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Abstract: This paper focuses on the localization methods for multiple sources received by
widely separated arrays. The conventional two-step methods extract measurement parameters
and then estimate the positions from them. In the contrast to the conventional two-step methods,
direct position determination (DPD) localizes transmitters directly from original sensor outputs
without estimating intermediate parameters, resulting in higher location accuracy and avoiding
the data association. Existing subspace data fusion (SDF)-based DPD developed in the frequency
domain is computationally attractive in the presence of multiple transmitters, whereas it does not use
special properties of signals. This paper proposes an improved SDF-based DPD algorithm for strictly
noncircular sources. We first derive the property of strictly noncircular signals in the frequency
domain. On this basis, the observed frequency-domain vectors at all arrays are concatenated and
extended by exploiting the noncircular property, producing extended noise subspaces. Fusing the
extended noise subspaces of all frequency components and then performing a unitary transformation,
we obtain a cost function for each source location, which is formulated as the smallest eigenvalue of a
real-valued matrix. To avoid the exhaustive grid search and solve this nonlinear function efficiently,
we devise a Newton-type iterative method using matrix Eigen-perturbation theory. Simulation results
demonstrate that the proposed DPD using Newton-type iteration substantially reduces the running
time, and its performance is superior to other localization methods for both near-field and far-field
noncircular sources.

Keywords: array signal processing; passive localization; direct position determination (DPD);
noncircular source; frequency domain; extended subspace data fusion (SDF); Newton-type iteration

1. Introduction

Noncircular complex signals (e.g., binary-phase-shift-keying (BPSK),
multiple-amplitude-shift-keying (MASK) and offset-quadrature-phase-shift-keying (OQPSK)
modulated signals) are extensively employed in modern communication systems. During the last few
years, the algorithms for noncircular complex sources with application to signal processing [1–7] have
received an upsurge of attention. Different from circular signals, the unconjugated statistical property
of noncircular complex signals adds to the amount of available information, which can help to enhance
the performance. Since many communication systems offer location-based services, the problem of
accurate localization for noncircular sources is worth further investigation.

Conventional localization methods employ two-step processing [8–11], where the measurement
parameters (e.g., direction of arrival (DOA), time of arrival (TOA) and frequency difference of
arrival (FDOA)) are first extracted, and then, the source positions are estimated. In the first step,
parameter estimation algorithms for noncircular (NC) signals such as the NC-MUSIC algorithm
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(multiple signal classification algorithm for noncircular signals) [5] can improve the accuracy, due to
the exploitation of the noncircular property. However, the localization algorithm in the second step
cannot utilize the properties of signals. Moreover, when multiple sources exist, the two-step localization
system confronts the association problem of deciding which of the multiple measurements reported
by the observers corresponds to which source. If the measurements are not correctly related to the
transmitter, additional errors are produced. As a consequence, these conventional two-step methods
are suboptimal and cannot guarantee high localization precision for noncircular sources.

Compared with the conventional two-step methods, direct position determination (DPD) [12–22]
is a single-step localization method without computing the intermediate parameters and augments
the position estimation with the constraint that all measurements correspond to the same geolocation
of the transmitter. Therefore, DPD can avoid the association problem, and its location accuracy has
shown to be significantly higher than that of the conventional two-step methods, especially under
low signal-to-noise ratio (SNR) conditions [13]. However, the DPD technique often requires the
transmission of the sampling data to a central processing location and yields a large amount of
computations [16].

Nowadays, DPD algorithms applied to the scenario of widely-separated arrays have been
intensively investigated [13–18]. A maximum likelihood (ML)-based DPD algorithm was presented
in [16], where the locations of multiple sources are decoupled into several lower dimensional
optimization problems with the information of uncorrelated waveforms. However, in passive
localization systems, signal waveforms are always unknown at the receiver. When solving ML
estimators for multiple sources without known waveforms, there is a variety of stray parameters,
which requires a substantial computational effort. To this end, Amar and Weiss proposed an iterative
algorithm for DPD of multiple unknown signals to reduce the complexity [17]. Although this ML
estimator can approach the associated Cramér–Rao bound, its iterative procedure is complicated as it
has to perform a grid search during each iteration.

To make the localization computationally attractive for multiple transmitters, an alternative
method is the subspace data fusion (SDF). It has lower computational complexity than ML methods,
due to the fact that all source positions are estimated from a MUSIC-like cost function that depends
on the parameters of the same dimension as that for only one source. Two SDF-based DPDs were
developed in [16] and [18], respectively. One is based on the time domain and implicitly uses the
array responses [18], and the other processes the frequency-domain observations and relies on the
assumption that the envelopes of the signals are the same at all observers, up to delay and amplitude
caused by the propagation channel [16]. Therefore, the latter can exploit the location information
embedded in both array responses and TOAs, leading to higher accuracy. However, these SDF-based
DPD algorithms were designed for general sources (i.e., circular signals) and did not consider the
property of noncircular signals. For this reason, we proposed an SDF-based DPD for strictly noncircular
sources observed by a moving array in our early work [19], which exploits the time-domain property
of noncircular signals. It can be easily adapted to the scenario of widely-separated arrays. Note that
similar to the SDF-based DPD in [18], the DPD developed in our previous work utilizes only the array
responses, neglecting the location information in the propagation time between the transmitter and
the observer.

In light of the aforementioned related works, in this study, we consider the scenario of
widely-separated arrays and assume a line of sight (LOS) propagation of multiple signals with
unknown waveforms and unknown complex attenuation at each observer array. The purpose of
this study is to develop an efficient SDF-based DPD method in the frequency domain for noncircular
sources. The contributions of this paper can be summarized as follows:

• We derive the frequency-domain property of strictly noncircular signals and propose an improved
SDF estimator. Based on this noncircular property, we establish an extended frequency-domain
observation received by all arrays and compute the extended subspaces, which are implicitly
related to array responses and TOAs. Fusing the extended subspaces of all frequency components,
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a cost function is formulated as the smallest eigenvalue of a symmetric real-valued matrix for each
source location, due to a unitary transformation. Therefore, the real-valued eigen-decomposition
is required instead of complex computations. Compared with the primitive SDF-based DPDs,
this improved SDF estimator retains its superiority for requiring low-dimensional optimization
and has higher robustness to noise that comes from exploiting noncircularity.

• We devise a Newton-type iterative algorithm to efficiently solve the prescribed cost function
based on matrix Eigen-perturbation theory. It substantially reduces the computations of
the straightforward implementation of the optimization for each position, which is always
accomplished via a two- or three-dimensional grid search.

The remainder of this paper is organized as follows. Section 2 presents the signal model and
formulates the problem. In Section 3, we propose the extended SDF DPD estimator for noncircular
sources and devise a Newton-type iterative solution. In Section 4, we show the simulation results and
make the discussion. Section 5 concludes the study.

