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Abstract: Quality assessment is an important part in the strapdown airborne gravimetry. Root mean
square error (RMSE) evaluation method is a classical way to evaluate the gravimetry quality, but
classical evaluation methods are preconditioned by extra flight or reference data. Thus, a method,
which is able to largely conquer the premises of classical quality assessment methods and can be used
in single survey line, has been developed in this paper. According to theoretical analysis, the method
chooses the stability of two horizontal attitude angles, horizontal specific force and vertical specific
force as the determinants of quality assessment method. The actual data, collected by SGA-WZ02
from 13 flights 21 lines in certain survey, was used to build the model and elaborate the method.
To substantiate the performance of the quality assessment model, the model is applied in extra repeat
line flights from two surveys. Compared with internal RMSE, standard deviation of assessment
residuals are 0.23 mGal and 0.16 mGal in two surveys, which shows that the quality assessment
method is reliable and stricter. The extra flights are not necessary by specially arranging the route
of flights. The method, summarized from SGA-WZ02, is a feasible approach to assess gravimetry
quality using single line data and is also suitable for other strapdown gravimeters.

Keywords: airborne gravimetry; strapdown inertial navigation system; quality assessment; single
survey line

1. Introduction

The gravity information is crucial in the determination of geoid and resource exploration.
Compared with gravimetry carriers, airborne gravimetry not only can satisfy the requirements for
accuracy and resolution in different application fields but also is a high-efficiency way to collect
gravity information [1,2]. Currently according to different principles, there are two types of airborne
gravimeters [3,4]. One is platform airborne gravimeter, and the other is strapdown airborne gravimeter
which is based on Strapdown Inertial Navigation System (SINS). Both platform airborne gravimeter
and strapdown airborne gravimetry need Global Positioning System (GPS) to provide precise
acceleration information. The AIRGrav and GT-2A gravimeter are two mature platform airborne
gravimeters. The accuracy of AIRGrav system is superior to 1 mGal/2–4 km (1 mGal ≈ 10−5 m/s2)
even under the turbulent conditions. Additionally, the accuracy of GT-2A airborne gravimetry can
reach to 0.6 mGal/3 km [5–7]. Former research showed that strapdown airborne gravimetry could
obtain a considerable precision compared to the platform airborne gravimeters in the high-resolution
domain, the representatives are SISG and SGA-WZ [8–10]. What’s more, high accuracy strapdown
inertial navigation system could be used as strapdown gravimeter as well after applying proper
thermal compensation [11]. At the same time, research shows that the strapdown gravimeter can
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also be used for vector gravimetry [12–14]. Strapdown gravimeter uses a math platform instead of
the physical platform to track the navigation coordinate, so strapdown airborne gravimeter has the
advantages of lower cost, smaller sized and simpler structure than the platform gravimeters. What’s
more, airborne gravimeter can be used in ground vehicle vector gravimetry and marine gravimetry
through improving the algorithm [15–18].

Every careful measurement in science is always given with the probable error, so the quality
assessment is an important aspect of airborne gravimetry to obtain high quality gravity disturbance
data, when apply strapdown gravimetry into an actual survey [19]. The classical quality assessment
methods not only accurately assess the dynamic performance and measurement consistency of airborne
gravimeter, but also can reflect the gravimeter’s actual working state [20]. However, the classical
quality assessment method needs the extra flights or reference data, which will become inefficiency
and increase the cost of airborne gravimetry. So, the classical quality assessment method tends
to the gravimeter performance evaluation methods and can’t efficiently evaluate the quality of
single survey line or flight when it is done. A quality assessment algorithm based on the classical
remove-compute-restore procedure is developed in recently research, which estimate not only the
accuracy but also the error covariance function from a set of crossovers [21]. Meanwhile, how the
surveyors estimate the quality of single survey line or flight in airborne gravimetry is a significant and
practical problem. Actually, the property of airborne gravimetry stabilize at certain level and should be
decided by the gravimeter itself when a flight is finished, so the parameters from data processing could
describe the performance of airborne gravimetry in large degree. Based on this, a quality assessment
method for strapdown airborne gravimetry has been developed to efficiently estimate the strapdown
airborne gravimetry quality using the single line data. The original purpose of this method was to
evaluate the single line quality of SGA-WZ02 during a regional gravimetry task in the northwest of
China. SGA-WZ02 is the strapdown airborne gravimeter developed by National University of Defense
Technology, which is based on the rich design experience of SGA-WZ01 [9,14,17,22]. The quality
assessment method is similar to the gravimeter calibration and the determinants of quality assessment
method are from the strapdown airborne gravimeter data processing. Both theoretical improvement
and application of the new method to real flight data are presented in this paper. It should be noted
that although the model was summarized from SGA-WZ02 gravimeter, the quality assessment method
is suitable for other strapdown gravimeters to evaluate the single line gravimetry quality if they apply
this method. Both advantages and disadvantages of the new quality assessment method are discussed
in this paper.

