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Abstract: In this paper, we propose a vectorized noncircular MUSIC (VNCM) algorithm based on the
concept of the coarray, which can construct the difference and sum (diff–sum) coarray, for direction
finding of the noncircular (NC) quasi-stationary sources. Utilizing both the NC property and the
concept of the Khatri–Rao product, the proposed method can be applied to not only the ULA but
also sparse arrays. In addition, we utilize the quasi-stationary characteristic instead of the spatial
smoothing method to solve the coherent issue generated by the Khatri–Rao product operation so that
the available degree of freedom (DOF) of the constructed virtual array will not be reduced by half.
Compared with the traditional NC virtual array obtained in the NC MUSIC method, the diff–sum
coarray achieves a higher number of DOFs as it comprises both the difference set and the sum set. Due
to the complementarity between the difference set and the sum set for the coprime array, we choose
the coprime array with multiperiod subarrays (CAMpS) as the array model and summarize the
properties of the corresponding diff–sum coarray. Furthermore, we develop a diff–sum coprime
array with multiperiod subarrays (DsCAMpS) whose diff–sum coarray has a higher DOF. Simulation
results validate the effectiveness of the proposed method and the high DOF of the diff–sum coarray.

Keywords: noncircular signals; DOA estimation; virtual array; coprime array

1. Introduction

Noncircular (NC) signals, such as amplitude-modulated (AM) signals and binary phase-shift
keying (BPSK)-modulated signals, have been widely applied in various communication systems [1–8].
Different from circular signals, which can only use the information in the covariance matrix for
direction finding, NC signals can use the information in both the covariance matrix and the elliptic
covariance matrix for direction finding. This NC property can be utilized to increase the degrees of
freedom (DOFs) and improve the estimation performance. A lot of DOA estimation algorithms for
NC sources have been developed, such as the NC MUSIC method [9], NC Root-MUSIC method [1],
NC ESPRIT method [10] and NC Unitary ESPRIT method [11]. These traditional NC DOA estimation
algorithms utilize the complex conjugate counterpart of the received signals to obtain the NC
covariance matrix, which corresponds to a virtual array consisting of the physical array and its
flipped array [12]. These algorithms mostly utilize the uniform linear array (ULA) as the array model
and can detect at most 2(N − 1) sources with N physical sensors. In order to detect more sources,
some NC high-order cumulant MUSIC methods based on the non-Gaussian characteristic of many
NC sources, such as the NC 2q-MUSIC method [13] and ROOT NC 4-MUSIC method [2], have been
proposed. However, the array model in these methods is still the ULA, and the computation complexity
of the cumulant-based methods are large. As we know, the array aperture is a fundamental parameter
that affects the performance of the DOA estimation. For the ULA, its aperture is usually less than

Sensors 2018, 18, 344; doi:10.3390/s18020344 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0000-0003-3846-7573
http://dx.doi.org/10.3390/s18020344
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 344 2 of 17

that of the sparse array constructed based on the concept of the coarray [14–19]. Thus, an estimator,
which jointly utilizes the NC property, the sparse array and the concept of the coarray, is likely to
detect more sources than the traditional NC DOA estimators.

In recent years, sparse arrays have been attracting more and more attention due to the high
number of DOFs [20–23]. The concept of the coarray based on the Khatri–Rao (KR) product [21,24]
is applied to design various of sparse arrays, such as the coprime array [22]. The coprime array
consists of two uniform linear subarrays with M and N sensors, respectively, where M and N are a
coprime pair of positive integers. The M element subarray with spacing N units and the N element
subarray with spacing M units share the first sensor. By applying the KR product to the covariance
matrix of the received signals, the difference coarray [21–27] of the coprime array is constructed. With
only M + N − 1 physical sensors, the virtual array can detect O(MN) sources. In order to achieve a
higher number of DOFs, many novel methods and optimized configurations based on the difference
coarray for the coprime array have been proposed, such as the sparsity enforced recovery technique
for the coprime array [18], the coarray interpolation method for the coprime array [28], the extended
coprime array [29], the generalized coprime arrays [24] and the coprime array with multiperiod
subarrays (CAMpS) [30,31]. Since these methods and improved configurations are developed based
on the properties of the difference coarray for the coprime array, their DOFs cannot be more than
twice the physical aperture. Constructing a novel virtual array with larger array aperture than the
difference coarray is another useful way to increase the DOFs. In [16], we utilized both the temporal
information and the spatial information of the received signals to propose the vectorized conjugate
augmented MUSIC (VCAM) algorithm, which can construct the difference and sum (diff–sum) coarray.
The diff–sum coarray comprises both the difference set and the sum set so that it can achieve a higher
number of DOFs than the above difference coarrays. In addition, the aperture of the diff–sum coarray
can be more than twice the physical aperture, which could help to decrease the array size. However,
the source signals applied in both the VCAM algorithm and the methods constructing the difference
coarray are circular signals.

In this paper, we propose an improved NC MUSIC algorithm based on the concept of the coarray
to perform the DOA estimation of NC quasi-stationary sources. We name the novel method as the
vectorized NC MUSIC (VNCM) method. By applying the KR product operation to the NC covariance
matrix, we can obtain an equivalent received signal, which seems to be received from a diff–sum
coarray. The diff–sum coarray, which is symmetrical with the zero point as the center, can be divided
into three parts: the difference coarray, the nonpositive sum coarray and the non-negative sum coarray.
Thus, the diff–sum coarray is likely to achieve a higher number of DOFs than the traditional NC virtual
array consisting of the physical array and its flipped array. Also, we utilize the characteristic of the
quasi-stationary sources instead of the spatial smoothing method to solve the single snapshot issue
(the coherent issue) of the equivalent received signal so that the available DOFs will not be reduced by
half. Due to the complementarity between the difference set and the sum set for the coprime array [16],
we utilize the CAMpS, which contains the prototype coprime array as a special case, as the basic
array model in this paper. In particular, we summarize and prove the properties and DOFs of the
diff–sum coarray for the CAMpS. Furthermore, we improve the CAMpS to propose a diff–sum coprime
array with multiperiod subarrays (DsCAMpS) which can achieve a higher number of DOFs than the
CAMpS. Extensive simulations are provided to verify the performance of the diff–sum coarray and the
effectiveness of the VNCM method.