Throughout the paper, upper case and lower case boldface letters will represent matrices and
column vectors, respectively. For convenience, we list the notations used in this paper:

{·}∗ Conjugate.
{·}T Transpose.
{·}H Conjugate transpose.
blkdiag{·} Composition of the block diagonal matrix.
diag{·} Composition of the diagonal matrix.

vec{·} The “vectorization” operator that turns a matrix into a vector by
stacking the columns of the matrix, one below another.

⊗ Kronecker matrix product.
E[·] Expectation.
tr{·} Trace.
Re{·} Real part.
Im{·} Imaginary part.
[·]n The n-th element of a vector.
[·]nm The n,m-th entry of a matrix.
‖ · ‖2 Euclidean norm.
CN×M Set of the N ×M complex matrices.
RN×M Set of the N ×M real matrices.

2. Problem Formulation

2.1. Property of the Noncircular Signal

A signal is normally circular when an arbitrary rotation cannot change its first-order and
second-order statistical characteristics, namely rotation invariance. If a signal’s property of rotation
invariance is not satisfied, then we take it as a noncircular signal. For a straightforward description,
let s(n) be a zero-mean signal, s(n) is considered to be circular with the condition “E[|s(n)|2] 6= 0 and
E[s2(n)] = 0”, whereas s(n) is referred to as being noncircular with the condition “E[|s(n)|2] 6= 0 and
E[s2(n)] 6= 0”. Specifically, a strictly noncircular signal can be generated through a phase shift of a
real-valued signal [23]. According to this property, we assume s(n) to be a strictly noncircular signal,
and therefore, it can be generated as [23]:

s(n) =
^
s (n)eiφ, (1)

where
^
s (n) is a real-valued signal and φ signifies the initial phase of s(n).
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Using this time-domain property of a strictly noncircular signal, we can express the discrete
Fourier transform (DFT) of s(n) as follows:

s(j) =
J−1
∑

n=0
s(n) exp (−i2πnj/J)

=
J−1
∑

n=0

^
s (n)eiφ exp (−i2πnj/J) j = 0, 1, . . . , J − 1,

(2)

where s(j) is the q-th DFT coefficient of s(n). The conjugate of s(j) is given by:

s∗(j) =
J−1

∑
n=0

^
s (n)e−iφ exp (i2πnj/J) 0, 1, . . . , J − 1. (3)

Using exp (i2πnj/J) = exp (−i2πn(J − j)/J), we rewrite (3) by:

s∗(j) =
J−1
∑

n=0

^
s (n)e−iφ exp (−i2πn(J − j)/J)

= e−i2φ
J−1
∑

n=0

^
s (n)eiφ exp (−i2πn(J − j)/J) j = 0, 1, . . . , J − 1.

(4)

Based on (2), we have:

s(J − j) =
J−1

∑
n=0

^
s (n)eiφ exp (−i2πn(J − j)/J). (5)

Combing (4) and (5), it can be checked that:

s∗(j) = s(J − j)e−i2φ j = 0, 1, . . . , J − 1. (6)

The equation related to the frequency-domain signals as shown in (6) lays the foundation of
subsequent theoretical development.

2.2. Frequency-Domain Signal Model and Problem Formulation

Let us consider L stationary observers, each of whom is equipped with an antenna array
comprising M isotropic sensors. Q transmitters are assumed to radiate uncorrelated narrowband and
strictly noncircular signals in the field of interest. We denote pq ∈ RD×1 as the position of the q-th
transmitter for q = 1, 2, . . . , Q. The complex envelope of the outputs of the l-th observer array at time
0 ≤ t ≤ T is expressed as [16,17]:

rl(t) =
Q

∑
q=1

bqlal(pq)sq(t− τl(pq)− tq0) + nl(t) (7)

for l = 1, 2, . . . , L. Here, sq(t − τl(pq) − tq0) is the complex envelope of the q-th source signal,
transmitted at time tq0 and delayed by τl(pq), which indicates the propagation time between the
q-th transmitter and the l-th observer. We assume that the source signals are wide-sense stationary.
bql is the unknown complex attenuation coefficient representing the channel effect between the q-th
transmitter and the l-th observer. al(pq) is the spatial array response of the l-th observer array to
the signal transmitted from the position pq, which is related to the corresponding DOA. nl(t) is the
white and circularly Gaussian noise mixed through the l-th observer array. The sources and noises are
assumed to be uncorrelated and to have a mean of zero.
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Similarly to [16], we partition rl(t) (0 ≤ t ≤ T) into K sections, and each length equals T/K.
Then, sample the signals of each section at time intervals jTs(j = 0, 1, . . . , J − 1) where Ts represents
the sampling period. Thus, the DFT of the J samples in the k-th section can be expressed as [16]:

rl(j, k) =
Q

∑
q=1

bqlal(pq)sq(j, k) exp (−i2πτl(pq)j/JTs) + nl(j, k) j = 0, 1, . . . , J − 1, (8)

where sq(j, k) and nl(j, k) are the j-th DFT coefficients of sq(t − tq0) and nl(t) in the k-th section,
respectively. For convenience of presentation, we define:

al(j, pq) = al(pq) exp (−i2πτl(pq)j/JTs), (9)

and rewrite rl(j, k) by:

rl(j, k) =
Q

∑
q=1

bqlal(j, pq)sq(j, k) + nl(j, k) j = 0, 1, . . . , J − 1. (10)

We now composite the j-th DFT coefficients of all the outputs of L observer arrays and obtain:

r(j, k) = [rT
1 (j, k), rT

2 (j, k), . . . , rT
L(j, k)]T

=
Q
∑

q=1
Γ(j, pq)bqsq(j, k) + n(j, k)

=
Q
∑

q=1
αq(j)sq(j, k) + n(j, k),

(11)

where:
n(j, k) = [nT

1 (j, k), nT
2 (j, k), . . . , nT

L(j, k)]
T

, (12)

Γ(j, pq) = blkdiag{a1(j, pq), a2(j, pq), . . . , aL(j, pq)}, (13)

bq = [bq1, bq2, . . . , bqL]
T, (14)

αq(j) = Γ(j, pq)bq. (15)

Let us denote Φ(j) = [α1(j), α2(j), . . . , αQ(j)] ∈ CLM×Q and s(j, k) = [s1(j, k), s2(j, k), . . . , sQ(j, k)]T.
Then, r(j, k) can be further expressed in the matrix form as:

r(j, k) = Φ(j)s(j, k) + n(j, k). (16)

Therefore, the covariance matrix of r(j, k) can be written as:

Rr(j) = E[r(j, k)rH(j, k)] = Φ(j)Rs(j)ΦH(j) + σ2
n ILM. (17)

where Rs(j) = E[s(j, k)sH(j, k)], σ2
n denotes the noise power and ILM signifies the LM × LM

identity matrix.
Note that Φ(j) is associated with both DOAs and TOAs, and therefore, it contains the location

information. The SDF DPD based on the frequency domain [16] relies on the general signal model
as shown in (17), which cannot take full advantage of the signal properties. To this end, we come to
exploit the noncircularity of signals derived in Section 2.1.