2. Classical Root Mean Square Error Evaluation Methods for Airborne Gravimetry

The classical quality assessment methods need additional flight or extra information. The most
common and classical quality assessment methods of airborne gravimetry are internal root mean square
error (RMSE) and external RMSE evaluation methods. Evaluating internal RMSE needs repeat line
flight to acquire gravity disturbance data in the same line or grid flight to acquire gravity disturbance
data in the same point. The former is called repeat line internal RMSE and the latter is called the
cross point internal RMSE. Equations (1) and (2) described the principle of repeat line internal RMSE.
The principle of cross point internal RMSE was expressed by Equation (3) [20].
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ij

n
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where ε j is the internal RMSE of repeat line j, δij is the different value between the mean value at point
i and the value in repeat line j at point i, n is the total data point number of common part of repeat
lines, m is the total line number of repeat line flight, ε is the internal RMSE of total repeat line.

ε = ±

√√√√√ m
∑

j=1

n
∑

i=1
w2

ij

N
(3)

where ε is the internal RMSE of grid flights, wij is the different value between line i and line j at cross
point, N is the total data point number of grid lines.

The internal RMSE needs extra flight to assess quality of gravimetry, which will increase the
cost of airborne gravimetry. Though the external RMSE doesn’t need extra flight, reference data from
upward continuation or other reliable gravimeters is also needed to directly testify the performance of
gravimeter. Compared with the internal RMSE, the result of external RMSE has a higher confidence
level. The Equation (4) describes the principle of external RMSE [10]. In airborne gravimetry,
the reference gravity disturbance data from the earth upward continuation is against the purpose of
survey and the requirement of another airborne gravimeter is inefficient.

ε = ±

√√√√√ N
∑

i=1
ω2

i

N
(4)

where ε is the external RMSE, ωi is the different value between reference data and measurement data
at point i, N is the total reference data point number.

The repeat line internal RMSE can be used as the principle to illustrate the performance of certain
airborne gravimeter and the cross point internal RMSE can evaluate the quality of the large area
airborne gravimetry task. Another method, the external RMSE, can be applied to compare the data
from certain airborne gravimeter with reference data to testify the performance of gravimeter in a
different way from the internal RMSE. However, when the reference data or extra flights are not
available, all these methods cannot directly evaluate the quality of single survey line as well.

3. Principle of Strapdown Airborne Gravimetry and Quality Assessment Method

The purpose of gravimetry is to extract the mGal (≈10−5 m/s2) level gravity disturbance from
the G (≈9.8 m/s2) level origin measurement data, which means the signal-to-noise ratio is very
small. The purpose of gravimetry is to recover gravity disturbances with an accuracy of the order of
1 mGal (1 mGal = 10−5 m/s2) from a signal of the order of 106 mGal, i.e. with an extremely small
signal-to-noise ratio. The flow chart of strapdown airborne gravimeter data processing is shown in
Figure 1 [9]. The strapdown airborne gravimeter can be regarded as a multiple inputs single output
control system. The inputs of this control system are from inertial sensors and GPS, whereas the output
is the gravity disturbance. As a control system, the strapdown airborne gravimeter also has a limited
measurement ability and is related to the noise level of the system inputs.

Furthermore, the principle for determining gravity anomaly in airborne gravimeter is shown in
Equation (5) which is based on the Newton’s motion equation [9].

δgn =
.
vn

e + (ωn
en + 2ωn

ie)× vn
e − Cn

b f b − γn (5)

where
.
vn

e and vn
e are the acceleration and velocity of vehicle with respect to the earth, f b is the specific

force measured by quartz flex accelerometers of a Strapdown Inertial Navigation System (SINS) in
body frame (b-frame), Cn

b is the transformation matrix which rotates from b-frame to n-frame, ωn
ie is

angular velocity of the earth respecting to the n-frame and ωn
en is rotation rate of the ellipsoid n-frame
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due to the velocity of the vehicle relative to the ellipsoid, γn is the normal gravity vector expressed in
n-frame, δgn is the gravity disturbance vector expressed in n-frame.Sensors 2018, 18, x FOR PEER REVIEW  4 of 18 
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Figure 1. Data process flow chart of strapdown airborne gravimeter. 

