data wirelessly to the data center, which
is also named as the sink. Sensor nodes are spread throughout a region of interest (RoI). They are steady
in their deployed locations and transmit local information to the sink through wireless propagation.

Determining the locations of target events accurately is a key factor to make these applications
successful. Many object-positioning methods have been proposed, and these can be classified into two
categories: range-based and range-free methods. Range-based methods require the distance between
the target and each reference point to compute the position of a target. Here, the reference point is
a node or device that can accurately obtain its positioning or coordinates. Owing to the location of
the target is unknown, the real Euclidean distance between the target and reference point cannot be
measured. Therefore, some methods have been proposed to obtain the estimated distance by inferring
it from the received signal strength (RSS) [8–12], or signal propagation time [13–15]. Then, three
reference points that are not collinear are selected. The location of each reference point is treated as the

Sensors 2018, 18, 4469; doi:10.3390/s18124469 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s18124469
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/12/4469?type=check_update&version=3


Sensors 2018, 18, 4469 2 of 21

center of a circle, the radius of which gives the estimated distance to the target. Finally, the positioning
problem is transformed to that of finding the intersection point of these three circles in a Euclidean
plane. This intersection point gives the position of the target. However, the estimated distances inferred
from the received RSS and signal propagation time are highly sensitive to shadowing effects, multipath
effects, and multipath propagation in a wireless communication environment. A slight difference in
the RSS or signal propagation time will introduce a significant error to the estimated distance.

For range-free methods, we usually require more than three reference points to locate the
target. This characteristic is suitable for WSNs in which many quantity sensor nodes are deployed.
Consequently, all sensor nodes deployed in the RoI must be aware of their positions, so that each of
them can act as a reference point. As sensor nodes are densely deployed, they can cover the whole
area of the RoI. Instead of attempting to find the estimated distances between the target and reference
points, range-free methods collect information from the deployed sensor nodes to deduce the location
of the target. The collected information can comprise the locations of the sensor nodes within the
coverage area that can detect the target [16]. The information could also be the charging rates of sensor
nodes [17] in a rechargeable wireless sensor network or the numbers of data propagation hops [18–20].
In addition, the signal variation that sensor nodes detect from the target [21,22] can also be used. A
heuristic algorithm based on signal variation can be applied to estimate the possible location of the
target. Without accurate distance information between the reference points and the target, range-free
methods usually determine the target within a region instead of a specific point. Therefore, positioning
accuracy is related to the size of the region. The smaller the obtained region, the higher the positioning
accuracy will be.

Nowadays, well-known range-free positioning systems require reference nodes to either have
specific hardware [17,23–25] or be able to compute the average one-hop distance [18–20], which is
heavily dependent on the topology. When methods for which sensor nodes need to install specific
hardware are applied to a sensor network, the manufacturing cost is increased. Furthermore, methods
that are heavily dependent on the topology require rebuilding of the average one-hop distance. Such
methods cannot provide high-accuracy positioning results. In addition, once the sensor nodes change
their topology, the one-hop distance must be recomputed.

Therefore, a novel range-free positioning algorithm is proposed in this study, named coverage
area pruning positioning system (CAPPS). CAPPS does not require sensor nodes to install specific
hardware, nor does it involve heavy dependence on the topology. Each sensor node in CAPPS must
only provide feedback to the positioning station on whether it detects the target. Then, the positioning
station is responsible for collecting the data of sensor nodes and computing the location of the target.
Based on the Boolean results reported by the sensor nodes, the positioning station computes the
intersection coverage areas of the sensor nodes. The description above describes the mechanism of the
coverage elimination positioning system (CEPS) [26]. However, this only applies to target-detecting
sensor nodes when locating the target. In our system, sensor nodes that cannot detect the target are also
given location information about the target, and these sensor nodes can be involved in reducing the
positioning area to improve the positioning accuracy. Therefore, CAPPS extends the CEPS mechanism.
To reduce the computational overhead, CAPPS provides a mechanism to remove redundant sensor
nodes. Then, the sensor nodes that cannot detect the target are involved to refine the positioning area.
CAPPS can considerably reduce the computational overhead spent on locating the target. It is also
robust against variations in the topology. In addition, the radio variation in a practical scenario is
considered to evaluate the impact on the positioning accuracy. Simulation results show that CAPPS
can locate the target within a smaller area compared to existing range-free positioning methods.

The remainder of this paper is organized as follows: Previous studies related to positioning
technologies are reviewed in Section 2. Section 3 states the assumptions and presents the detailed
algorithm of the proposed CAPPS approach. Section 4 presents the simulation results. In addition, the
impact of radio variation is discussed in this section. Finally, conclusions are provided in Section 5.
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2. Related Work

Anchor points, which can accurately obtain their own location information, are an essential
element in a positioning method. The anchor points will be the reference points for determining
the location of the positioning object. Essentially, current positioning technologies can be classified
into two categories. The first comprises range-based methods that require the distances between
anchor points and the positioning object to deduce the location of the positioning object. Because
the location of the positioning object is unknown, this distance is estimated from other information,
such as the RSS or signal propagation time. Well-known related range-based technologies include that
using received signal strength indicator (RSSI) [8–12], time of arrival (ToA) [13], and time difference
of arrival (TDoA) [14]. The second category is that of range-free methods that do not attempt to
estimate the physical distance between an anchor point and positioning object. These methods use
specific mechanisms to deduce the location of the positioning object, such as the incoming angle of
the received signal, the radio variation of a signal, and the number of data propagation hops from
the object to the anchor point. The number of hops consists of the number of intermediate devices
through which data must pass between the object and anchor point. Well-known technologies in the
category include angle of arrival (AoA) [23–25], time of charging (ToC) [17,27], point-in-triangulation
(PiT), approximate point-in-triangulation (APiT) [21,22], and distance vector hop (DV-Hop) [18–20].
These methods usually do not need specific hardware modules, and they can therefore be applied
to low-cost sensor nodes in WSNs. Consequently, the positioning accuracy in range-free methods is
sacrificed slightly compared with that in range-based methods. Considering the application scenario,
range-free methods are suitable for use in WSNs.