As the conjugate of r(j, k) can be expressed as:

r∗(j, k) = Φ∗(j)s∗(j, k) + n∗(j, k), (18)
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applying (6) to (18) leads to:

r∗(j, k) = Φ∗(j)∆φs(J − j, k) + n∗(j, k), (19)

where ∆φ = diag{e−i2φ1 , e−i2φ2 , . . . , e−i2φQ} with φq being the initial phase of the q-th strictly
noncircular source. Replacing j with J − j in (19), it follows that:

r∗(J − j, k) = Φ∗(J − j)∆φs(j, k) + n∗(J − j, k), (20)

for j = 0, 1, . . . , J − 1. Note that r∗(J, k) = r∗(0, k) as the DFT coefficient is periodic with the period J.
By exploiting the unconjugated property of noncircular signals, we combine (16) and (20),

and therefore construct the extended observation:

r̃(j, k) = [rT(j, k), rH(J − j, k)]
T
= Φ̃(j)s(j, k) + n(j, k), (21)

where n(j, k) = [nT(j, k), nH(J − j, k)]T and Φ̃(j) = [ΦT(j), ∆T
φΦH(J − j)]T ∈ C2LM×Q, whose q-th

column is given by:
α̃q(j) = Γ̃(j, pq)b̃q, (22)

with:
Γ̃(j, pq) = blkdiag

{
Γ(j, pq), Γ∗(J − j, pq)

}
, (23)

b̃q = [bT
q , bH

q e−i2φq ]
T

. (24)

Then, the covariance matrix of the extended observation r̃(j, k) has the following form:

Rr̃(j) = E[r̃(j, k)r̃H(j, k)] = Φ̃(j)Rs(j)Φ̃H(j) + σ2
n I2LM. (25)

Until now, we have obtained the frequency-domain data model for our work as shown in (25). It is
noteworthy that the dimension of the extended covariance matrix Rr̃(j) is twice that of the covariance
matrix Rr(j) for circular signals, leading to more available information. To this end, we will apply Rr̃(j)
to our problem. The problem that we address now is, given Rr̃(j) for j = 0, 1, . . . , J − 1, to directly
estimate the locations of multiple transmitters without explicitly computing TOAs and DOAs.

3. Methods

3.1. Extended SDF

Based on (25), the eigen-decomposition of Rr̃(j) yields:

Rr̃(j) = Us
k(j)Σs

k(j)UsH
k (j) + σ2

nUn
k (j)UnH

k (j), (26)

where Σs
k(j) is a diagonal matrix with diagonal elements of the Q largest eigenvalues of Rr̃(j).

Us
k(j) ∈ C2LM×Q is the extended signal subspace comprising the eigenvectors corresponding to the

Q largest eigenvalues, and it spans the same space as Φ(j) [5,16,19]. Un
k (j) ∈ C2LM×(2LM−Q) is the

extended noise subspace consisting of the eigenvectors corresponding to the 2LM − Q smallest
eigenvalue σ2

n.
According to the subspace orthogonality principle [5,16,19], namely the columns of Φ(j) are

orthogonal to the noise subspace of Rr̃(j), we have:

α̃H
q (j)Un

k (j)UnH
k (j)α̃q(j) = 0 j = 0, 1, . . . , J − 1 (27)
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for q = 1, 2, . . . , Q. Fusing J DFT components leads to:

J−1

∑
j=0

α̃H
q (j)Un

k (j)UnH
k (j)α̃q(j) = 0. (28)

Inserting (22) into (28), it follows that:

b̃H
q Q(pq)b̃q = 0, (29)

where Q(pq) is expressed as:

Q(pq) =
J−1

∑
j=0

Γ̃
H
(j, pq)U

n
k (j)UnH

k (j)Γ̃(j, pq) ∈ C2L×2L. (30)

It is noteworthy that b̃q in (29) is formulated as b̃q = [bT
q , bH

q e−i2φq ]
T

. Next, we will utilize this
structure of b̃q to transform the complex-valued equation in (29) into a real-valued one.

We now rewrite (29) by:

(b̃qeiφq)
H

Q(pq)b̃qeiφq = b̃′
H
q Q(pq)b̃

′
q = 0, (31)

where b̃′q = b̃qeiφq . As b̃q = [bT
q , bH

q e−i2φq ]
T

, b̃′q can be given by:

b̃′q = [b′Tq , b′Hq ]
T

(32)

with b′q = bqeiφq . Based on (32), we perform a unitary transformation of b̃′q to establish a real-valued
vector:

^
b q =

1√
2

Tb̃′q, (33)

where T is the unitary matrix:

T =
1√
2

[
IL IL
−iIL iIL

]
, (34)

and thus,
^
b q can be expressed in the form of (35):

^
b q =

[
Re{b′Tq }, Im{b′Tq }

]T
. (35)

Since THT = I2L, it follows that:

b̃′q =
√

2QH
^
b q. (36)

Substituting (36) back into (31), we get:

^
b

H

q Q′(pq)
^
b q = 0, (37)

where:
Q′(pq) = TQ(pq)T

H ∈ C2L×2L. (38)
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Given that
^
b q is real-valued, we rewrite the left side of the equation in (37) by:

^
b

H

q Q′(pq)
^
b q

=
^
b

T

q (Re{Q′(pq)}+ iIm{Q′(pq)})
^
b q

=
^
b

T

q Re{Q′(pq)}
^
b q + i

^
b

T

q Im{Q′(pq)}
^
b q.

(39)

Due to the fact that
^
b

H

q Q′(pq)
^
b q is real-valued, we discard the imaginary term, i

^
b

T

q Im{Q′(pq)}
^
b q,

in (39). Then,
^
b

H

q Q′(pq)
^
b q is equivalent to:

^
b

H

q Q′(pq)
^
b q =

^
b

T

q Re{Q′(pq)}
^
b q. (40)

According to the above derivation, the complex-valued equation in (29) is transformed into the
following real-valued equation:

^
b

T

q Re{Q′(pq)}
^
b q = 0. (41)

We now replace Un
k (j) with Ûn

k (j), which is computed by the eigen-decomposition of the estimated
Rr̃(j):

R̂r̃(j) =
1
K

K

∑
k=1

r̃(j, k)r̃H(j, k). (42)

Then, the following optimization model presents the solution for pq and
^
b q:

{p̂q,
ˆ̂
b q} = argmin

p,
^
b

^
b

T
Re{Q′(p)}

^
b . (43)

We observe that the estimation of
^
b q is the eigenvector corresponding to the smallest eigenvalue of

Re{Q′(p)}, and the estimation of pq is the point that minimizes the smallest eigenvalue of Re{Q′(p)}.
Consequently, the position of the q-th transmitter can be obtained by:

p̂q = argmin
p

f (p) (44)

for q = 1, 2, . . . , Q, where:
f (p) = λmin

{
Re{Q′(p)}

}
. (45)

Here, λmin{·} signifies the smallest eigenvalue of the input matrix. As f (p) is a nonlinear function
in terms of the source position, the minimization of f (p) is usually accomplished by a D-dimensional
grid search.