Furthermore, the principle for determining gravity anomaly in airborne gravimeter is shown in 
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Figure 1. Data process flow chart of strapdown airborne gravimeter.

In the Equation (5), the acceleration information of vehicle comes from GPS. The specific force and
the transformation matrix rotating from b-frame to n-frame could be obtained from SINS. The accuracy
of GPS was able to meet the requirement of airborne gravimetry in current condition [1–3], therefore
the main error in strapdown airborne gravimeter comes from the inertial sensors. Considering the
differential form of Equation (5) and only keeping the items related with SINS, the error model in three
directions is shown in Equation (6) [23].

dδg = Cn
bδfb+[ψ×]fn =

 δ f n
N + ψD f n

E − ψE f n
D

δ f n
E − ψD f n

N − ψN f n
D

δ f n
D + ψN f n

E − ψE f n
N

 (6)

where dδg is the gravity disturbance measurement error, δ fi, i = N, E, D are the specific force
measurement errors in n-frame, fi, i = N, E, D are the specific forces in n-frame and ψi, i = N, E, D are
the attitude measurement errors in n-frame.

Only considering the error in down direction, Equation (6) has shown that the accuracy of attitude
measurement and specific force measurement are the key factors in strapdown airborne gravimetry.
The error model of three-axis accelerometers unit in b-frame is shown in Equation (7), in which the
error factors impacts the measurement through specific force inputs. In addition, gyro error factors
influence the attitude measurement in a similar way with accelerometers error factors impacting the
specific force measurement. So, larger input means larger measurement error in accelerometers when
most of the error factors stabilize at certain levels, which is the same in the gyros. Furthermore, larger
specific force errors from accelerometers and larger attitude rate errors from gyros will lead larger
specific force errors and attitude errors in navigation-frame, which will eventually negative impact the
airborne gravimetry result. In particular, airborne gravimetry mainly measures the change of gravity
disturbance during the flight and is a relative measurement way, the bias of which is corrected by base
point correction. Therefore, establishing the model between stability of airborne gravimeter inputs and
gravimetry quality is a feasible and reliable way to estimate single line quality of airborne gravimeter.
However, real inputs can’t be exactly obtained. Considering the error model shown in the third row of
Equation (6), five factors, which were δ fD, ψN , ψE, fE and fN , are all related with flight stability. First,
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larger fD leads to larger δ fD. Second, higher dynamic condition leads larger ψN and ψE. Third, larger
fE and fN amplify the error caused by ψN and ψE. A case is that the airborne gravimeter performs
better in the smooth airflow condition than in the turbulence airflow condition. Totally speaking,
stability of roll angle, pitch angle, north specific force, east specific force and vertical specific force not
only can describe the stability of flight but also have obvious relationship with gravimetry quality
which can be regarded as the determinants in the estimation model. ∆ fx

∆ fy

∆ fz

 =

 k0x
k0y
k0z

+

 kxx kxy kxz

kyx kyy kyz

kzx kzy kzz


 fx

fy

fz

+

 nx

ny

nz

 (7)

where ∆ fi, (i = x, y, z) is the measurement error of accelerometers, k0i(i = x, y, z) is the bias of the
accelerometer, kii(i = x, y, z) is the first-order scale factor error, fi (i = x, y, z) is the specific force
input of each accelerometer, kij(i, j = x, y, z, i 6= j) is the cross-coupled error and ni(i = x, y, z) is the
white noise.

To estimate the airborne gravimetry quality by the five determinants, the repeat line flight is also
needed to establish the assessment model. However, the purpose of repeat line flight here is different
from the common flight, which aimed at building the connection between airborne gravimetry quality
and the determinants. The standard of quality assessment is established by repeat line flight, which
is like the use of high precision three-axis turntable in SINS calibration. Once the estimation model
between determinants and internal RMSE were established from repeat line flight, it can be used in
other survey tasks to get estimated quality of airborne gravimetry. For the intuitive idea that the
quality of airborne gravimetry should be decided by the gravimeter itself, a quality assessment method
for strapdown airborne gravimetry is developed. The actual data used in method demonstration was
collected during a regional gravimetry by SGA-WZ02 airborne gravimeter. The following part will
introduce the survey conditions in detail.