2.1. Range-Based Methods

A range-based method is triangulation location in which three anchor points are used. This
method requires the distance from the target to each anchor point. The positioning problem is
transformed into a problem of planar geometry. The position of each anchor point is the center of a
circle, and the radius of this circle represents the distance between the anchor point and target. The
intersection of these three circles gives the location of the target. The positioning accuracy is dependent
on the measured distance from each anchor point to the target. Because the position of the target
is unknown, this distance is usually measured using the RSS or signal propagation time. However,
this indirectly measured information is highly sensitive to environmental factors. A slight inaccuracy
may introduce a considerable error in the measured distance. In practical cases, the target is usually
bounded within an area rather than at a point. The positioning accuracy is completely dependent on
how the distance is measured. Three common distance measurement methods use RSSI, ToA, and
TDoA, which will be introduced in the following.

The distance measured with the RSSI method [8,9] considers the RSS of the receiver. The signal
decay model is given by (1), where Pr(d) is the signal strength measured by the receiver, Pt is the signal
strength measured by the transmitter, PL(d0) gives the path loss parameters, 10n log10

d
d0

is the distance
decay coefficient, and Xa is Gaussian noise:

Pr(d) =
{

Pt− PL(d0)− 10n log10

[
d
d0

]}
+ Xa (1)

To enhance the positioning accuracy, Tomic et al. proposed convex optimization approaches to
address RSS-based cooperative localization problems in WSNs [10–12]. The maximum likelihood
criterion is employed to formulate the localization problem. An appropriate convex relaxation
technique leading to second-order cone programming is applied to overcome the non-convexity of
the maximum likelihood problem. However, the radio signal is highly sensitive to the environmental
factors, such as shadowing effects, multipath effects, and unstable magnetic fields. Therefore, the error
of the measured distance is proportional to the physical distance between sender and receiver.
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The ToA [13] method uses radio transmission speed and signal propagation time to measure the
distance between the anchor point and target. Let T0 be the time instant at which the target sends
the measurement message. This time instant T0 is also included within the measurement message.
Any anchor point that receives this message at time instant T1 can compute the distance as (T1 − T0)
× Ve, where (T1 − T0) is the delivery time of the message and Ve is the radio transmission speed,
which is known to be 3 × 108 m/s. ToA requires all devices involved in the positioning procedure to
synchronize their system time beforehand. However, this is a challenging issue in the real world. To
solve this problem, the procedure is modified slightly. The target sends a signal to the anchor, and
then the anchor returns the message immediately back to the target. Two additional time instants are
recorded in this modified procedure. These are the time instant T2 at which the anchor point sends the
message and the time instant T3 at which the target receives the returned message from the anchor
point. The turn-around time of the signal propagation between the target and the anchor point can be
used to average the one-directional signal propagation. Therefore, the one-directional propagation time
can be computed as ((T3 − T0)−(T2 − T1))/2. Consequently, as we know that the radio propagation
speed is 3 × 108 m/s, a minor variation in the average time still introduces a considerably large error
in the measured distance.

The time synchronization problem of ToA is solved by TDoA [14,15]. Let D1 and D2 denote the
measured distances from the target to anchor points 1 and 2, respectively. Then, |D1 − D2| is one
local length. Similarly, anchor points 1 and 3 can generate another local length. Each local length can
form a hyperbola, and the intersection of these two hyperbolas can provide the position of the target.
TDoA does not require the system time synchronization between the target and anchor points. It is
simple to implement and can enhance the location precision in non-line-of-sight environments.

2.2. Range-Free Methods

Rather than attempting to measure the physical distances between the anchor points and the
target and applying triangulation location to locate the target, range-free methods employ other
mechanisms to locate the target. One range-free method is AoA that requires every anchor point
to install a directional antenna [23–25]. Each anchor point can identify the position of the target
with the help of the directional antenna. A line equation on the Euclidean plane can be constructed
by using the position of the anchor point and the direction of the received signal obtained from the
directional antenna. Two anchor points with distinct positions can obtain two nonparallel lines, and the
intersection point of these two lines will give the location of the target. Slavisa Tomic et al. integrated
the RSS and AoA positioning methods with convex relaxation techniques [24] to improve positioning
accuracy. Unfortunately, the direction provided by the directional antenna constitutes a fan-shaped
area in practical scenarios. The target is bounded within the intersection region of these two fan-shaped
areas. The positioning results degrade as the distance from the target to the anchor point increases,
because the size of this intersection region is proportional to the distance.

The ToC [17,27] method is applied in wireless rechargeable sensor networks. Every anchor point
installs a wireless charging component. When the target is close to the anchor point, the target can
achieve a high charging efficiency. Conversely, the target has a low charging rate if it is far away from
the anchor point. Based on this characteristic, we can deduce the possible distance between the anchor
point and the target. This method requires more than two anchor points to position the target. Chang
et al. proposed a method integrating AoA and ToC [27] to position the target using one anchor point.

The PiT [21,22] method uses radio signal attenuation characteristics to position the target. The
target is assumed to be moveable. Three random anchor points form a triangle, and whether the
target is enclosed in this triangular area is determined. When the target moves, the distance from its
current location to each anchor point will change. When the distance changes, the RSS received by
each anchor point will also vary. If the current location of the target is within the triangle, then this
moving behavior will cause the RSS values of two anchor points to increase and that of one anchor
point to decrease. If all the RSS values of all three anchor points increase or decrease, then the target
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must be outside the triangle. This method is simple, and requires no distance information. However, it
requires a movable and controllable target. It cannot be applied in a scenario in which the position of
the target is unknown.