3.2. Iterative Solution

When the area of interest is large and the grid step size is small, the grid search is computationally
demanding. To locate the transmitters quickly, we will devise a Newton-type iterative method to
efficiently solve the proposed cost function for each source location. As is known to all, the Newton-type
iterative method provides an efficient way to solve nonlinear optimization problems [24]. It requires
computing the gradient and Hessian matrix of the cost function, which is quite easy if the cost function
is explicitly written. However, the cost function in (45) is the smallest eigenvalue of a symmetric matrix,
whose gradient and Hessian matrix cannot be obtained straightforwardly. Therefore, we apply the
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matrix Eigen-perturbation theory to derive the gradient and Hessian matrix of (45) for each source
position. For this purpose, a proposition needs to be introduced first.

Proposition 1. Assume a symmetric real-valued matrix X ∈ RN×N with λmin = λ1 ≤ λ2 ≤ · · · ≤
λN = λmax being its eigenvalues and e1, e2, . . . , eN being the corresponding eigenvectors. Denote δX as the
perturbation of X, and hence X̂ = X + δX where δX and X̂ are also symmetric. Then, the eigenvalues of the
perturbed matrix X̂, λ̂min = λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂N = λ̂max, can be expressed as [25]:

λ̂n = λn + eT
nδXen + eT

nδXEnδXen + o
(
‖δX‖2

2

)
(n = 1, 2, . . . , N), (46)

where:

En =
N

∑
m = 1
m 6= n

(λn − λm)
−1emeT

m (n = 1, 2, . . . , N), (47)

and o
(
‖δX‖2

2

)
signifies the infinitesimal term of ‖δX‖2

2. This proposition reveals the relationship between the
matrix perturbation and the eigenvalues of the disturbed matrix. The proof of (46) can be found in [25].

Now, let us denote X(p) = Re{Q′(p)}, whose eigenvalues and eigenvectors are λ1 ≤ λ2 ≤
· · · ≤ λ2L and e1, e2, . . . , e2L. Define δp as the perturbation of p and p̂ = p + δp as the perturbed
position. Then, the eigenvalues and eigenvectors of X̂(p̂) are λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂2L and ê1, ê2, . . . , ê2L,
respectively. Denoting δX = X̂(p̂) − X(p), we obtain the following equation according to the
above proposition:

λ̂1 = λ1 + eT
1 δXe1 + eT

1 δXE1δXe1 + o
(
‖δX‖2

2

)
, (48)

in which:

E1 =
2L

∑
m=2

(λ1 − λm)
−1emeT

m. (49)

Applying vec{ABC} = (CT⊗ A)vec{B} and tr{ABCD} = vecT{DT}(CT⊗ A)vec{B} (see [26]),
(48) can be further expressed as a function of δx = vec{δX}:

λ̂1 = λ1 + vec{eT
1 δXe1}+ tr{e1eT

1 δXE1δX}+ o
(
‖δX‖2

2

)
= λ1 + (eT

1 ⊗ eT
1 )δx + δxT(E1 ⊗ e1eT

1 )δx + o
(
‖δx‖2

2

)
.

(50)

where the symmetry of E1 and δX is used.
Note that λ̂1 is the cost function of the proposed estimator, and therefore, our purpose is to link

δp to λ̂1. As (50) displays the relationship between δx and λ̂1, we proceed to derive the relationship
between δx and δp in what follows.

Denote x(p) = vec{X(p)} and x̂(p̂) = vec{X̂(p̂)}. Based on the result in [27], we can take the
second-order Taylor expansion of x̂(p̂) around p as:

x̂(p̂) = x(p) +
.

Xp(p)δp +
1
2
(I4L2 ⊗ δpT)

..
X pp(p)δp + o

(
‖δp‖2

2

)
, (51)

where:
.

Xp(p) =
∂x(p)
∂pT ∈ R4L2×D (52)
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and:

..
X pp(p) =



∂2[x(p)]1
∂p∂pT

∂2[x(p)]2
∂p∂pT

...
∂2[x(p)]4L2

∂p∂pT

 ∈ R4L2D×D. (53)

For the further derivations of (52) and (53), see Appendixs A and B, respectively.
As δx = x̂(p̂)− x(p), according to (51), we can relate δx with δp:

δx =
.

Xp(p)δp +
1
2
(I4L2 ⊗ δpT)

..
X pp(p)δp + o

(
‖δp‖2

2

)
. (54)

Then, substituting (54) back into (50) yields:

λ̂1 = λ1 + (eT
1 ⊗ eT

1 )δx + δxT(E1 ⊗ e1eT
1 )δx + o

(
‖δx‖2

2

)
= λ1 + (eT

1 ⊗ eT
1 )

.
Xp(p)δp+

1
2 (e

T
1 ⊗ eT

1 )(I4L2 ⊗ δpT)
..
X pp(p)δp + δpT

.
X

T
p(p)(E1 ⊗ e1eT

1 )
.

Xp(p)δp + o
(
‖δp‖2

2

)
.

(55)

Because:
(eT

1 ⊗ eT
1 )(I4L2 ⊗ δpT)

..
X pp(p)δp = δpT(eT

1 ⊗ eT
1 ⊗ ID)

..
X pp(p)δp, (56)

(55) is equivalent to:

λ̂1 = λ1 + (eT
1 ⊗ eT

1 )
.

Xp(p)δp + 1
2 δpT

{
(eT

1 ⊗ eT
1 ⊗ ID)

..
X pp(p) + 2

.
X

T
p(p)(E1 ⊗ e1eT

1 )
.

Xp(p)
}

δp + o
(
‖δp‖2

2

)
= λ1 + gT(p)δp + 1

2 δpTH(p)δp + o
(
‖δp‖2

2

)
,

(57)

where g(p) and H(p) are given by:

g(p) =
.

X
T
p(p)(e1 ⊗ e1) (58)

and:
H(p) = (eT

1 ⊗ eT
1 ⊗ ID)

..
X pp(p) + 2

.
X

T
p(p)(E1 ⊗ e1eT

1 )
.

Xp(p). (59)

Finally, applying the result in (57) to the objective function in (45), we can express f (p̂) in terms
of the second-order perturbation of δp as follows:

f (p̂) = f (p) + gT(p)δp +
1
2

δpTH(p)δp + o
(
‖δp‖2

2

)
. (60)

It can be seen from (60) that g(p) and H(p) are the gradient and Hessian matrix of f (p),
respectively. Therefore, we can get the estimation of pq following the Newton-type iterative
procedure [28]:

p̂(i+1)
q = p̂(i)

q − µi H−1(p̂(i)
q )g(p̂(i)

q ), (61)

where the superscript i denotes the iteration number and µ is the step factor deciding the iteration
step size. In this way, each transmitter can be located when an initial position is given. Note that the
variable step size is used to solve the contradiction between convergence speed and misadjustment,
which is usually encountered in the case of fixed step size.