Notations: Throughout the paper, we utilize lowercase bold italic letters to denote vectors,
for example, a. We utilize capital bold italic letters to denote matrices, for example, A. (.)T , (.)∗ and
(.)H respectively represent transpose, conjugation and conjugate transpose. E [�] is used to denote the
expectation operation and vec(.) represents the vectorizing operation. ⊗ and � respectively denote
the left Kronecker product and the Khatri–Rao product.
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2. Data Model

Consider a linear antenna array consisting of R elements. The set of the sensor locations is denoted
as d = {d1, . . . , dR}. The first sensor is selected as the reference, that is, d1 = 0. Q far-field, narrowband,
uncorrelated and NC sources impinge on this array from directions {θ1, . . . , θQ}. The NC sources
in the paper are assumed as wide-sense quasi-stationary [32,33] with the NC rate as ρ = 1 [13,34].
Then, the received signal can be modeled as

x(t) =
Q

∑
q=1

a(θq)sq(t) + n(t) = As(t) + n(t), (1)

where s(t) = [s1(t), s2(t), . . . , sQ(t)]T is the observed signal vector, n(t) = [n1(t), n2(t), . . . , nR(t)]T

represents the white circular complex Gaussian noise vector with zero mean and variance σ2
n ,

and A = [a(θ1), a(θ2), . . . , a(θQ)] is the steering matrix. The qth (q = 1, 2, . . . , Q) column vector of A is
a(θq) = [1, ej2πd2 sin(θq)/λ, . . . , ej2πdR sin(θq)/λ]T with λ being the signal wavelength.

According to the noncircularity of the signals, the following relationships exist:

sq (t) = ejϕq/2 sq
′ (t) , q = 1, 2, . . . , Q (2)

and

E[s2
q(t)] = ejϕq E[sq(t)s∗q(t)], (3)

where ϕq is the NC phase of sq(t), sq
′ (t) is real-valued with zero-phase, E[sq(t)s∗q(t)] is the covariance

and E[s2
q(t)] is the eliptic covariance. As the signals are quasi-stationary, the following assumptions [33]

hold as well.
(A1) Each signal sq(t) is wide-sense quasi-stationary with the frame length being L and the total

number of frames being L̃, that is,

E
[∣∣sq 〈i〉

∣∣2] ≈ iL−1

∑
t=(i−1)L

sq(t)s∗q(t)/L ≈ σ2
q [i], i = 1, 2, . . . , L̃, (4)

where sq 〈i〉 = sq(t), t = (i− 1)L, (i− 1)L + 1 . . . , iL− 1 represents the snapshots of the qth signal in
the ith frame.

(A2) The variance sequence σ2
q [i], i = 1, . . . , L̃ is wide-sense stationary and uncorrelated

with each other. That is to say, E
[
σ2

q [i]
]

= m̄q, E
[(

σ2
q [i]− m̄q

)2
]

= σ̃2
q and

E
[(

σ2
q1
[i]− m̄q1

) (
σ2

q2
[i]− m̄q2

)]
= 0, q1 6= q2.

For the ith (i = 1, . . . , L̃) frame, combining the received signal and its conjugate version together
results in the following NC observation vector,

r (t) =

[
x(t)
x∗(t)

]
=

[
AΓAΓAΓ

(AΓAΓAΓ)∗

]
s′(t) +

[
n(t)
n∗(t)

]
= A′s′ (t) + n′(t), (5)

where ΓΓΓ = diag(ejϕ1/2 , ejϕ2/2 , . . . , ejϕQ/2 ), s′(t) =
[
s′1(t), s′2(t), . . . , s′Q(t)

]T , A′ =
[
(AΓAΓAΓ)T , (AΓAΓAΓ)H

]T

and n′(t) =
[
nT(t), nH(t)

]T . The qth column vector of A′ is a′
(
θq
)
=
[
ejϕq/2 aT (θq

)
, e−jϕq/2 aH (θq

)]T
,

which can be considered to correspond to a traditional NC virtual array consisting of 2R− 1 different
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virtual sensors with the zero point as the center. From (5), the covariance matrix of r(t) can be
obtained as

Rrr [i] = E
[
r(t)rH(t)

]
= ANCRs′s′A

H
NC + σ2

nI, (6)

where Rs′s′ = diag
(

σ2
1 [i] , σ2

2 [i] , . . . , σ2
Q [i]

)
and

ANC =
[
AT , (AφAφAφ)H

]T
=
[
aNC (θ1) , aNC (θ2) , . . . , aNC

(
θQ
)]

with aNC
(
θq
)
=
[
aT (θq

)
, e−jϕq aH (θq

)]T

and φφφ = diag(ejϕ1 , ejϕ2 , . . . , ejϕQ). The traditional NC DOA estimators, of which the array model
is the ULA, directly perform eigenvalue decomposition on Rrr [i] to obtain the noise subspace Un.
According to [1,9], the maximum number of detectable signals (MNDS) is determined by the degree
of det{aH

blkUnUH
n ablk} with ablk = blkdiag(a(θq), a∗(θq)). Therefore, at most 2R − 2 sources can

be detected. Since the DOF of the traditional NC virtual array with R sensors is 2R − 1, we have
MNDS = DOF−1.

3. Vectorized NC MUSIC Algorithm

In this paper, we focus on combining the NC property and the concept of the coarray. NC DOA
estimators based on the concept of the coarray have two problems to be resolved: (1) how to solve the
single snapshot issue (the coherent issue) of the equivalent received signal obtained by the KR product
operation; and (2) how to generate a coarray with a large array aperture. In order to resolve the two
problems, we propose a vectorized NC MUSIC (VNCM) algorithm.