The APiT [21,22] method is similar to PiT but applies to unmovable targets. When a neighbor
node has a distinct location from the target, the RSSI value of this neighbor node can be treated as
that of the target stays at this location. Consequently, the relative location information must be known
beforehand for all neighbor nodes in the network. A previous study [28] has shown that APiT requires
at least 24 neighbor nodes to achieve a positioning error lower than 5%.

DV-Hop [18–20] is a range-free positioning method that still attempts to estimate the distances
between the target and anchor points. The distance is estimated from the number of signal propagation
hops. DV-Hop still requires three anchor points to locate the target. Let the three anchor points
be denoted by A, B, and C. The anchor points send a message to each other, and the numbers of
propagation hops are recorded. By using the physical distance between two anchor points and the
number of propagation hops from one anchor point to another, the average physical distance of one
propagation hop can be computed. The average distance of one propagation hop, denoted by havg, can
be computed as in (2):

havg =

∣∣AB
∣∣+ ∣∣AC

∣∣
H(AB) + H(AC)

(2)

Here,
∣∣AB

∣∣ and
∣∣AC

∣∣ denote the physical distances between two anchor points and can be
computed from their coordinates, and H(AB) and H(AC) are the numbers of hops between the two
anchor points. Then, the target sends a message to each anchor point, and the numbers of propagation
hops are recorded. The distance is determined from the obtained results by multiplying the number of
propagation hops by the average distance of a single hop.

The distance estimation mechanism in DV-Hop depends strongly on the deployment topology. A
significant error may be introduced when the shortest routing path from the target to an anchor point
is not close to the distance of the direct link from the target to that anchor point. This occurs when the
sensor nodes are not uniformly deployed or the deployment density is not sufficiently high. Therefore,
Yuan et al. proposed a mechanism to improve the accuracy of the average one-hop distance [29]. The
equation for refining havg is given in (3):

h∗avg = havg −
EA

H(AB) + H(AC)
, (3)

where EA is computed as in (4):

EA =
(∣∣AB

∣∣+ (havg × H(AB)
))

+
(∣∣AC

∣∣− (havg × H(AC)
))

(4)

The range-free methods described above that require sensor nodes to install special hardware are
unsuitable for low-cost sensor nodes in a general sensor network. Furthermore, the methods that are
strongly related to topology cannot provide an acceptable positioning accuracy. Therefore, CAPPS
is proposed in this study. CAPPS does not require special hardware; it uses homogeneous sensor
nodes with common omni-directional antenna. CAPPS employs sensor nodes that detect the target to
determine the possible area of its location. Then, the sensor nodes that cannot detect the target are
employed to refine the size of the positioning area, to enhance the positioning accuracy.

3. Coverage Area Pruning Positioning System

The mechanism of the proposed CAPPS is described in this section in detail. First, the
preliminaries and assumptions are presented. Then, the methodologies using the sensor nodes
that do and do not detect the target to determine and prune the positioning area, respectively, are
presented. Finally, the impact of signal irregularity is considered, and a mechanism named centroid
point (CP) is proposed to moderate this influence.
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3.1. Preliminary and Assumptions

To apply CAPPS, the following assumptions are required. The deployed sensor nodes are
homogeneous and uniformly spread within the RoI. The maximum radio range of every sensor node
is R. The entire RoI can be covered by the radio signals of the deployed sensor nodes. Therefore,
the target can be guaranteed to be detected by at least one sensor node in the RoI. A self-deploying
method [30] may be applied to achieve this assumption.

All deployed sensor nodes are stationary. Each of them can precisely retrieve its current location.
Therefore, every sensor node can act as an anchor point, like the sensor nodes in the PiT and APiT
methods. The computational ability of each sensor node is sacrificed to prolong the operational
duration. Thus, each sensor node can send data to the positioning station to locate the target. A
positioning station is employed to coordinate the operations of the sensor nodes. When a sensor node
detects the target, it automatically notifies the positioning station immediately.

3.2. Locating the Positioning Area with Target-Detecting Sensor Nodes

The CAPPS method is an extension of a previous method named CEPS [26]. When the target
appears in the RoI, the sensor nodes that detect the target transmit their detection message to the
positioning server. Let Ω denote the set of these sensor nodes. The positioning problem is transformed
to that of finding the intersection area of the sensor nodes in Ω. For each sensor node Si ∈ Ω, Si is
represented by a circle Ci, as shown in (5):

Ci : (x− Si.x)
2 + (y− Si.y)

2 = R2, i = 1, 2, 3, . . . , |Ω| (5)

Here, Si.x and Si.y in (5) denote the x- and y-coordinates, respectively, of Si. The target will be

enclosed within the area covered by all sensor nodes in Ω. This can be represented as
⋃|Ω|

i=1 Ci. In the
following, the positioning area is used to represent the possible region that includes the target. The
smaller the positioning area, the higher the positioning accuracy will be.

A simple example is presented in Figure 1. In Figure 1a, sensor nodes {r, s, t, u, v, w, x, y, z} ∈ Ω
detect the signal of the target. Each sensor node in Ω is treated as a vertex on the Euclidean plane.
Every vertex represents the center of a circle with the radius set to the radio range R. By computing the
intersection area of these circles, we can obtain the area A shown in Figure 1b that includes the target.

This procedure contains redundant computations. For example, the coverage areas of {r, s, t} are
completely enclosed by those of the other sensor nodes in Ω. Removing these sensor nodes does not
influence the size of the positioning area. This observation implies the following two characteristics.
First, the sensor nodes that detect the target but are far away from it contribute efficiently to the
positioning area. Second, the sensor nodes Si in Ω with no contribution to the positioning area are
usually close to the target, such that their coverage area is completely overlapping with other sensor
nodes. These two characteristics imply that the vertices located at the outer bound of the signal area of
the target are sufficient. Fortunately, the convex hull algorithm can be applied to determine the sensor
nodes located in the outer area.