To summarize this iterative process, we provide the procedure below:
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Method: Eigen-Perturbation-Based Newton-Type Iterative Method

1: Set e as a positive number that is small enough. Then, choose a suitable K ∈ Z+ and J ∈ Z+ Z+ denotes
the set of positive integers), and compute the DFT of the observed samples.

2: Use (42) to estimate the extended covariance matrix R̂r̃(j) for j = 0, 1, . . . , J − 1..
3: Compute the eigenvectors corresponding to the 2LM−Q smallest eigenvalues of R̂r̃(j) for

j = 0, 1, . . . , J − 1 and thus obtain the extended noise subspaces Ûn
k (j) for j = 0, 1, . . . , J − 1.

4: for q = 1,2, . . . ,Q do

5: Initialize p̂(0)
q , and make i← 0 .

6: Insert p̂(i)
q into (58) and (59) to compute g(p̂(i)

q ) and H(p̂(i)
q ).

7: Compute ∆i = ‖g(p̂(i)
q )‖2. If ∆i ≤ e, p̂(i)

q is the estimated source position, and stop iterating;
otherwise, continue.

8: Use (61) to update p̂(i+1)
q . Make i← i + 1 , and go to Step 6.

9: end for

Remark 1. Similarly to existing SDF-based DPDs, the method proposed above has an advantage over ML-based
methods in the presence of multiple transmitters as it estimates the positions in a decoupled manner. Different
from ML functions, which have only one global extremum, our cost function exhibits a few minima at the
estimated source positions. Considering that the Newton-type iteration is a local search method and is bound
to converge to a local minimum, we use it as a fast converging search procedure instead of the fine search. The
initial guess will determine the position to which source the converging local minimum corresponds. Therefore,
our iterative method for solving the proposed cost function relies on the initialization to resolve multiple sources,
whereas the optimization methods for solving the ML functions require a good initial guess to avoid the local
minima. For the initialization of our iterative method, the initial position of each transmitter can be effectively
obtained through a coarse search as long as it can separate multiple sources. This can guarantee the accurate and
fast localization.

3.3. Computational Complexity

The main computational costs of the proposed methods using exhaustive grid search and
using Newton-type iteration and the SDF DPD method for circular sources based on the frequency
domain [16] include four parts, i.e., computing the DFT, estimating the covariance matrix,
performing the eigen-decomposition and solving the cost function. Table 1 lists the order of the
number of real-valued multiply operations in each part consumed by the aforementioned methods,
where Np denotes the number of position grid points and Niter represents the iteration number required
for convergence.
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Table 1. Computational complexity.

Method
Complexity

Comments
Computing DFT Estimating Covariance Matrix Eigen-Decomposition Solving Cost Function

SDF-based DPD in [16] O(2LMKJ log2 J) O(4L2 M2KJ) O(4L3 M3 J) O((4L2 M2QJ + 6L2 M2 J + 8L3)QNp) - For Q circular sources

Proposed DPD using
exhaustive search O(2LMKJ log2 J) O(16L2 M2KJ) O(32L3 M3 J) O

((
8L3(M2 + M)J−

8L2(M + 1)QJ + 8L3

)
QNp

)
- For Q strictly noncircular
sources

Proposed DPD using
Newton-type iteration O(2LMKJ log2 J) O(16L2 M2KJ) O(32L3 M3 J) O




(8L3(M2 + M)J−
8L2(M + 1)QJ)(D + 1)2+

4L2D2 + 8L3 + 4L2D+
4LD2 + D3 + 2LD

QNiter


- For Q strictly noncircular
sources
- Complexity for initialization
is not included
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As shown in Table 1, the SDF-based DPD in [16] is more computationally efficient than the
proposed DPD using the exhaustive search because the dimension of the covariance matrix employed
in our algorithm is twice as large as the dimension of the covariance matrix used in [16]. On the other
hand, the complexity of the proposed DPD using Newton-type iteration is much lower than that of the
exhaustive search implementation since Np is usually much larger than Niter. For further comparison,
we will examine their computer running times through the simulations described in Section 4.

4. Results

The purpose of this section is to present the simulation results and performance analysis relying
on Monte Carlo simulations. We consider the scenario of three observers located at the positions
[3,3]T(km), [3,−3]T(km) and [−3, 3]T(km). Each observer is equipped with a uniform linear array
(ULA) composed of M = 3 sensors. The adjacent sensors are spaced with 0.5λ, where λ denotes
the wavelength. Without loss of generality, we assume two transmitters in the field of interest.
They arrive at observers with attenuation coefficient vectors being b1 = [10.94 + 0.34i,0.77 + 0.64i]T

and b2 = [10.87 + 0.5i,0.77 + 0.64i]T, respectively. The baseband signal waveforms are generated
as narrowband strictly noncircular signals with identical power σ2

s , whose initial phases are
φ1 = π/5(rad) and φ2 = π/3(rad). The noises are uncorrelated, circularly symmetric Gaussian
random variables with constant power σ2

n. Unless stated otherwise, each observer collects signals in
K = 50 sections each of J = 16 frequencies using a sample rate of 40k (samples/s). For comparison,
we invoke the following five estimators:

• Proposed DPD estimator using the devised Newton-type iterative method.
• Proposed DPD estimator using the exhaustive search.
• SDF-based DPD estimator for general circular sources in the frequency domain [16] (denoted by

FD-DPD).
• SDF-based DPD estimator for noncircular sources in time domain [19] (denoted by NC TD-DPD).
• Two-step processing estimator: DOA estimation using the NC-MUSIC algorithm [5] and TOA

estimation using the ML criterion for noncircular signals [7] at each observer, and pseudo-linear
weighted least square localization with the DOA and TOA estimates from all observers used as
the data, where DOA and TOA estimates are assumed to be associated with the correct transmitter
(denoted by two-step).