Within the ith (i = 1, . . . , L̃) frame, vectorizing Rrr [i] yields

z′ [i] = vec (Rrr [i]) = (A∗NC �ANC) p [i] + σ2
nv′, (7)

where p [i] =
[
σ2

1 [i] , σ2
2 [i] , . . . , σ2

Q [i]
]T

, v′ = vec (I) and the qth (q = 1, 2, . . . , Q) column vector of
A∗NC �ANC has the form

a∗NC
(
θq
)
⊗ aNC

(
θq
)
=

[
a
(
θq
)

e−jϕq a∗
(
θq
)]∗ ⊗ [ a

(
θq
)

e−jϕq a∗
(
θq
)]

=


a∗
(
θq
)
⊗ a

(
θq
)

a∗
(
θq
)
⊗ e−jϕq a∗

(
θq
)

ejϕq a
(
θq
)
⊗ a

(
θq
)

ejϕq a
(
θq
)
⊗ e−jϕq a∗

(
θq
)
 =


NCdi f f 1
NCsum1
NCsum2
NCdi f f 2

 .

(8)

Having the similar form as the received signal x(t) in (1), z′[i] in (7) can be seen as the equivalent
received signal at a virtual array whose steering matrix is given by A∗NC�ANC. According to (8), we can
find that the virtual sensor locations can be represented as (dr1 − dr2) ∪± (dr1 + dr2) , 1 ≤ r1, r2 ≤ R.
Thus, the novel NC virtual array is a diff–sum coarray consisting of both the difference and sum results.
Specially, in (8), NCdi f f 1 and NCdi f f 2 correspond to the difference coarray, NCsum1 corresponds
to the nonpositive sum coarray and NCsum2 corresponds to the non-negative sum coarray. In the
following, we would show that the MNDS of the VNCM method is determined by the DOFs of the
diff–sum coarray, regardless of the NC phase ϕq. Assume that the consecutive range of the diff–sum
coarray is [−lc, lc]. As the performance of the MUSIC-class methods are mainly determined by the
ULA part of the virtual array, we remove the repeated and discrete lags in (7) to obtain

z [i] = Bp [i] + σ2
nv, (9)
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where v is a (2lc + 1)× 1 vector extracted from v′ and B = [b(θ1), b(θ2), . . . , b(θQ)] is a (2lc + 1)×Q
matrix with the qth column being

b
(
θq
)
=

e−jϕq ã1
(
θq
)

ã2
(
θq
)

ejϕq ã3
(
θq
)
 = Ã(θq)ϕ̃ϕϕ(θq), (10)

where ã1
(
θq
)
, ã2

(
θq
)

and ã3
(
θq
)

are respectively extracted from a∗(θq) ⊗ a∗(θq), a∗(θq) ⊗ a(θq)

and a(θq) ⊗ a(θq), Ã(θq) = blkdiag
(
ã1
(
θq
)

, ã2
(
θq
)

, ã3
(
θq
))

is a block diagonal matrix and

ϕ̃ϕϕ(θq) =
[
e−jϕq , 1, ejϕq

]T
.

Combining all the NC virtual received signals z [i] , i = 1, 2, . . . , L̃, we can obtain the NC virtual
frame-data matrix over all the L̃ frames as

Z =
[
z [1] , z [2] , . . . , z

[
L̃
]]

= BP + σ2
nV , (11)

where P =
[
p [1] , p [2] , . . . , p

[
L̃
]]

and V = [v, v, . . . , v ](2lc+1)×L̃. According to A2) in Section 2, it is
obvious that each row in P is a wide-sense stationary process with the expectation being m̄q. Thus, the
expectation vector of z [i] can be expressed as

z̄ = E [z [i]] ≈ 1
L̃

L̃

∑
i=1

z [i] = B
1
L̃

L̃

∑
i=1

p [i] + σ2
nv = Bp̄ + σ2

nv, (12)

where p̄ =
[
m̄1, m̄2, . . . , m̄Q

]T . Subtracting z̄ from each column vector of the NC virtual frame-data
matrix Z, we have

Z̃ = Z− z̄[1, 1, . . . , 1]1×L̃

= B
(
P− p̄[1, 1, . . . , 1]1×L̃

)
+ σ2

nV − σ2
nV

= BP̃,

(13)

where Z̃ =
[
z̃ [1] , z̃ [2] , . . . , z̃

[
L̃
]]

with z̃ [i] = z [i]− z̄, i = 1, 2, . . . , L̃, and P̃ =
[
p̃ [1] , p̃ [2] , . . . , p̃

[
L̃
]]

with p̃ [i] = p [i]− p̄. It is obvious that each row in P̃ is a zero-mean wide-sense stationary process.
Besides, according to (A2) in Section 2, each row sequence in P̃ is uncorrelated with the other row
sequences. Thus, similar to (6), we can obtain the correlation matrix of z̃ [i] , i = 1, 2, . . . , L̃ as

Rz̃z̃ = E
[
z̃ [i] z̃H [i]

]
≈ 1

L̃
Z̃Z̃H

= BRp̃p̃BH , (14)

where Rp̃p̃ = diag
(

σ̃2
1 , σ̃2

2 , . . . , σ̃2
Q

)
. As Rp̃p̃ is a full-rank matrix, the eigenvalue decomposition of Rz̃z̃

can be obtained as

Rz̃z̃ = Up̃ΣΣΣp̃Up̃
H + UñΣΣΣñUñ

H , (15)

where Up̃ is the signal subspace whose columns represent the signal subspace eigenvectors
of Rz̃z̃, Uñ is the noise subspace whose columns represent the noise subspace eigenvectors of
Rz̃z̃, ΣΣΣp̃ = diag

(
λ1, λ2, . . . , λQ

)
with λ1, λ2, . . . , λQ representing the Q largest eigenvalues of Rz̃z̃,

and ΣΣΣñ = 0(2lc+1−Q)×(2lc+1−Q). Due to the orthogonality between the signal subspace and the noise
subspace, any direction θq, q = 1, 2, . . . , Q from

{
θ1, . . . , θQ

}
satisfies the following equation

bH (θq
)

UñUH
ñ b
(
θq
)
= 0. (16)
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Associated with (10), (16) can be rewritten as

ϕ̃ϕϕH(θq)Ã
H
(θq)UñUH

ñ Ã(θq)ϕ̃ϕϕ(θq) = 0. (17)

According to [1,35,36], ÃH
(θ)UñUH

ñ Ã(θ) is rank deficient at θ = θq, q = 1, 2, . . . , Q.
Thus, the DOAs can be estimated by the following estimator,

f (θ) =
1

det
{

ÃH
(θ)UñUH

ñ Ã(θ)
} . (18)

Searching the direction θ over the range [−π/2, π/2], the DOAs can be obtained from the peaks
in f (θ).