The convex hull problem is defined as follows. Considering a set of points in the Euclidean plane,
a set of points is defined to be convex if it contains the line segments connecting each pair of its points.
The convex hull of a given set Z is the minimal convex set containing Z, and the intersection of all
convex sets contains Z. In addition, the set of all convex combinations of points in Z represents the
union of all simplexes with vertices in Z. Therefore, the sensor nodes that constitute the convex hull of
the set Z must be the nodes located at the outer boundary of the points in the set Z.

The set of vertices comprising the convex hull of the set Ω, denoted as Ωc, can be used to compute
the positioning area of the target. As shown in Figure 1c, the sensor nodes {u, v, w, x, y, z} ∈ Ωc

comprise the vertices used to compute the intersection area. The CEPS method employing the convex
hull to compute the positioning area is denoted by C-CEPS in the simulation section.
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Figure 1. Example of locating the target using target-detecting sensor nodes. (a) The target 

represented as a hexagonal star and the sensor nodes in the set Ω = {r, s, t, u, v, w, x, y, z} represented 

as alphabetical circles. (b) The positioning area obtained from the intersection area of the radio 

coverage of the sensor nodes in the set Ω. (c). The positioning area obtained from the intersection area 

of the radio coverage of the sensor nodes in the set Ωc = {u, v, w, x, y, z}. The result is the same as that 

using the set Ω. 
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Figure 1. Example of locating the target using target-detecting sensor nodes. (a) The target represented
as a hexagonal star and the sensor nodes in the set Ω = {r, s, t, u, v, w, x, y, z} represented as alphabetical
circles. (b) The positioning area obtained from the intersection area of the radio coverage of the sensor
nodes in the set Ω. (c). The positioning area obtained from the intersection area of the radio coverage
of the sensor nodes in the set Ωc = {u, v, w, x, y, z}. The result is the same as that using the set Ω.

3.3. Pruning the Positioning Area with Non-Target-Detecting Sensor Nodes

When a sensor node cannot detect the target, this indicates that the target is not within its coverage
area. If the coverage area of the sensor node overlaps with the positioning area obtained by the sensor
nodes that detect the signal of the target, then the positioning accuracy can be further improved. As
shown in Figure 2a, the sensor nodes {c, i, m, p} cannot detect the target, but their coverage areas
overlap with the positioning area. Therefore, the positioning area can be further pruned to enhance
the positioning accuracy.

The simplest manner of pruning the positioning area is to consider all sensor nodes that cannot
detect the signal of the target. However, this method is inefficient, especially when there are many
sensor nodes in the network. To find the sensor nodes that cannot detect the signal of the target but can
prune the positioning area, the following mechanism is employed. First, the centroid of the coordinates
of the sensor nodes in the set Ω, denoted as Tg, is computed. In general, the centroid Tg is close to the
location of the target if the sensor nodes are uniformly deployed. The coordinates of centroid Tg are
computed using (6):

Tg(x, y) =

∑
|Ω|
i=1 Si.x

|Ω| ,
∑
|Ω|
i=1 Si.y

|Ω|

 (6)

Next, the one-hop neighbors of each sensor node βi ∈ Ωc are retrieved. These one-hop neighbors
must be included in Π = {∪Πi | i = 1, 2, 3, . . . , |Ωc|}, where Πi is the set of one-hop neighbors of the
sensor node βi. The sensor nodes in each Πi are sorted in descending order according to their distance
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to Tg. Let the sorted set of Πi be denoted by Π∗i . The following mechanism is applied to remove the
sensor nodes in Π that cannot prune the positioning area. Sensor nodes Si

k ∈ Π∗i are sequentially

selected from k = 1 to |Π∗i |, and D∗ =
∣∣∣βiSi

k

∣∣∣ is computed. The coordinates of each of βi and Si
k are

employed to define the center of a circle with the radius set to D*. If there is any sensor node Sw ∈ Π
and Sw /∈

{
βi, Si

k
}

enclosed within the intersection area of these two circles, this implies that Sw can
contribute more efficiently to the pruning area than Si

k. This is because Sw is closer to the target, and its
coverage area can completely cover the pruning area of Si

k. Therefore, Si
k is removed from the set Π∗i .
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Figure 2. Illustrating the positioning procedure of CAPPS. In this example, Ω = {r, s, t, u, v, w, x, y, z} 

and Ωc = {u, v, w, x, y, z}. (a) The coverage areas of the non-target-detecting sensor nodes {c, i, m, p} 

overlap with the positioning area. (b) The sensor nodes in the set Ω are used to compute Tg, illustrated 
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Figure 2. Illustrating the positioning procedure of CAPPS. In this example, Ω = {r, s, t, u, v, w, x, y, z}
and Ωc = {u, v, w, x, y, z}. (a) The coverage areas of the non-target-detecting sensor nodes {c, i, m, p}
overlap with the positioning area. (b) The sensor nodes in the set Ω are used to compute Tg, illustrated
by the circle located at the positioning area. The one-hop neighbors of the sensor node u are identified,
and the sorted sequence is stored in the set Π∗u = {d, a, b, c}. (c) Verify the first sensor nodes d of the set
Π∗u. The sensor node c is enclosed within the intersection area Aud. Thus, the sensor node d is removed
from the set Π∗u. (d–f). Verify the other sensor nodes a, b, and c in the set Π∗u. (g) The set of remaining
sensor nodes for pruning the positioning area Γ = {c, e, i, k, m, p}. (h) The pruned positioning area
obtained by applying the sensor nodes in the set Γ.
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This procedure continues until all sensor nodes in Π∗i are processed. The remaining sensor nodes
left in Π∗i are used to prune the positioning area. When all Π∗i are processed, the remaining sensor
nodes in each Π∗i can be represented as the set Γ, computed as in (7):

Γ =
|Ω|⋃
i=1

Π

∗

i

(7)

The sensor nodes in Γ are selected to prune the positioning area.
Figure 2 presents a simple example to illustrate this operation. We have sets Ω = {r, s, t, u, v, w, x,

y, z} and Ωc = {u, v, w, x, y, z}. The set Ω is employed to compute Tg according to (6). Its location is
represented by the circle located in the positioning area shown in Figure 2b. For the sensor nodes in
Ωc, their one-hop neighbors are Πu = {a, b, c, d}, Πv = {b, c, d, e, f }, Πw = {f, g, h}, Πx = {h, i, j}, Πy = {k, l,
m, n}, and Πz = {a, b, p}. Therefore, Π = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, p}.