In the simulations, the exhaustive search of DPD estimators is implemented through a coarse
search with a 0.01-km resolution and then a fine search with a 0.001-km resolution. For the Newton-type
iterative method, the positions are initialized using a coarse search with a 0.1-km resolution, which is
capable of resolving sources, as will be shown later on. The step factor is µ = 0.9. Under different
experimental conditions, each simulation is conducted in 1000 Monte Carlo trials, and the location
root mean square error (RMSE) is used to assess the localization performance:

RMSEq =

√√√√ 1
1000

1000

∑
n=1
‖pq − p̂n,q‖2 (62)

for the q-th source, where p̂n,q denotes the estimation of pq in the n-th Monte Carlo trial.
This section will show the performance of the proposed algorithms in seven examples. We begin

with an analysis of the initial condition and the convergence performance of our Newton-type iterative
method. Two near-field sources are assumed to be located at p1 = [1,−1]T (km) and p2 = [0, 2]T (km),
and the corresponding scenario is shown in Figure 1. For different SNRs, we assess the inverse
cost function of the proposed estimator over the candidate positions with a 0.1-km resolution.
Figure 2 displays the corresponding evaluation of the inverse cost function within a square area
of 2 × 2 (km × km) around the true positions of the two transmitters at SNR = 0 dB. It can be
seen that the maximum of the inverse cost function appears near the true position of each source,
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and there is no pseudo peak in this area, which indicates that the coarse search with a 0.1-km resolution
can provide the effective initial positions. Then, we evaluate the normalized Euclidean norm of the
gradient for each source versus the number of iteration steps, when the SNR is −10 dB, 0 dB and 10 dB,
respectively. As shown in Figure 3, fewer than six iterations are required for convergence in the whole
range of SNRs.
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Figure 2. Evaluation of the inverse cost function over the area around the true positions of near-field 
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In the second example, for the simulation conditions given above, we roughly evaluate the
computer running time of each of the prescribed location algorithms based on an average of
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1000 estimates, when the SNR is 0 dB. The computer machine used is a ThinkPad laptop equipped
with a 2.50-GHz Intel Core CPU and 8 GB RAM. The results are listed in Table 2. To make our results as
comprehensive as possible, we also implement the fine search through the Nelder–Mead simplex search
approach [29], which is a kind of local search method, and compare its average running time with that
of the proposed Newton-type iterative method. We note that the complexity of our algorithm using the
exhaustive grid search is larger than those of other approaches. As expected, our iterative method is the
most computationally attractive among the six algorithms, and it accomplishes the location in about
two thirds of the time required for the Nelder–Mead simplex search. Compared with the exhaustive
search implementation, the running time of our iterative method is reduced by approximately ten
times. This result agrees with the analysis in Section 3.3.

Table 2. Average runtime for near-field sources. FD, frequency domain; TD, time domain;
NC, noncircular.

Method Runtime (s)

Proposed DPD (Newton-type Iterative Method) 0.0818
Proposed DPD (Exhaustive Grid Search) 0.7802

Proposed DPD (Nelder–Mead Simplex Search) 0.1231
FD-DPD 0.5274

NC TD-DPD 0.5070
Two-step 0.3120

The third example will assess the accuracy of our algorithm for the near-field sources as shown in
Figure 1. We plot the RMSE curves of the proposed DPD algorithms and other positioning algorithms
versus SNR in Figure 4. It is obvious that the proposed DPD algorithms significantly outperform other
comparison algorithms at low SNRs. As the SDF-based DPD in the time domain exploits only the
DOA information, it exhibits the lowest accuracy even when the SNR is sufficiently high. These results
indicate that both the noncircularity and the TOA information are helpful for enhancing accuracy.
Furthermore, since the proposed DPD methods and two-step approach utilize the location information
embedded in DOAs and TOAs for noncircular sources, the improved localization performance with
respect to the traditional two-step method reveals the advantage of the DPD technique. As the RMSE
curves of the proposed estimator using the Newton-type iterative method and that using Nelder–Mead
simplex search overlap with each other, we provide their RMSE values in Table 3. It can be observed
that the difference of the accuracy between two methods is not more than 0.001 km.
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Table 3. The estimated RMSEs of the proposed DPDs using the Newton-type iterative method and
Nelder–Mead simplex search for near-field sources (km).

Source Method
SNR (dB)

−10 −6 −2 2 6 10

Source 1
Newton-type Iterative Method 0.167 0.079 0.049 0.028 0.017 0.011
Nelder-Mead Simplex Search 0.166 0.078 0.050 0.029 0.017 0.012

Source 2
Newton-type Iterative Method 0.257 0.109 0.063 0.038 0.024 0.015
Nelder–Mead Simplex Search 0.258 0.110 0.063 0.039 0.023 0.016

In the fourth example, we simulate the location performance with the number of sections K
varying from 20 to 100 when the SNR is 0 dB. The location geometry corresponds to that in the
foregoing examples. As shown in Figure 5, the performance of our algorithm remains promising in the
range of different numbers of sections. When the sample number becomes smaller, this performance
improvement turns out to be more prominent.

Sensors 2018, 18, x 16 of 23 

 

Table 3. The estimated RMSEs of the proposed DPDs using the Newton-type iterative method and 
Nelder–Mead simplex search for near-field sources (km). 

Source Method 
SNR (dB)

−10 −6 −2 2 6 10 

Source 1 
Newton-type Iterative Method 0.167 0.079 0.049 0.028 0.017 0.011 
Nelder-Mead Simplex Search 0.166 0.078 0.050 0.029 0.017 0.012 

Source 2 
Newton-type Iterative Method 0.257 0.109 0.063 0.038 0.024 0.015 
Nelder–Mead Simplex Search 0.258 0.110 0.063 0.039 0.023 0.016 

In the fourth example, we simulate the location performance with the number of sections K  
varying from 20 to 100 when the SNR is 0 dB. The location geometry corresponds to that in the 
foregoing examples. As shown in Figure 5, the performance of our algorithm remains promising in 
the range of different numbers of sections. When the sample number becomes smaller, this 
performance improvement turns out to be more prominent. 

20 40 60 80 100
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of Sections

R
M

SE
 (k

m
)

 

 
Proposed DPD (Iter.)
Proposed DPD (Sear.)
FD-DPD
NC TD-DPD
Two-step

20 40 60 80 100
0

0.1

0.2

0.3

0.4

Number of Sections

R
M

SE
 (k

m
)

 

 

Proposed DPD (Iter.)
Proposed DPD (Sear.)
FD-DPD
NC TD-DPD
Two-step

(a) (b)

Figure 5. The estimated RMSEs versus the number of sections for near-field sources. (a) Source 1; (b) 
Source 2. 

In the fifth example, we study the location accuracy when the distance between the two 
transmitters changes. The two transmitters are assumed to be placed at T

1 [0, /2] (km)= − dp  and 
T

2 [0, /2] (km)d=p , respectively. The SNR is as high as 10 dB. As d  increases from 0.8 km to 2 km, 
we depict the RMSEs of the proposed DPDs and the existing SDF-based DPDs. Since the two-step 
approach can hardly separate the two transmitters with small distances, we do not show its RMSE 
curves. It can be seen from Figure 6 that our algorithms performs considerably better than other 
DPDs when the two sources are closely located. Specifically, the SDF-based DPD in the time 
domain fails to localize the second transmitter in the case of 1.6 (km)d < . This demonstrates that 
our algorithm exhibits superior resolution compared to the existing SDF-based DPDs. 