Remarks. When any element ej2πl sin(θ)/λ (−lc ≤ l ≤ lc) in Ã(θ) is replaced by zl (z = ej2π sin(θ)/λ ),
det
{

ÃH
(θ)UñUH

ñ Ã(θ)
}

can be seen as a polynomial of degree 4(lc − 1), whose roots appear in reciprocal
conjugate pairs. Thus, the VNCM algorithm can detect up to 2(lc − 1) signals. Since the DOF of the diff–sum
coarray is 2lc + 1, it can be concluded that MNDS = DOF− 3 for the VNCM method. From the discussions
above, it is obvious that the MNDS of the VNCM method is determined by the DOF of the diff–sum coarray,
regardless of the NC phase. With R physical sensors, the MNDS of the traditional NC DOA estimators is
2(R− 1). As lc is obtained by combining the difference and sum results of the physical sensor locations, we
can conclude lc > R. Therefore, the VNCM algorithm can detect more signals than the traditional NC DOA
estimators. Furthermore, designing a sparse array, of which the diff–sum coarray achieves a high number of
DOFs, can help further improve the performance of the proposed method. It is noted that in theory, the high-order
cumulant-based MUSIC method can also be applied to the sparse array to detect NC sources. The virtual array
generated in this kind of method should be able to achieve the same number of DOFs as that generated in the
VNCM method. However, this kind of method should first solve one issue, which is how to separate the NC
phases from the cumulant matrix to perform the eigenvalue decomposition. The method proposed in this paper
can help to solve this issue, which would be a future work for us to do. The difference between the NC high-order
cumulant-based method and the VNCM method is that the NC high-order cumulant-based method is restricted
to non-Gaussian signal sources, but the signal model in the VNCM method is not necessarily non-Gaussian.

4. The Diff–Sum Coprime Array with Multiperiod Subarrays Based on the Concept of the
Diff–Sum Coarray

Now, since the difference set and the sum set for the coprime array are complementary [16,37],
we choose the CAMpS [30,31] as the basic array model. In this section, we would summarize and prove
the properties and the DOF of the diff–sum coarray for the CAMpS. Then, based on these properties,
we improve the CAMpS to propose a diff–sum coprime array with multiperiod subarrays (DsCAMpS)
of which the diff–sum coarray achieves a higher number of DOFs.

4.1. The CAMpS and the Concept of the Diff–Sum Coarray

Firstly, we have a quick review of the CAMpS. As shown in Figure 1, the CAMpS, which is
the multiperiod extension of the prototype coprime array, consists of two uniform linear subarrays.
Subarray 1 contains P1M sensors with the intersensor spacing of N units, and Subarray 2 contains P2N
sensors with the intersensor spacing of M units. We use d to denote the unit interelement spacing. Then,
the sensors of the CAMpS are located at SCAMpS = S1 ∪ S2, where S1 = {mNd |0 ≤ m ≤ P1M− 1}
and S2 = {nMd |0 ≤ n ≤ P2N − 1}. Due to M and N being coprime, there are min{P1, P2}
common elements between the two subarrays. Hence, the number of the elements in the CAMpS is
P1M + P2N −min{P1, P2}. For convenience, in the following sections of this paper, we normalize all
the locations by the unit interelement spacing d.
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··· ··· ··· ···

1Period PPeriod 2Period 1

1( 1)P MNd- 1( 1)PM Nd-(2 1)M Nd-MNd( 1)M Nd-0

Nd

··· ··· ··· ··· ··· ··· ···

2Period PPeriod 2Period 1

2( 1)P N Md-2( 1)P NMd-(2 1)N Md-NMd( 1)N Md-0

Md

Subarray 1

Subarray 2

Figure 1. The coprime array with multiperiod subarrays.

Applying the VNCM method to the CAMpS, the resulting virtual array can be represented as

Sds = Sdi f f ∪ S+
sum ∪ S−sum , (19)

where Sds is the diff–sum set, Sdi f f = {dr1 − dr2 |1 ≤ r1, r2 ≤ R} is the
difference set, S+

sum = {dr1 + dr2 |1 ≤ r1, r2 ≤ R} is the non-negative sum set and
S−sum = {−(dr1 + dr2) |1 ≤ r1, r2 ≤ R} is the nonpositive sum set.

When choosing the CAMpS in Figure 1 as the basic array model, Sdi f f can be expressed as the
following union set,

Sdi f f = Scd ∪ S−cd ∪ Ssd ∪ S−sd , (20)

where Scd =
{

dS2 − dS1

∣∣dS2 ∈ S2, dS1 ∈ S1
}

is the cross-difference set between S2 and S1,
S−cd =

{
dS1 − dS2

}
is the mirrored set of Scd, Ssd =

{
dS1

}
∪
{

dS2

}
is the self-difference set of S1 and S2

and S−sd =
{
−dS1

}
∪
{
−dS2

}
is the mirrored set of Ssd. Similarly, the total sum set Ssum = S+

sum ∪ S−sum
can also be expressed as a union set

Ssum = S+
cs ∪ S+

ss︸ ︷︷ ︸
S+

sum

∪ S−cs ∪ S−ss︸ ︷︷ ︸
S−sum

,
(21)

where S+
ss =

{
dS1 + d′S1

∣∣dS1 , d′S1 ∈ S1
}
∪
{

dS2 + d′S2

∣∣dS2 , d′S2 ∈ S2
}

is the self-sum set of S1 and S2,
S−ss =

{
−
(
dS1 + d′S1

)}
∪
{
−
(
dS2 + d′S2

)}
is the mirrored set of S+

ss , S+
cs =

{
dS1 + dS2

}
is the cross-sum

set between S1 and S2, S−cs =
{
−
(
dS1 + dS2

)}
is the mirrored set of S+

cs.