For the sensor node u, its sorted one-hop neighbors are stored in the set Π∗u = {d, a, b, c}. Let Aud

be the intersection area of the two circles centered at sensor nodes u and d, each with radius D∗ =
∣∣∣ud
∣∣∣.

There is a sensor node c enclosed in Aud, as shown in Figure 2c. Therefore, the sensor node d is removed
from the set Π∗u. Next, the intersection area Aua of the circles centered at sensor nodes u and a, each
with radius D∗ =|ua|, is evaluated as shown in Figure 2d. The sensor node a is removed because
the sensor node b lies within the area Aua. The sensor node b is also removed for the same reason, as
shown in Figure 2e. Finally, the sensor node c is checked, and no sensor node is found enclosed in the
area Auc. Thus, the sensor node c is kept in the set Π∗u for pruning the positioning area, as shown in
Figure 2f.

The same procedure is applied to all βi in the set Ωc to retrieve all Π∗i
∣∣∀βi ∈ Ωc . The final set

of sensor nodes for pruning the positioning area is Γ = {c, e, i, k, m, p}, as shown in Figure 2g. The
positioning area pruned by the sensor nodes in the set Γ is shown in Figure 2h. There remain two
redundant sensor nodes in the set Γ: the sensor nodes e and k. However, this procedure efficiently
reduces the number of redundant sensor nodes significantly. The algorithm of CAPPS is presented in
Algorithm 1.

3.4. Signal Irregularity and the Centroid Point Mechanism

Whether or not a sensor node can detect the signal of the target is the critical factor for CAPPS.
However, radio signals are sensitive to environmental factors, such as temperature, obstacles, and
magnetism. The practical radio coverage of a sensor node will be similar to the irregular dashed-line
circle shown in Figure 3 rather than a perfect circle. When a sensor node cannot detect the signal of the
target, the target may be outside of the coverage area of the sensor node, or it could be inside with
environmental factors preventing the sensor node from detecting it. The latter case will lead CAPPS to
reaching the wrong decision by employing the sensor node to prune the positioning area. This causes
the target to be excluded from the possible positioning area.

As shown in Figure 3, the signal coverage area of the node y should contain the target. However,
the signal irregularity makes it unable to detect the target. When the node y is selected to prune the
positioning area, the target will be expelled from the positioning area. Let the perfect coverage area of
the sensor node y be denoted by P, and the practical area represented by the shadowed area in Figure 3
be Q. The uncertainty region (uReg) is defined as P − Q. The CP mechanism is proposed to reduce the
probability of pruning the target to be outside of the positioning area under an irregular signal scenario.
The proposed CP mechanism employs the sensor nodes in the set Ω ∪ Π to compute the centroid point
Pv. We know that if most of the deployed sensor nodes in the set Ω are concentrated at one side of
the target, these clustered sensor nodes will have many common one-hop neighbors. Conversely, the
sensor nodes of Ω on the other side will have fewer one-hop neighbors. Therefore, if the sensor nodes
in the set Π are involved in computing the centroid point, the less common one-hop neighbors will
help the sensor nodes of the set Ω that are not on the clustered side to pull the centroid point in their
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direction. Therefore, integrating the sensor nodes in the sets Ω and Π can reduce the distance bias
between Pv and the real location of the target. All sensor nodes Si ∈ Π compute the distance

∣∣PvSi
∣∣.

If
∣∣PvSi

∣∣ ≤ R + ε, then Si is removed from the set Π. Therefore, Si will not participate in pruning the
positioning area. Here, ε is computed from the positioning area obtained from the target-detecting
sensor nodes. Let this area be of size ACE obtained by applying the mechanism described in Section 3.2.

Then, ε will be
√

ACE
π . It should be noted that the probability of expelling the practical location of

the target from the positioning area can be reduced. Consequently, the positioning accuracy will be
sacrificed when we remove the sensor nodes with uncertain locations. The results are evaluated in the
simulation section.

Algorithm 1. The algorithm of CAPPS.

1. R: the maximum sensing range of a sensor node
2. Si: the ith sensor node
3. T: the target node
4. Ω: the set of sensor nodes that can receive a signal from T
5. Ci: the circle function of node i
6. //Initial
7. For Si | i = 1, 2, 3, . . . ., N {
8. If Si detects the signal of T
9. Add Si to Ω
10. Else
11. Add Si to Ψ
12. Compute the convex hull from the nodes in Ω and store the vertices in Ωc.
13. Compute the intersection area of the nodes Si ∈ Ωc, denoted as Apos.
14. For Si ∈ Ωc | i = 1, 2, 3, . . . ,|Ωc| {
15. Find the one-hop neighbors and store in each Πi.
16. }
17. Set Π = ∪Πi | i = 1, 2, 3, . . . , |Ωc|}
18. Compute the centroid point V of the sensor nodes in Ω∪Π
19. For each Πi, i = 1, 2, 3, . . . ,|Ωc| {
20. Sort the sensor nodes Sj in descending order according to length of |VSj|

21. }
22. For each Πi, i = 1, 2, 3, . . . ,|Ωc| {
23. For each Sj ∈ Πi, j = 1, 2, 3, . . . .,|Πi| {

24. Get two circles Ci and Cj that are centered at Si and Sj, respectively, with radius set to |SiSj|.

25. If any node Sw ∈ Π, Sw, {Si, Sj} is in the intersection area of Ci and Cj

26. Remove Sj from Πi

27. }
28. Denote the processed Πi as Π∗i
29. }
30. Set Π* = {Π∗1 , Π∗2 , Π∗3 , . . . , Π∗|Ωc |}

31. For each Sk ∈ Π∗i , {
32. Get Cov(Ck), the coverage area of circles Ck centered at Sk with radius R.
33. Apos = Apos – Apos ∩ Cov(Ck)
34. }
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4. Simulation Results

Next, the proposed method is simulated and compared with existing methods. The environmental
setup and simulation parameters are defined in the first subsection, and the numerical results are given
in the second. The evaluation metric includes the impacts of the number of sensor nodes and the radio
range on positioning accuracy. The computation time of the proposed method is also evaluated. By
considering a practical case, the impact signal irregularity on the positioning accuracy is also discussed.
All simulation results are the average over 2000 random deployment results.