4. Survey Description

The survey was carried out in the southwest of China’s Xinjiang Province using SGA-WZ02
from September to October 2016. The properties of SGA-WZ02 were shown in Table 1. Figure 2
shows SGA-WZ02 airborne gravimeter. Three GPS receivers were used for the differential kinematic
positioning, one of the receivers was located on the airplane and the other two were located on the
roof as ground stations. All the GPS receivers installed on the ground and in the airplane were
Trimble BD930. The GPS positioning accuracy was better than ±0.1 m, the accuracy of the velocity
determination was better than 0.05 m/s, when applied differential kinematic positioning by Waypoint
Software. Lever arm, which was used to transform the sensitive center of GPS to SINS sensitive center,
was [1.90,−0.22,−1.60]′ m in the INS body frame.

Table 1. Properties of SGA-WZ02.

Properties Details

Static precision 0.5 mGal (24 h)
Max overload 4 g

Working temperature −10–50 °C
Weight 45 kg

Dimension 460 mm × 350 mm × 580 mm
Stable power consumption <150 w

The gravimetry system was mounted on a Y-12 aircraft, which was a fixed-wing aircraft without
an autopilot. The detail characters of flight were shown in Table 2. The Y-12 is shown in Figure 3.
The survey area was about 1600 km2, in which the longitude range was 0.5◦ and the latitude range
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was about 0.33◦. Each survey line was about 40 km, whose ends were extended 5 km to eliminate the
boundary effect of low-pass filter. In this regional airborne gravimetry task, the maximum distance
between survey area and airport was less than 140 km. The flight path from airport to survey area was
fixed to collect repeat line data, which could be called quality assessment line. Figure 4 is the path of
certain flight and path of quality assessment line is red highlight.
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Table 2. The characters of flight.

Character Details

Aircraft type Y-12
Topography Gentle hilly terrain

Atmosphere conditions Variety
Altitude above standard ellipsoid 1600 m

Flight speed 60 m/s
Trace control method Line flight control

Sampling frequency of GPS 2 Hz
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Figure 3. Appearance of aircraft Y-12.

To cover the survey area, there were 82 north-south lines and 8 east-west cross lines. The interval
of north-south lines was 500 m and the interval of east-west lines was 5000 m. In addition, there were
also several experimental flights, for example undulated flights, during the survey. So, this survey
totally contained 21 separate flights. Based on the cross-point internal quality assessment, the total
accuracy of this survey was 2.09 mGal in the resolution of 4.8 km. After cross-point adjustment,
the accuracy could reach 1.30 mGal. Figure 5 shows the gravity disturbance and cross-point differences
in the survey area after adjustment.
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The use of cross point internal RMSE could evaluate the truly accuracy of system and the total
survey quality. However, as mentioned, cross point internal RMSE needs extra flight and more extra
flights mean more comprehensive evaluation. When the cross points are not available, how to assess
the single line quality should be considered, which means the quality assessment method is quite
needed. Let assume that such a situation, the survey lines were added outside the arranged area where
cross-over points were unavailable. Under above conditions, the single line quality assessment method
is the proper way to assess the new lines’ quality. In addition, single line quality assessment method is
also helpful in the airborne gravimetry quality control. In the next section, the relationships between
quality assessment determinants and internal RMSE in this regional airborne gravimetry task were
given by linear fitting. The single line quality assessment model for SGA-WZ02 was built by weighted
linear fitting results. What needs to be noted is that the model was specially established for SGA-WZ02
while the method could be also generalized to other strapdown gravimeter.

5. Quality Assessment Model Development

The error in strapdown airborne scalar gravimetry was mainly originated from the specific force
errors in three directions and two horizontal attitudes errors. To analyze the relationship between
the stability of five determinants and gravimetry quality, standard deviation of five determinants
and gravity disturbance internal RMSE in quality assessment lines should be calculated. For the
reason of flight path conflict, several flights did not finish the original plan, so the data from 21 quality
assessment lines in 13 flights was collected and applied in the model establishment which was shown
in Table 3. From Table 3, we can see that larger standard deviations of five determinants usually mean
worse gravimetry quality, such as line 10-1 and 10-2, and small standard deviations usually mean
better gravimetry quality, such as line 1-2 5-1 and 13-1. The gravimetry results of 21 quality assessment
are shown in Figure 6. Most of quality assessment lines show good results and internal RMSE of these
lines is 0.76 mGal under the resolution of 4.8 km.