4.2. The Properties of the Diff–Sum Set for the CAMpS

Without loss of generality, we assume the period P1 of Subarray 1 is no larger than the
period P2 of Subarray 2, that is, P2 ≥ P1 ≥ 1. Denote S1i = {Nm |(i− 1) M ≤ m ≤ iM− 1} and
S2j = {Mn |(j− 1) N ≤ n ≤ jN − 1} as the location set of Period i (1 ≤ i ≤ P1) in Subarray 1 and the
location set of Period j (1 ≤ j ≤ P2) in Subarray 2.

According to [30,31], some properties of the difference set for the CAMpS have been summarised
as follows:

(1) Scd contains all the consecutive lags in the range [− (P1 − 1) MN −M + 1, (P2 − 1) MN + N − 1].
(2) When P2 > P1, the difference set Sdi f f contains all the consecutive lags in the range

[− (P2 − 1) MN − N + 1, (P2 − 1) MN + N − 1].
(3) When P2 = P1, the result becomes [− (P2 − 1) MN −M− N + 1, (P2 − 1) MN + M + N − 1].

Combining these properties, we can find that when M and N are fixed, the maximum value scdmax
in the consecutive range of Scd is determined by the period P2 of Subarray 2, and the minimum value is
determined by the period P1 of Subarray 1. Considering the consecutive range of Sdi f f , when P2 > P1,
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both the minimum and the maximum have the same absolute value as scdmax and the two values
are only related to P2. When P2 = P1, the two values have greater absolute value than scdmax since
some holes in Sdi f f with P1 = P2 − 1 can be filled by the cross-difference results between S1P2 and S2.
Thus, we can obtain the following two conclusions: (1) When P2 > P1 ≥ 1, the difference set for the
CAMpS has the same consecutive range as that for a simplified CAMpS of which the two subarrays
are respectively S11 and S2. (2) When P2 = P1 ≥ 1, the equivalent array is a simplified CAMpS of
which the two subarrays are respectively S11 ∪ S1P1 and S2.

In Figure 2, we assume (M, N) = (3, 4) and show two examples of the difference sets for
the CAMpS with (P1, P2) = (2, 3) and (P1, P2) = (3, 3) as the illustrative examples of the above
properties. Figure 2 shows that the difference coarray is symmetrical with the zero point as the center.
When P2 > P1, the number of the consecutive elements in the difference coarray is 2scdmax + 1. When P1

increases to P2, the result becomes 2scdmax + 2M + 1.

14- 0 27

0 2727-

0 2726-

0 3030-

(a)

(b)

(c)

(d)

 Lags     Holes· ´

Figure 2. Two examples of the difference coarray for the CAMpS with (M, N) = (3, 4): (a) the set
Scd with (P1, P2) = (2, 3); (b) the set Sdi f f with (P1, P2) = (2, 3); (c) the set Scd with (P1, P2) = (3, 3);
and (d) the set Sdi f f with (P1, P2) = (3, 3).

The following proposition reveals the properties of the non-negative sum set for the CAMpS.
The properties of the nonpositive sum set can be deduced by reversing the results of the
following proposition.

Proposition 1. The following facts hold for S+
cs and S+

sum:

(a) The consecutive range of S+
cs is [(M− 1) (N − 1) , (P1 + P2 − 1) MN − 1].

(b) When P2 > P1, the non-negative sum set S+
sum contains all the consecutive lags in the range

[(M− 1) (N − 1) , (P1 + P2 − 1) MN + N − 1].
(c) When P2 = P1: S+

sum with M = 2 contains all the consecutive lags in the range
[(M− 1) (N − 1) , (P1 + P2 − 1) MN + N − 1]; when N = 2, the result becomes
[(M− 1) (N − 1) , (P1 + P2 − 1) MN + M− 1]; when M, N > 2, the result is
[(M− 1) (N − 1) , (P1 + P2 − 1) MN + M + N − 1].

(d) The non-negative sum set for the CAMpS has the same consecutive range as that for a simplified CAMpS
whose two subarrays are respectively S11 ∪ S1P1 and S2.

Proof. See Appendix A.

In the proof of Proposition 1, we have proved that some holes in the cross-sum set can be aligned
with the elements in the self-sum set. Thus, S+

sum has a wider consecutive range than S+
cs. In addition,

when M and N are fixed, the maximums in the consecutive range of S+
cs and S+

sum are determined by
the periods of the two subarrays and the minimum is fixed. In Figure 3, we assume (M, N) = (3, 4)
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and show two examples of the non-negative sum coarray for the CAMpS with (P1, P2) = (2, 3) and
(P1, P2) = (3, 3) as the illustrative examples of the above properties. It is obvious that when the period
of one subarray adds 1, the maximums in the consecutive range of S+

cs and S+
sum would add O(MN).

Since S−sum is the mirrored set of S+
sum, the consecutive range of the total sum set Ssum = S+

sum ∪ S−sum
is symmetrical with the zero point as the center. Then, combining Proposition 1 and the properties
of the difference set, we give the properties of the diff–sum set Sds for the CAMpS in the following
proposition. Defining sds max 1 = (P1 + P2 − 1) MN + N− 1, sds max 2 = (P1 + P2 − 1) MN + M− 1 and
sds max 3 = (P1 + P2 − 1) MN + M + N − 1, we conclude:

Proposition 2. When P2 > P1, the consecutive range of Sds for the CAMpS is [−sds max 1, sds max 1].
When P2 = P1, the consecutive range of Sds is summarised based on the following three cases: (1) when M = 2,
the consecutive range is [−sds max 1, sds max 1]; (2) when N = 2, the consecutive range is [−sds max 2, sds max 2];
(3) when M, N > 2, the consecutive range is [−sds max 3, sds max 3].