4.1. Environment Setup

This section presents the evaluation results. Sensor nodes are randomly deployed over a
100 × 100 m2 rectangular area containing no obstacles. Each of these can obtain its accurate location
information. The numbers of sensor nodes simulated in this study are {30, 35, 40, 45, 50, 55, 60, 65}.
The simulated radio range includes {15, 20, 25, 30} m. The proposed CAPPS system is implemented
via the Java programming language. The AOA, DV-Hop, and RSSI positioning methods are also
implemented for comparison. In the AoA method, two sensor nodes are employed to locate the target.
The angle accuracy is 15◦ (±7.5◦). For the RSSI method, the error rate in converting the received signal
strength to the distance is 15%. Three sensor nodes are employed as the anchor points for applying the
triangulation location. The related parameters for these methods are listed in Table 1.

Table 1. Simulation Parameters.

Simulation Parameters Value

Size of RoI 100 × 100 m2

Shape of radio signal Perfect disk
The precision of an AoA node 15◦ (±7.5◦).

Directional antenna of an AoA node 2
Signal-to-distance transfer error in RSSI 0%–15%

Simulation attempts 2000 times
Number of deployed sensor nodes 30–65
Radio range of each sensor node 15–30 m

4.2. Numerical Results

Figure 4 depicts the positioning area sizes for RSSI, AoA, DV-Hop, and CAPPS with different
numbers of sensor nodes. In Figure 4a, the radio range of each sensor node is set to 30 m. To display
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the results clearly, the numerical results depicted in Figure 4a are listed in Table 2. When the number
of sensor nodes increases, the size of the positioning area for DV-Hop fluctuates between 608 m2

and 636 m2. Increasing the number of sensor nodes does not explicitly influence the numbers of
propagation hops from the target to the anchor points. This is because the sensor nodes are uniformly
deployed, and the density of sensor nodes is high enough to cover the entire RoI. The AoA and RSSI
methods require a constant number of anchor points to position the target. Thus, increasing the
number of sensor nodes does not introduce explicit variation in the positioning area. The size of the
positioning area fluctuates within 378–390 m2 and 136–140 m2 respectively for the two methods.Sensors 2018, 18, 4469 13 of 21 
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Table 2. The numerical results of the positioning area size (m2) in Figure 4a.

Methods
Number of Nodes 30 35 40 45 50 55 60 65

CAPPS 47 35 25 20 18 15 12 10
RSSI 140 138 137 138 136 139 137 138
AoA 385 390 386 384 390 386 378 382

DV-Hop 608 614 612 622 630 636 634 632
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For CAPPS, sensor nodes with a higher deployment density can provide more chances to prune
the positioning area. Thus, when the number of sensor nodes is 65, the size of the positioning area
is 10 m2. Compared with the case with 30 sensor nodes, where the size of the positioning area is
47 m2, the improvement is approximately 79%. In the case with 65 sensor nodes, the positioning
area of CAPPS is smaller than those of RSSI, AoA, and DV-Hop by approximately 93%, 97%, and
98%, respectively.

In Figure 4b, when the radio range of the sensor node increases to 40 m, the number of propagation
hops from the target to each anchor point in the DV-Hop method decreases. Therefore, reducing
the number of propagation hops can reduce the distance error for one hop, so that the size of the
positioning area decreases. For the AoA method, the positioning area explicitly increases as the number
of sensor nodes increases. We know that the positioning area in the AoA method is determined by
two fan sectors obtained from two different sensor nodes. Therefore, the area of a sector increases
exponentially when the radio range increases. The size of the positioning area with a radio range
of 40 m is considerably larger than that for 30 m. The RSSI method exhibits a similar trend to the
AoA method. Increasing the radio range will contribute to a larger distance estimation error, thereby
increasing the positioning area. In the CAPPS method, increasing the radio range can extend the
coverage area of each sensor node. Thus, each sensor node has a better opportunity to prune the
positioning area; therefore, the size of the positioning area is reduced. As shown in Figure 4a,b, the
size of the positioning area is between 47 m2 and 10 m2 with the radio range set to 30 m and is between
38 m2 and 6 m2 for a radio range of 40 m.

Figure 5 illustrates the influence of the radio range on the size of the positioning area. To guarantee
that the entire RoI can be covered by the sensor nodes, the number of sensor nodes in this experiment
is set to 100. The size of the positioning area for DV-Hop decreases as the radio range increases. Then,
the positioning area size fluctuates between 652 m2 and 725 m2. When a short radio range is employed,
the average number of propagation hops computed in DV-Hop increases. More propagation hops
imply more chances to introduce distance errors, because each hop may contribute to some distance
error. Therefore, the size of the positioning area increases when a shorter radio range is employed.
Conversely, when the radio range increases, the number of propagation hops decreases, and thereby
the size of the positioning area decreases.
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For the AoA method, the area of a sector increases exponentially as the radio range increases.
Therefore, the size of the positioning area increases when the radio range increases. For the RSSI
method, a larger distance estimation error is introduced as the radio range increases and in turn the size
of the positioning area increases. This is similar to the results shown in Figure 4, where the positioning
area size increases along with the radio range.
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For CAPPS, deploying more sensor nodes can counteract the drawback of a short radio range.
When the radio range is 16 m, the positioning area is approximately 18 m2. For a range of 30 m, the
area is approximately 2 m2. These results are superior to those for ranges of 10 m2 and 6 m2 with 65
sensor nodes, as shown in Figure 4a,b, respectively. Therefore, increasing radio range can reduce the
size of positioning area. This implies that the positioning accuracy can be enhanced when the radio
range of the sensor nodes is increased.