Table 3. Standard deviation of five factors and internal RMSE in 21 lines.

Line
Number

Roll Angle
(◦)

Pitch Angle
(◦) fn (m/s2) fe (m/s2) fd (m/s2)

RMSE
(mGal)

1-1 1.092 0.568 0.198 0.106 0.267 0.547
1-2 1.408 0.549 0.231 0.132 0.214 0.524
2-1 0.844 0.510 0.130 0.105 0.203 0.739
2-2 0.968 0.449 0.145 0.091 0.163 0.599
3-1 1.070 0.704 0.161 0.115 0.191 0.717
3-2 1.061 0.371 0.180 0.102 0.167 0.681
4-1 1.371 0.596 0.230 0.144 0.316 0.588
4-2 1.767 0.997 0.315 0.200 0.601 0.856
5-1 1.006 0.443 0.173 0.097 0.179 0.579
6-2 1.480 0.597 0.267 0.127 0.260 0.527
7-1 0.905 0.645 0.157 0.111 0.262 0.693
7-2 1.713 0.822 0.322 0.183 0.489 0.621
8-1 0.981 0.479 0.161 0.102 0.205 0.689
9-2 1.983 0.646 0.333 0.153 0.298 0.826

10-1 1.974 1.705 0.375 0.244 0.672 1.570
10-2 2.846 1.917 0.487 0.289 0.686 1.384
11-1 1.351 0.716 0.234 0.135 0.378 0.737
12-1 1.507 0.762 0.249 0.160 0.356 0.625
12-2 1.710 0.768 0.319 0.188 0.474 0.795
13-1 0.992 0.607 0.186 0.109 0.303 0.545
13-2 1.529 1.361 0.367 0.241 0.771 1.175
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Figure 7. Correlation between determinants and internal root mean square error (RMSE).

The correlation between the stability of five factors and internal RMSE is shown in Figure 7,
where x-axis is the standard deviation of determinant and y-axis is internal RMSE. The red line in
each subfigure is obtained by linear fitting and the correlation coefficients are also given. Correlations
between the determinants’ standard deviation and internal RMSE are all significant. Thus, it is
reasonable to estimate the quality of survey line through the standard of five determinants. Based
on linear fitting results in Figure 7, relationship model between the five factors and internal RMSE is
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built by weighted method, which is shown in Equation (8). The model residuals are shown in Figure 8.
We can see that quality assessment model has shown good performance and the maximum residual is
0.43 mGal in case 15.

ε = ∑
x=ϕn ,ϕe ,

fn , fe , fd

1/Rx
R0

(px
1std(x) + px

0)(R0 = ∑
x=ϕn ,ϕe ,

fn , fe , fd

1
Rx
)

= 0.247 + 0.192std(ϕn) + 0.235std(ϕe)+

0.057std( fn) + 0.025std( fe) + 0.129std( fd)

(8)

where ε is the quality estimation result of single survey line, ϕn is the roll angle, ϕe is the pitch angle,
fn is the north direction specific force, fe is the east direction specific force, fd is the down direction
specific force, Rx, x = ϕn, ϕe, fn, fe, fd are the variances of linear fitting results, px

1 , x = ϕn, ϕe, fn, fe, fd
are the first order linear fitting coefficients and px

0 , x = ϕn, ϕe, fn, fe, fd are the zero order linear fitting
coefficients.Sensors 2018, 18, x FOR PEER REVIEW  11 of 18 

 

 
Figure 8. Model residuals. 

However, the universality and applicability of model may be influenced by flight direction. It 
was because the stabilities of two horizontal specific force were related to the flight direction. So the 
north specific force and east specific force can be combined as one horizontal specific force.  
Equation 9 has shown how we got horizontal specific force. Relationship between the horizontal 
specific force standard deviation and internal RMSE is shown in Figure 9. The correlation between 
horizontal specific force standard deviation and internal RMSE is also significant. Based on new 
linear fitting results, the estimation model is rebuilt, which is shown in Equation (10). The residuals 
of new model are shown in Figure 10. Combining the north specific force with east specific force, the 
applicability of this model is promoted and also has good performance. 