According to Proposition 2, in Table 1, we summarize the DOF (the number of the consecutive
lags) of Sds. The corresponding MNDS of the VNCM method can also be obtained by the equation
MNDS = DOF−3.

0

0

0

0

(a)

(b)

(c)

(d)

 Lags     Holes· ´

6

6

6

6

47

51

59

66

Figure 3. Two examples of the non-negative sum coarray for the CAMpS with (M, N) = (3, 4): (a) the
set S+

cs with (P1, P2) = (2, 3); (b) the set S+
sum with (P1, P2) = (2, 3); (c) the set S+

cs with (P1, P2) = (3, 3);
and (d) the set S+

sum with (P1, P2) = (3, 3).

Table 1. The DOFs of the diff–sum coarray for the CAMpS.

P2 > P1 ≥ 1 P2 = P1 ≥ 1

M, N ≥ 2 N > M = 2 M > N = 2 M, N > 2

DOF 2sds max 1 + 1 2sds max 1 + 1 2sds max 2 + 1 2sds max 3 + 1

4.3. The Diff–Sum Coprime Array with Multiperiod Subarrays

According to the properties of the difference set, Propositions 1 and 2, the consecutive range of
Sds for the CAMpS is the same as that of Sds for a simplified CAMpS, of which the location sets of the
two subarrays can be expressed as S11 ∪ S1P1 and S2. We name the equivalent array as the diff–sum
coprime array with multiperiod subarrays (DsCAMpS). Since the DOF of the DsCAMpS with P1 = P2

is greater than that with P1 < P2, we define P1 = P2 in the DsCAMpS. Then, the structure of the
DsCAMpS can be shown in Figure 4.
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···

Period 1

··· ··· ··· ··· ··· ··· ···

2Period PPeriod 2Period 1

0

Subarray 1

Subarray 2

0 1

Period 2

···
1M -

1N - N 2 1N - 2( 1)P N- 2 1P N -

2( 1)P M-
2( 1) 1P M- + 2 1PM -

NN

M

( )2 2P MN N- +

Figure 4. The diff–sum coprime array with multiperiod subarrays.

When P2 ≥ 2, Subarray 1 in the DsCAMpS contains 2 periods, of which each period contains
M sensors with the intersensor spacing of N units. The displacement between the two periods is
(P2 − 2)MN + N. Subarray 2 in the DsCAMpS contains P2N sensors with the intersensor spacing of
M units. The location set of the DsCAMpS can be expressed as

SDsCAMpS = {mN |0 ≤ m ≤ M− 1, (P2 − 1)M ≤ m ≤ P2M− 1}
∪ {nM |0 ≤ n ≤ P2N − 1} .

(22)

Between the two subarrays, there are two common elements which locate at 0 and (P2 − 1)MN.
Thus, the number of the elements in the DsCAMpS is 2M + P2N − 2. When P2 = 1, the
DsCAMpS becomes the prototype coprime array with M + N − 1 sensors, which means the prototype
coprime array is a special kind of the DsCAMpS. Defining sds max a = (2P2 − 1) MN + N − 1,
sds max b = (2P2 − 1) MN + M− 1 and sds max c = (2P2 − 1) MN + M + N − 1, we can show the DOF
of the diff–sum coarray for the DsCAMpS in Table 2. Compared with the CAMpS, the DsCAMpS can
achieve a higher number of DOFs when P2 > 2. When P1 = P2 ≤ 2, the two arrays have the same
structure and DOF.

Table 2. The DOFs of the diff–sum coarray for the DsCAMpS .

N > M = 2 M > N = 2 M, N > 2

DOF 2sds max a + 1 2sds max b + 1 2sds max c + 1

In Figure 5, we depict the consisting sets of the diff–sum coarray for the DsCAMpS with
(M, N, P2) = (4, 3, 3). Figure 5a shows that the consecutive range of the difference set is
[−30, 30], which is symmetrical with the zero point as the center. Figure 5b depicts the total
sum set Ssum = S+

sum ∪ S−sum, which contains all the consecutive lags in the range [−66,−6] ∪ [6, 66].
The consecutive range of the difference set for the DsCAMpS with P2 > 2 overlaps with part of
the consecutive range of the total sum set. Thus, as shown in Figure 5c, the diff–sum set, which
is the union set of Sdi f f and Ssum, contains all the consecutive lags in the range [−66, 66]. Figure 5
verifies the properties of the diff–sum coarray for the DsCAMpS and the complementarity between
the corresponding difference set and sum set.
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0

0

0

3030-

(a)

(b)

(c)

 Lags     Holes· ´

66- 6666-

66- 66

Figure 5. The consisting sets of the diff–sum coarray for the DsCAMpS with (M, N, P2) = (4, 3, 3):
(a) the difference set Sdi f f ; (b) the total sum set Ssum; and (c) the diff–sum set Sds.

5. Simulation Results

In this section, we consider the sensor number of all configurations as R = 15. The unit
interelement spacing is d = λ/2. Since the DsCAMpS and the CAMpS are the same when P1 = P2 ≤ 2,
we consider the period P2 in Subarray 2 of both the CAMpS and the DsCAMpS satisfying P2 > 2.
The configurations utilized in this section are respectively the CAMpS with (M, N, P1, P2) = (4, 3, 2, 3),
the DsCAMpS with (M, N, P2) = (4, 3, 3) and the ULA= {0, 1 . . . , 14}.