Figure 6 compares the computation times for each method. The radio range in this experiment
is 30 m, and the number of deployed sensor nodes ranges from 50 to 250. The platform to perform
these methods is equipped with an Intel I7-6700 CPU (3.4 GHz), and the memory is DDR4 2133 8 GB
RAM. The graphics card is NVIDIA GeForce GT 430. The simulation results are averaged over 100
different deployment topologies. In this figure, the execution times of the AoA and RSSI methods
do not increase when the number of sensor nodes increases. This is because the number of sensor
nodes used in computing the positioning area in both methods is constant. The execution times of
both DV-Hop and CAPPS increase as the number of sensor nodes increases.
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In the DV-Hop method, each sensor node must compute its own average propagation hops to the
anchor points. This requires less computation time when the network has fewer sensor nodes. When
the number of sensor nodes increases, the computation time increases exponentially. In the CAPPS
method, the computation overhead can be considerably reduced by first computing the one-hop
neighbors of the sensor nodes in Ωc. When the number of nodes is greater than 200, the computation
time of CAPPS becomes lower than that of DV-Hop.

In Figure 7a, the original CEPS method, C-CEPS, CAPPS*, and CAPPS are compared. The radio
range of the sensor nodes in this figure is set to 30 m. The CAPPS* is the same as the CAPPS but using
all one-hop neighboring target-undetected sensor nodes of the nodes in set Ωc to prune the positioning
area. In our simulation, the size of the positioning area is computed by counting the pixels, which are
included in the positioning area. The CAPPS method requires double the computation time of that of
C-CEPS, because CAPPS must compute the pruning area for the sensor nodes that cannot detect the
target. The computation time of CAPPS is lower than that of the original CEPS method, because many
redundant sensor nodes are discarded in the positioning procedure. Without filtering the one-hop
neighbors of the nodes in set Ωc, the CAPPS* spends more times on counting the number of pixels in
the coverage area of each sensor node. Therefore, the computation time of CAPPS* is worse than that
of the CAPPS. In addition, as the number of deployed sensor nodes grows, the computation overhead
increases quickly. In the case of 250 deployed sensor nodes, the computation time is about 1.7 times
higher than that of the CAPPS.
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Figure 7. Comparison of CEPS, C-CEPS, CAPPS* and CAPPS. (a) The computation times of the CAPPS,
CAPPS*, CEPS, and C-CEPS methods. (b) The impact of the number of deployed sensor nodes on the
positioning area. The radio range in this experiment is 20 m. (c) The impact of the radio range on the
positioning area. The number of sensor nodes in this experiment is 50.
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Figure 7b,c is the impacts of deployment density and radio range on the size of the positioning
area. In Figure 7b, the radio range is set to 20 m, and the number of sensor nodes in Figure 7c is set
to 50. For all methods, more sensor nodes can be involved in locating the target when the density
of the deployed sensor nodes increases. Therefore, the size of the positioning area decreases when
the number of sensor nodes increases. Both the CEPS and C-CEPS methods yield the same size for
the positioning area, because C-CEPS only reduces the computation time by removing redundant
sensor nodes. The CAPPS method yields a significant reduction in the size of the positioning area. The
improvement ratio is approximately between 56% and 76%. This proves that by applying the sensor
nodes that cannot detect the target to prune the positioning area, CAPPS can efficiently enhance the
positioning accuracy. The CAPPS* and CAPPS yield the same size for the positioning area. CAPPS
reduces the computation time by removing redundant one-hop neighboring sensor nodes.

Next, the signal irregularity is considered, and the number of false positioning results is evaluated.
False positioning means that the target is not enclosed within the positioning area. In this experiment,
the ratio of the signal irregularity to radio range is used to simplify complexity channel interferences
caused by the environmental factors. The worst case of signal irregularity is considered to be the
comparison. Figure 8 shows the number of false positioning results for 1000 different topologies. The
experimental results without the CP mechanism are depicted in Figure 8a, and the results with the CP
mechanism are shown in Figure 8b. The radio range in this experiment is 20 m. The degree of signal
irregularity (DoI) rates being evaluated, denoted by p, are {0.2, 0.15, 0.1, 0.05}. Here, p for the DoI
indicates that the sensor node has a 50% probability of failing to detect the target when the target is in
its uReg. The presence of the target in the uReg of a sensor node means that the distance from target
to the sensor node is between R × (1 − p) and R. For example, DoI = 0.05 indicates that the target is
within the uReg of the sensor node, and its distance to the sensor node is between 19 m and 20 m.

The number of false positioning results occurs as the number of sensor nodes increases. Sensors
within the uReg may contribute a fault detecting information to the sink. Thus, when more sensor
nodes are deployed, the probability that sensor nodes appear within the uReg increases. This causes the
number of false positioning grows. Figure 8a shows the results without applying the CP mechanism.
The number of false positioning results is more than 300, even in the case with 30 sensor nodes and a
low degree p = 0.05. When 65 sensor nodes are deployed, the number of false positioning results is
around 750, which comprises approximately three-quarters of all simulation topologies. When a high
degree p = 0.2 is employed, 450 and 920 false positioning results were obtained in the cases with 30
and 65 sensor nodes, respectively.