In this example, we consider two far-field transmitters located at T
1 [ 12, 20] (km)− −=p  and 

T
2 [ 20, 10] (km)− −=p  as illustrated in Figure 7. To examine the initial positions of the far-field 

sources obtained by the coarse search with a 0.1-km resolution, we compute the inverse cost 
function of the proposed estimator over the candidate positions with a grid step size of 0.1 km for 
different SNRs. The results for SNR = 0 dB are shown in Figure 8. We note that the resolution of this 
coarse search is sufficiently high to resolve the far-field sources and thus to obtain the effective 
initialization. 
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(b) Source 2.

In the fifth example, we study the location accuracy when the distance between the two
transmitters changes. The two transmitters are assumed to be placed at p1 = [0,−d/2]T (km) and
p2 = [0, d/2]T (km), respectively. The SNR is as high as 10 dB. As d increases from 0.8 km to 2 km,
we depict the RMSEs of the proposed DPDs and the existing SDF-based DPDs. Since the two-step
approach can hardly separate the two transmitters with small distances, we do not show its RMSE
curves. It can be seen from Figure 6 that our algorithms performs considerably better than other DPDs
when the two sources are closely located. Specifically, the SDF-based DPD in the time domain fails
to localize the second transmitter in the case of d < 1.6 (km) . This demonstrates that our algorithm
exhibits superior resolution compared to the existing SDF-based DPDs.

In this example, we consider two far-field transmitters located at p1 = [−12,−20]T(km) and
p2 = [−20,−10]T(km) as illustrated in Figure 7. To examine the initial positions of the far-field sources
obtained by the coarse search with a 0.1-km resolution, we compute the inverse cost function of the
proposed estimator over the candidate positions with a grid step size of 0.1 km for different SNRs.
The results for SNR = 0 dB are shown in Figure 8. We note that the resolution of this coarse search is
sufficiently high to resolve the far-field sources and thus to obtain the effective initialization.
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Finally, we come to examine the running time and location accuracy of the proposed algorithms
for the far-field sources as shown in Figure 7. When the SNR is 0 dB, we evaluate the average running
time of each location algorithm. The corresponding results are shown in Table 4, which confirms
that the devised iterative method is less complex than other methods. Especially, in contrast to the
implementation of the Nelder–Mead simplex search, our Newton-type iterative method serves as a
faster local search procedure. Under the same geometry, Figure 9 displays the location accuracy for
the two far-field sources versus SNR, indicating that the proposed algorithms still hold the lowest
RMSEs. When the SNR is below 0 dB, the RMSEs of the proposed method are much lower than
those of other location algorithms by at least 0.5 km. Moreover, we notice that the performance of
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the two-step approach (where the DOA and TOA estimations are designed for noncircular signals
in the first step) is severely degraded at low SNRs, whereas it performs better than the SDF-based
DPD in the frequency domain when the SNR is higher than 5 dB. Comparing this result with that in
Figure 4, we find that the exploitation of the noncircular property is more crucial to the performance
enhancement for the far-field sources than for the near-field sources. Besides, we show the RMSEs
of the proposed estimators using the Newton-type iterative method and using the Nelder–Mead
simplex search in Table 5. It can be seen that the accuracies of these two local search methods have no
significant difference for the far-field sources.

Table 4. Average runtime for far-field sources.

Method Runtime (s)

Proposed DPD (Newton-type Iterative Method) 0.0856
Proposed DPD (Exhaustive Grid Search) 0.7869

Proposed DPD (Nelder–Mead Simplex Search) 0.1330
FD-DPD 0.5144

NC TD-DPD 0.5072
Two-step 0.3132
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Table 5. The estimated RMSEs of the proposed DPDs using the Newton-type iterative method and
Nelder–Mead simplex search for far-field sources (km).

Source Method
SNR (dB)

−5 0 5 10 15 20

Source 1
Newton-type Iterative Method 0.935 0.243 0.108 0.053 0.029 0.016
Nelder-Mead Simplex Search 0.933 0.250 0.101 0.050 0.029 0.016

Source 2
Newton-type Iterative Method 1.168 0.325 0.135 0.068 0.035 0.020
Nelder–Mead Simplex Search 1.160 0.324 0.141 0.068 0.036 0.021

Additionally, the results indicate that the location accuracy of the proposed DPD using the
Newton-type iterative method is approximately the same as those of the Nelder–Mead simplex search
and the exhaustive grid search. Considering that the running time of the Newton-type iterative method
is much shorter than those of other methods (Tables 2 and 4), this iterative method provides an efficient
way to solve our DPD problem.
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5. Conclusions

This study has investigated an efficient single-step localization method for noncircular sources
received by widely-separated arrays. Through deriving and exploiting the potential of strictly
noncircular signals in the frequency domain, the proposed algorithm fuses all the extended noise
subspaces of all frequency components for the locations of multiple noncircular sources directly without
estimating DOAs and TOAs. Relying on a unitary transformation, we have derived a cost function for
each transmitter position, which is formulated as the smallest eigenvalue of a symmetric real-valued
matrix. To further reduce the computation load of the exhaustive search for solving this cost function,
we have devised a Newton-type iterative method based on the matrix Eigen-perturbation theory.
Note that this iterative method can be easily extended to solve any estimator whose cost function is the
eigenvalue of a specified matrix. Simulation results demonstrate that the proposed location method
using Newton-type iteration is computationally efficient. Its running time is approximately one tenth
of that of the exhaustive grid search and is nearly two thirds of the running time of the Nelder–Mead
simplex search. Furthermore, our method shows greater performance robustness at low SNRs and
under poor location geometry, compared with the conventional two-step approach and existing SDF
DPD algorithms. Specifically, when the SNR is below 0 dB, the RMSEs of the proposed method are
much lower than those of the existing SDF DPDs by at least 0.5 km for the simulated far-field sources.

To further improve the DPD performance and obtain the optimal location accurately and quickly,
it is a possible direction to design a hybrid method combining an evolutionary algorithm and a fast
local search approach for solving the ML-based DPD problem.
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Appendix A

Derivation of the expression for
.

Xp(p):
According to the definition of

.
Xp(p), it is computed by:

.
Xp(p) =

∂x(p)
∂pT =

∂vec{X(p)}
∂pT =

∂vec{Re{Q′(p)}}
∂pT . (A1)

For convenience, we restate the expression for Q′(p) here:

Q′(p) =
J−1

∑
j=0

T Γ̃
H
(j, p)Un

k (j)UnH
k (j)Γ̃(j, p)TH. (A2)

As the operations Re{·}, vec{·} and taking the derivative can be processed out of order, as well
as this ends up with the same result, we first come to derive ∂vec{Q′(p)}

∂pT .