2 2
h n ef f f   (9) 

where hf  is the down direction specific force, nf  is the north direction specific force and ef  is 
the east direction specific force. 

 
Figure 9. The relation between horizontal specific force and internal RMSE. 

1 0 0
, , , ,0

, ,

1 / 1
( std( ) ) ( )

0.266 0.055std( ) 0.310std( )
0.5441std( ) 0.244std( )

   



 

 

  

   



 
n e n e

h d h d

x xx

x x x
f f f f

n e

h d

R
p x p R

R R

f f

 
(10) 

where   is quality estimation result of survey line, n  is the roll angle, e  is the pitch angle, hf  

is the horizontal specific force and df  is the down direction specific force , , , ,x n e h dR x f f   are 

0 5 10 15 20 25
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Residual of quality assessment model (std:0.15mGal)

E
st

im
at

io
n 

re
si

du
al

s 
(m

G
al

)

Case Number

0.1 0.15 0.2 0.25 0.3 0.35
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
The correlation between std of horizontal specific force and internal accuracy,correaltion coefficient:0.73

std of north direction specific force(m/s2)

In
te

rn
al

 a
cc

ur
ac

y(
m

G
al

)

Figure 8. Model residuals.

However, the universality and applicability of model may be influenced by flight direction. It was
because the stabilities of two horizontal specific force were related to the flight direction. So the north
specific force and east specific force can be combined as one horizontal specific force. Equation (9)
has shown how we got horizontal specific force. Relationship between the horizontal specific force
standard deviation and internal RMSE is shown in Figure 9. The correlation between horizontal
specific force standard deviation and internal RMSE is also significant. Based on new linear fitting
results, the estimation model is rebuilt, which is shown in Equation (10). The residuals of new model
are shown in Figure 10. Combining the north specific force with east specific force, the applicability of
this model is promoted and also has good performance.

fh =
√

f 2
n + f 2

e (9)

where fh is the down direction specific force, fn is the north direction specific force and fe is the east
direction specific force.

ε = ∑
x=ϕn ,ϕe ,

fh , fd

1/Rx
R0

(px
1std(x) + px

0)(R0 = ∑
x=ϕn ,ϕe ,

fh , fd

1
Rx
)

= 0.266 + 0.055std(ϕn) + 0.310std(ϕe)+

0.5441std( fh) + 0.244std( fd)

(10)
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where ε is quality estimation result of survey line, ϕn is the roll angle, ϕe is the pitch angle, fh
is the horizontal specific force and fd is the down direction specific force Rx, x = ϕn, ϕe, fh, fd are
variances of linear fitting results, px

1 , x = ϕn, ϕe, fh, fd are the first order linear fitting coefficients and
px

0 , x = ϕn, ϕe, fh, fd are the zero order linear fitting coefficients.
Based on the strong correlation, the assessment model in SGA-WZ02 is obtained by weighted

linear fitting. After fusion the north and east specific force, the effect of flight direction is eliminated
to a large extent in quality assessment. The model is specially established for SGA-WZ02 gravimeter
assessing the gravimetry quality, but a similar model can also be obtained by other strapdown
gravimeter during a gravimetry task if the same method is used. In the next section, data from other
repeat lines will be used to testify the quality assessment model performance.
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Figure 9. The relation between horizontal specific force and internal RMSE.
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Figure 10. Residuals of new model.

6. Quality Assessment Model Test

To test applicability and veracity of quality assessment model, repeat flights were used, whose
flight paths are different from the highlight path shown in Figure 4. The first test flight is a repeat line
flight before the survey flight 1, which is to initially inspect the gravimeter’s working performance
and can be numbered flight 0. The second test flight is flight 9. There are a total of eight repeat lines
and two different flight paths are shown in Figure 11. The measurement result of 8 repeat lines was
shown in Figure 12. The internal RMSE is 0.69 mGal/4.8 km, so SGA-WZ02 gravimeter still shows
high accuracy.