By applying the CP mechanism, the number of false positioning results can be significantly
reduced, and is no more than 120 in the case with 30 sensor nodes for any degree p. Furthermore,
the number of false positioning results was less than 270 in the case with 65 sensor nodes. This
result represents around a quarter of that without applying the CP mechanism. This proves that
the CP mechanism is effective in reducing the number of false positioning results in a real scenario.
The values of the corresponding confidence interval of Figure 8a,b are given in Tables 3 and 4. The
confidence interval in the case of p = 0.2 is larger than the case of p = 0.05. The scenario with higher
DoI generates more oscillation in the results because more sensor nodes may provide false information
on positioning.

Finally, different size of ε is applied to evaluate the convergence rate of the frequency of the false
positioning shown as Figure 8c. Increasing the size of ε can reduce the frequency of false positioning.
When the 1.5ε is applied, the number of false positioning is fewer than 80 that is smaller than 10% of the
total 1000 simulation times. As the 1.75ε is applied, the ratio of false positioning is less than 3% of the
total simulation times. Increasing the size of ε indicates more sensor nodes near the uncertainty region
will be removed. The sensor nodes that may provide false information of the target can be expelled so
that the frequency of false positioning can be reduced. On the contrary, the target-undetected sensor
nodes that can be used to prune the positioning area are also removed. Thus, the positioning accuracy
will be sacrificed.
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Figure 8. The frequency of false positioning vs. the number of sensor nodes. (a) The frequency of false
positioning without applying the CP mechanism. (b) The frequency of false positioning when applying
the CP mechanism. (c) The impact of the ε to the frequency of false positioning when applying the CP
mechanism. Increasing the ε can lower the frequency of the false positioning.
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Table 3. The confidence interval of Figure 8a.

p
Number of Nodes 30 35 40 45 50 55 60 65

0.2 ±9.23 ±10.98 ±13.28 ±15.09 ±17.75 ±20.54 ±23.38 ±26.09
0.15 ±6.10 ±7.92 ±8.75 ±11.23 ±12.68 ±14.03 ±15.78 ±16.73
0.1 ±4.72 ±5.80 ±6.17 ±7.41 ±8.87 ±10.30 ±11.42 ±13.17

0.05 ±3.53 ±4.76 ±5.74 ±6.76 ±8.18 ±9.09 ±10.41 ±11.46

Table 4. The confidence interval of Figure 8b.

p
Number of Nodes 30 35 40 45 50 55 60 65

0.2 ±3.68 ±5.75 ±6.62 ±7.80 ±9.19 ±10.13 ±10.61 ±11.31
0.15 ±2.99 ±3.85 ±4.79 ±5.69 ±5.98 ±6.95 ±7.58 ±8.46
0.1 ±2.23 ±3.17 ±3.75 ±4.58 ±4.97 ±5.53 ±6.20 ±6.95

0.05 ±2.02 ±2.74 ±3.43 ±4.16 ±4.49 ±4.98 ±5.81 ±5.98

We also evaluated the impact of the radio range, shown in Figure 9. The number of deployed
sensor nodes is 50, and the radio range varies between 16 m and 30 m. A short radio range can
reduce the probability of false positioning, because the introduced uReg is small. In the case when the
radio range is 16 m, the number of false positioning results is approximately 400–500 without the CP
mechanism. However, the number of false positioning results is greater than 800 when the radio range
is above 25 m. In the case of a high degree p = 0.2, the number of false positioning results is more than
98%, as shown in Figure 9a. By applying the CP mechanism, the number of false positioning results
with a radio range of 16 m becomes smaller than 125. The worst number of false positioning results in
the radio range of 30 m is no more than 340, as shown in Figure 9b. The values of the corresponding
confidence interval of Figure 9a,b are given in Tables 5 and 6. Like in Figure 8, the confidence interval
in the case of higher DoI generates more oscillation.

Table 5. The confidence interval of Figure 9a.

p
Number of Nodes 30 35 40 45 50 55 60 65

0.2 ±11.99 ±15.88 ±18.51 ±20.93 ±21.73 ±22.88 ±24.15 ±24.12
0.15 ±8.18 ±12.24 ±13.31 ±15.16 ±16.70 ±17.15 ±17.35 ±18.19
0.1 ±6.55 ±9.87 ±10.67 ±11.57 ±12.46 ±13.52 ±14.29 ±14.90

0.05 ±5.95 ±8.09 ±9.29 ±10.95 ±11.80 ±13.53 ±13.70 ±13.99

Table 6. The confidence interval of Figure 9b.

p
Number of Nodes 30 35 40 45 50 55 60 65

0.2 ±2.61 ±2.45 ±5.16 ±5.35 ±6.37 ±6.57 ±7.79 ±8.24
0.15 ±2.06 ±3.48 ±3.93 ±4.12 ±5.09 ±5.24 ±5.75 ±5.92
0.1 ±1.68 ±2.93 ±3.27 ±3.5 ±4.17 ±4.44 ±4.53 ±4.53

0.05 ±1.36 ±2.9 ±3.1 ±3.35 ±4.12 ±4.08 ±4.17 ±4.42
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Figure 9. The frequency of false positioning vs. the radio range (p is the degree of signal irregularity).
(a) The frequency of false positioning without applying the CP mechanism. (b) The frequency of false
positioning when applying the CP mechanism.

5. Conclusions

A novel range-free positioning system called CAPPS was proposed in this study. CAPPS first
employs the sensor nodes that can detect the target to obtain an approximate location of the target. Then,
this area is pruned by using the sensor nodes that cannot detect the target. To reduce the computation
time, CAPPS refines the set of sensor nodes used to prune the positioning area. Considering the
application to a practical scenario, the signal irregularity was also evaluated, and a CP mechanism
was proposed to resolve the false positioning problem. Simulation results demonstrated that CAPPS
achieves a higher positioning accuracy than the DV-Hop, AoA, and RSSI methods. The rate of
improvement to the size of the positioning area is greater than 93%. In the irregular signal scenario,
applying the CP mechanism can efficiently reduce the number of false positioning results from
50%–95% to 10%–30%.
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