Based on (A2) and using vec{ABC} = (CT ⊗ A)vec{B} (see [26]), we can express vec{Q′(p)}
as:

vec{Q′(p)} =
J−1

∑
j=0

(
T∗ ⊗ (T Γ̃

H
(j, p)Un

k (j)UnH
k (j))

)
vec{Γ̃(j, p)}, (A3)
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and it can be also written as:

vec{Q′(p)} =
J−1
∑

j=0
((T∗ Γ̃T(j, p)Un∗

k (j)Un
k

T(j))⊗ T)vec{Γ̃H(j, p)}

=
J−1
∑

j=0
((T∗ Γ̃T(j, p)Un∗

k (j)Un
k

T(j))⊗ T)Pvec{Γ̃∗(j, p)},
(A4)

where P is a vec-permutation matrix that transforms vec{Γ̃∗(j, p)} to vec{Γ̃H(j, p)}, i.e.,
vec{Γ̃H(j, p)} = Pvec{Γ̃∗(j, p)}.

Define:
.
Γ̃p(j, p) =

∂vec{Γ̃(j, p)}
∂pT . (A5)

Then, combing the results in (A3) and (A4), we can calculate the gradient of vec{Q′(p)} by:

∂vec{Q′(p)}
∂pT = w1(p) + w2(p), (A6)

where:

w1(p) =
J−1

∑
j=0

(
T∗ ⊗ (T Γ̃H(j, p)Un

k (j)UnH
k (j))

) .
Γ̃p(j, p) (A7)

and:
w2(p) =

((
T∗ Γ̃T(j, p)Un∗

k (j)UnT
k (j)

)
⊗ T

)
P

.
Γ̃
∗
p(j, p). (A8)

Finally, extracting the real part of (A6), we obtain:

.
Xp(p) = Re

{
∂vec{Q′(p)}

∂pT

}
= Re{w1(p) + w2(p)}, (A9)

which completes our derivation.

Appendix B

Derivation of the expression for
..
X pp(p):

To obtain the explicit expression for
..
X pp(p), we first derive each D× D sub-block as shown in

(53), i.e.,
∂2[x(p)]2mL−2L+n

∂p∂pT =
∂2Re{[Q′(p)]n,m}

∂p∂pT = Re

{
∂2[Q′(p)]n,m

∂p∂pT

}
, (A10)

where n, m = 1, 2, . . . , 2L.
Let vn be the 2L× 1 unit vector with the n-th element being one, and vm is defined similarly as vn.

Therefore, the n,m-th entry of Q′(p) is given by:

[Q′(p)]n,m =
J−1

∑
j=0

vT
n T Γ̃H(j, p)Un

k (j)UnH
k (j)Γ̃(j, p)THvm. (A11)
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Denote
.
Γ̃d(j, p) = ∂Γ̃(j,p)

∂pd
and

..
Γ̃d1d2(j, p) = ∂2 Γ̃(j,p)

∂pd1
∂pd2

, where pd is the d-th element of p.

Using tr{ABCD} = vecT{DT}(CT ⊗ A)vec{B} and tr{ABCD} = vecT{D}(A ⊗ CT)vec{BT}
(see [26]), we can compute the second-order derivative of [Q′(p)]n,m as follows:

∂2[Q′(p)]n,m
∂pd1∂pd2

=
J−1
∑

j=0

 vT
n T

..
Γ̃

H

d1d2
(j, p)Un

k (j)Un
k

H(j)Γ̃(j, p)THvm + vT
n T

.
Γ̃

H

d1
(j, p)Un

k (j)UnH
k (j)

.
Γ̃d2(j, p)THvm+

vT
n T

.
Γ̃

H

d2
(j, p)Un

k (j)UnH
k (j)

.
Γ̃d1(j, p)THvm + vT

n T Γ̃H(j, p)Un
k (j)Un

k
H(j)

..
Γ̃d2d1(j, p)THvm


=

J−1
∑

j=0

 vT
n T

..
Γ̃

H

d1d2
(j, p)Un

k (j)Un
k

H(j)Γ̃(j, p)THvm + tr{Un
k (j)UnH

k (j)
.
Γ̃d2(j, p)THvmvT

n T
.
Γ̃

H

d1
(j, p)}+

tr{THvmvT
n T

.
Γ̃

H

d2
(j, p)Un

k (j)Un
k

H(j)
.
Γ̃d1(j, p)}+ vT

n T Γ̃H(j, p)Un
k (j)UnH

k (j)
..
Γ̃d2d1(j, p)THvm



=
J−1
∑

j=0



vT
mT∗ Γ̃T(j, p)Un∗

k (j)Un
k

T(j)
..
Γ̃
∗
d1d2

(j, p)TTvn+

vecT{
.
Γ̃
∗
d1
(j, p)}((TTvnvT

mT∗)⊗ (Un
k (j)UnH

k (j)))vec{
.
Γ̃d2(j, p)}+

vecT{
.
Γ̃d1(j, p)}((THvmvT

n T)⊗ (Un∗
k (j)Un

k
T(j)))vec{

.
Γ̃
∗
d2
(j, p)}+

vT
n T Γ̃H(j, p)Un

k (j)Un
k

H(j)
..
Γ̃d1d2(j, p)THvm



(A12)

for d1, d2 = 1, 2, . . . , D. Note that the terms on the right side of (A12) are the d1, d2-th entries of:

W1(p) =
J−1

∑
j=0

(ID ⊗ (vT
mT∗ Γ̃T(j, p)Un∗

k (j)Un
k

T(j)))
..
Γ̃
∗

pp(j, p)(ID ⊗ TTvn), (A13)

W2(p) =
J−1

∑
j=0

.
Γ̃

H

p (j, p)((TTvnvT
mT∗)⊗ (Un

k (j)UnH
k (j)))

.
Γ̃p(j, p), (A14)

WT
2 (p) =

J−1

∑
j=0

.
Γ̃

T

p(j, p)((THvmvT
n T)⊗ (Un∗

k (j)Un
k

T(j)))
.
Γ̃
∗
p(j, p), (A15)

and:

W3(p) =
J−1

∑
j=0

(ID ⊗ (vT
n T Γ̃H(j, p)Un

k (j)Un
k

H(j)))
..
Γ̃pp(j, p)(ID ⊗ THvm), (A16)

respectively, where
.
Γ̃p(j, p) has been defined in (A5), and

..
Γ̃pp(j, p) has the following structure:

..
Γ̃pp(j, p) = [

..
Γ̃11(j, p) · · ·

..
Γ̃1D(j, p)

...
. . .

...
..
Γ̃D1(j, p) · · ·

..
Γ̃DD(j, p)

]. (A17)

In light of this finding, we can express
∂2[Q′(p)]n,m

∂p∂pT in the matrix form as:

∂2[Q′(p)]n,m

∂p∂pT = W1(p) + W2(p) + WT
2 (p) + W3(p). (A18)

Then, substituting (A18) back into (A10) leads to:

∂2[x(p)]2mL−2L+n
∂p∂pT = Re{W1(p) + W2(p) + WT

2 (p) + W3(p)}. (A19)

Consequently,
..
X pp(p) can be constructed by applying (A19) to (53).
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