5.1. DOF Comparison

Figure 6 depicts four virtual configurations, which are respectively the traditional NC virtual
array for the ULA, the diff–sum coarrays for the ULA, the CAMpS and the DsCAMpS. The traditional
NC virtual array is constructed in the NC MUSIC algorithm and the three diff–sum coarrays are
obtained by using the VNCM algorithm. As shown in Figure 6a, the traditional NC virtual array for
the ULA, which consists of the physical array and its flipped array, contains all the consecutive lags
in the range [−14, 14]. In Figure 6b–d, the consecutive ranges of the three diff–sum coarrays for the
ULA, the CAMpS and the DsCAMpS are respectively [−28, 28], [−50, 50] and [−66, 66]. Comparing
Figure 6a,b, it is obvious that the diff–sum coarray achieves a higher number of DOFs than the
traditional NC virtual array. From Figures 6b–d, we can find that the diff–sum coarray constructed
by using the sparse array has a larger consecutive range than that constructed by using the ULA.
In addition, the diff–sum coarray for the DsCAMpS contains more consecutive lags than that for the
CAMpS with the same number of sensors.

14 0

0

0

0

(a)

(b)

(c)

(d)

 Lags     Holes

14

2828

5050

6666

Figure 6. Four virtual configurations (R = 15): (a) the traditional NC virtual array for the ULA;
(b) the diff–sum coarray for the ULA; (c) the diff–sum coarray for the CAMpS with (M, N, P1, P2) =

(4, 3, 2, 3); and (d) the diff–sum coarray for the DsCAMpS with (M, N, P2) = (4, 3, 3).
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5.2. MUSIC Spectra

Figure 7 presents the normalized MUSIC spectra of the uniform distributed signals detected by
the four virtual configurations in Figure 6. Here, the frame length L, the number L̃ of the frames in the
VNCM method and the snapshots Ls in the NC MUSIC satisfy L = L̃ = Ls = 800. We consider the
input SNR = 10 dB, and we suppose Q = 101 sources, which are uniformly distributed between −60◦

and 60◦. It is noted that the frame length is actually the snapshots in one frame.

Figure 7. Spatial spectra of the uniformly distributed signals detected by the four virtual configurations
(Q = 101 and SNR = 10 dB): (a) the ULA with the NC MUSIC used; (b) the ULA with the VNCM used;
(c) the CAMpS with the VNCM used; and (d) the DsCAMpS with the VNCM used.

Figure 7d shows that the DsCAMpS with the VNCM used can detect all the 101 sources
since the DOF of the diff–sum coarray for the DsCAMpS is 133. The corresponding MNDS is
130. According to Figure 7a–c, the other three virtual configurations fail to obtain the correct DOA
estimations. This is because the numbers of the consecutive lags in the traditional NC virtual array
for the ULA, the diff–sum coarrays for the ULA and the CAMpS are respectively 29, 57 and 101.
Then, the corresponding MNDSs are respectively 28, 54 and 98. Thus, with the same number of sensors,
the DsCAMpS with the VNCM used achieves a better performance than the ULA with the NC MUSIC
used, the ULA with the VNCM used and the CAMpS with the VNCM used.

In order to demonstrate the estimated DOAs when the signal source distribution changes,
in Figure 8, we further simulate the normalized MUSIC spectra of the non-uniformly distributed signals
detected by the four virtual configurations. Here, Q = 101 sources are non-uniformly distributed
between −60◦ and 60◦, and the other parameters are the same as those in Figure 7. The non-uniform
distribution of sources could make some DOAs get very close, which may deteriorate the DOA
estimation performance. However, Figure 8d shows that the DsCAMpS with the VNCM used can
still detect all the sources. In contrast, the other three virtual configurations fail to obtain the correct
DOA estimations, which is shown in Figure 8a–c. Thus, regardless of whether the signal sources are
uniformly distributed or non-uniformly distributed, the DsCAMpS with the VNCM used achieves a
better performance than the other three virtual arrays.
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Figure 8. Spatial spectra of the non-uniformly distributed signals detected by the four virtual
configurations (Q = 101 and SNR = 10 dB): (a) the ULA with the NC MUSIC used; (b) the ULA with
the VNCM used; (c) the CAMpS with the VNCM used; and (d) the DsCAMpS with the VNCM used.

5.3. Root Mean Square Error (RMSE)

We further conduct Monte Carlo simulations to compare the DOA estimation performance of
the four virtual configurations in Figure 6. Here, we use the RMSE of the estimated DOAs as the
performance metric. The RMSE is defined as

RMSE =

√√√√ 1
JQ

J

∑
j=1

Q

∑
q=1

(
θ̂q(j)− θq

)2
, (23)

where J is the number of Monte Carlo simulations, θq denotes the real DOA of the qth signal source and
θ̂q(j) denotes the estimate of θq for the jth trial, j = 1, . . . , J. In all the simulations, we consider the signal
source number Q = 25 and utilize 500 independent Monte Carlo simulations. Figure 9a depicts the
RMSE performance as a function of the input SNR. In this simulation, we suppose L = L̃ = Ls = 500.
It is clear that all the arrays with the VNCM used outperform the ULA with the NC MUSIC used
due to the diff–sum coarray containing more consecutive elements than the traditional NC virtual
array. Among the three arrays with the VNCM used, the DsCAMpS achieves the best performance.
In Figure 9b, we suppose SNR = 10 dB to compare the RMSE performance as a function of the snapshots.
Here, we consider L = L̃ = Ls. From the results, all the arrays with the VNCM used still perform
much better than the ULA with the NC MUSIC used. Compared with the RMSE of the ULA and the
CAMpS with the VNCM used, the RMSE of the DsCAMpS with the VNCM used is smaller. The results
of the two simulations suggest that the diff–sum coarray achieves a higher number of DOF than the
traditional NC virtual array and the DsCAMpS is a novel array of which the diff–sum coarray has
higher DOF than that of the ULA and the CAMpS.
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Figure 9. Estimation precision (Q = 25): (a) RMSE versus SNR; and (b) RMSE versus the number
of snapshots.

6. Conclusions

We have proposed the VNCM method, which utilizes both the NC property and the concept of the
coarray, to obtain a novel NC virtual array named as the diff–sum coarray. Due to comprising both the
difference set and the sum set, the diff–sum coarray has a higher DOF than the traditional NC virtual
array. Also, we utilize the quasi-stationary characteristic instead of the spatial smoothing method to
solve the coherent issue generated by the KR product operation. Thus, the available DOFs would not
be reduced by half. Taking the CAMpS as the array model, we have summarized the properties of
the corresponding diff–sum coarray and then further proposed the DsCAMpS to achieve a higher
number of DOFs. The high DOF of the diff–sum coarray and the performance of the novel method
were numerically studied and evaluated.
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Appendix A. Proof of Proposition 1

(a) Define S+
csl = {Mn + Nm |0 ≤ n ≤ P2N − 1, 0 ≤ m ≤ M− 1} as the cross-sum set between

S2 and S11. Firstly, we would show that S+
csl contains all the consecutive lags in the range

[(M− 1) (N − 1) , P2MN − 1]. Given an arbitrary integer x in the above range, we need to demonstrate
there exist m2 ∈ [0, M− 1] and n2 ∈ [0, P2N − 1] such that x = Mn2 + Nm2. According
to [22], we know that there exist n′ and m′, which can vary over all the integers, such that
x = Mn′ + Nm′. Then, we can further have x = M (n′ + yN) + N (m′ − yM), where y is an
arbitrary integer. Denoting n2 = n′ + yN and m2 = m′ − yM, we can choose the value of y to
make m2 satisfy 0 ≤ m2 ≤ M − 1. Thus, we obtain 1 − M ≤ Mn2 = x − Nm2 ≤ P2MN − 1,
that is, 0 ≤ n2 ≤ P2N − 1. This demonstrates S+

csl contains all the consecutive lags in the range
[(M− 1) (N − 1) , P2MN − 1]. Then, it is obvious that the consecutive range of the cross-sum
set between S2 and S1i is [(M− 1) (N − 1) + (i− 1) MN, P2MN − 1 + (i− 1) MN]. When P2 ≥ 2,
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the length of the consecutive range is greater than MN. Thus, the cross-sum set between S2 and S1

contains all the consecutive lags in the range [(M− 1) (N − 1) , (P1 + P2 − 1) MN − 1].
(b) In [16], we have proved that in the range [MN, MN + M + N − 1], the holes in the cross-sum

result {Mn + Nm |0 ≤ n ≤ N − 1, 0 ≤ m ≤ M− 1} between the two subarrays of the coprime array
can be expressed as Sph1 ∪ Sph2, where

Sph1 = {Mn |N ≤ n ≤ (MN + M + N − 1)/M } (A1)

and

Sph2 = {Nm |M ≤ m ≤ (MN + M + N − 1)/N } . (A2)

In the CAMpS, Period 1 of Subarray 1 is actually the first subarray of the coprime
array and Period 1 of Subarray 2 is the second subarray of the coprime array. In addition,
the elements in S1P1 are equivalent to the elements in S11 adding (P1 − 1)MN, and the
elements in S2P2 are equivalent to the elements in S21 adding (P2 − 1)MN. Thus, in the range
[(P1 + P2 − 1) MN, (P1 + P2 − 1) MN + M + N − 1], the holes in the cross-sum set between S1P1 and
S2P2 can be expressed as Smh1 ∪ Smh2, where

Smh1 = {Mn |(P1 + P2 − 1) N ≤ n ≤ ((P1 + P2 − 1) MN + M + N − 1)/M } (A3)

and

Smh2 = {Nm |(P1 + P2 − 1) M ≤ m ≤ ((P1 + P2 − 1) MN + M + N − 1)/N } . (A4)

When P2 > P1, the self-sum set of Subarray 2 contains all the elements in Smh1. However,
any element in Smh2 is larger than the maximum in the self-sum set of Subarray 1. Therefore,
only the holes in the range [(P1 + P2 − 1) MN, (P1 + P2 − 1) MN + N − 1] can be filled by the
self-sum set of the CAMpS. Then, the consecutive range of the non-negative sum set S+

sum is
[(M− 1) (N − 1) , (P1 + P2 − 1) MN + N − 1] when P2 > P1.

(c) Denote

S+
psum = {Mn + Nm} ∪ {Mn + Mn} ∪ {Nm + Nm} , 0 ≤ n ≤ N − 1, 0 ≤ m ≤ M− 1 (A5)

as the sum result for the prototype coprime array. In [16], we have proved that when M = 2 or N = 2,
the consecutive range of S+

psum is [(M− 1) (N − 1) , MN + N − 1] or [(M− 1) (N − 1) , MN + M− 1].
Thus, when P2 = P1, we can know that with M = 2, the cross-sum result between S1P1 and S2P2 contains
all the consecutive lags in the range [(P1 + P2 − 1)MN −M− N + 1, (P1 + P2 − 1) MN + N − 1].
According to the property (a) of Proposition 1, it is obvious that the consecutive range
of S+

sum is [(M− 1) (N − 1) , (P1 + P2 − 1) MN + N − 1]. When N = 2, the result becomes
[(M− 1) (N − 1) , (P1 + P2 − 1) MN + M− 1]. When M, N 6= 2, the set S+

psum contains all
the consecutive lags in the range [(M− 1) (N − 1) , MN + M + N − 1]. Then, we can utilize
the similar method as the above procedure to demonstrate the consecutive range of S+

sum is
[(M− 1) (N − 1) , (P1 + P2 − 1) MN + M + N − 1].

(d) In the proof of the property (a), we have shown that the consecutive range of the cross-sum
set between S2 and S1i is [(M− 1) (N − 1) + (i− 1) MN, P2MN − 1 + (i− 1) MN]. It is easy to find
that the minimum in the consecutive range of the cross-sum set between S2 and S1P1 is less than the
maximum in the consecutive range of the cross-sum set between S2 and S11. Thus, the consecutive
range of the non-negative sum set for the CAMpS is the same as that of the non-negative sum set for
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a simplified CAMpS, of which the location sets of the two subarrays can be expressed as S11 ∪ S1P1

and S2.
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