The standard deviation of four determinants and internal RMSE were shown in Table 4. Compared
with the data in Table 3, four determinants in Table 4 represent the good flight stability. Using the
quality assessment model shown in Equation (10) and the data from Table 4, quality assessment results
of 8 lines in two flights are shown in Table 5 and differences between the quality assessment results and
internal RMSE is shown in Figure 13. The standard deviation of residuals is 0.22 mGal and the largest
estimation error is about 0.54 mGal in Figure 13. The good performance of quality assessment model
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can be seen from Table 5 and Figure 13. At the same time, the quality assessment results are larger than
the internal RMSE in most cases, so we can conclude that the quality assessment result obtained by
model is a conservative indicator for quality assessment. The quality requirement of this gravimetry
task is superior to 1 mGal under 4.8 km resolution and the survey lines which do not meet the accuracy
requirement need to be remeasured. Both quality assessment results and internal RMSE in Table 5
satisfy the accuracy requirement, which confirm the performance of quality assessment model. So,
if single survey line’s quality assessment result is less than 1, it represents the result of this line satisfies
the quality requirement and remeasurement does not need in a large degree. The quality assessment
result obtained by the model is a complement for the classical methods during the gravimetry task.
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Sensors 2018, 18, x FOR PEER REVIEW  13 of 18 

 

 

Figure 12. Measurement result of 8 repeat lines. 

The standard deviation of four determinants and internal RMSE were shown in Table 4. 
Compared with the data in Table 3, four determinants in Table 4 represent the good flight stability. 
Using the quality assessment model shown in equation 10 and the data from Table 4, quality 
assessment results of 8 lines in two flights are shown in Table 5 and differences between the quality 
assessment results and internal RMSE is shown in Figure 13. The standard deviation of residuals is 
0.22 mGal and the largest estimation error is about 0.54 mGal in Figure 13. The good performance of 
quality assessment model can be seen from Table 5 and Figure 13. At the same time, the quality 
assessment results are larger than the internal RMSE in most cases, so we can conclude that the 
quality assessment result obtained by model is a conservative indicator for quality assessment. The 
quality requirement of this gravimetry task is superior to 1 mGal under 4.8 km resolution and the 
survey lines which do not meet the accuracy requirement need to be remeasured. Both quality 
assessment results and internal RMSE in Table 5 satisfy the accuracy requirement, which confirm the 
performance of quality assessment model. So, if single survey line’s quality assessment result is less 
than 1, it represents the result of this line satisfies the quality requirement and remeasurement does 
not need in a large degree. The quality assessment result obtained by the model is a complement for 
the classical methods during the gravimetry task. 

Table 4. Standard deviation of four factors and internal RMSE in two repeat line flight. 

Line Number Roll Angle (°) Pitch Angle (°) hf ( 2/m s ) df ( 2/m s ) 
RMSE (mGal) 

0-1 1.188 0.876 0.132 0.378 0.803 
0-2 0.897 0.864 0.121 0.425 0.674 
0-3 1.388 0.933 0.162 0.402 0.786 
0-4 1.143 1.026 0.183 0.549 0.444 
9-1 1.345 0.681 0.145 0.398 0.571 
9-2 1.616 0.815 0.177 0.406 0.875 
9-3 1.458 0.942 0.225 0.622 0.810 
9-4 1.989 0.966 0.235 0.581 0.405 

Table 5. Standard deviation of four factors and internal RMSE in two repeat line flight. 

Line Number 0-1 0-2 0-3 0-4 9-1 9-2 9-3 9-4 
Quality assessment results 0.767 0.753 0.818 0.881 0.727 0.804 0.913 0.945 

Internal RMSE 0.803 0.674 0.786 0.444 0.571 0.875 0.810 0.405 
(Unit: mGal). 

Figure 12. Measurement result of 8 repeat lines.

Furthermore, a repeat line flight in another gravimetry survey was applied to further test the
performance of model and the generality of the method. This repeat line flight which carried
SGA-WZ02 gravimeter was implemented in Neimeng province of china in June 2015. Although
there were several calibrations on SGA-WZ02 between the two surveys, the core sensors were still the
same. Flight direction in this survey was east to west and the aircraft was also Y-12. Table 6 showed the
characters of Neimeng flight and trajectory was shown in Figure 14. And the final gravity disturbance
results in Neimeng flight were shown in Figure 15 which was 0.79 mGal under resolution of 4.8 km.
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Table 4. Standard deviation of four factors and internal RMSE in two repeat line flight.

Line Number Roll Angle (◦) Pitch Angle (◦) fh (m/s2) fd (m/s2) RMSE (mGal)

0-1 1.188 0.876 0.132 0.378 0.803
0-2 0.897 0.864 0.121 0.425 0.674
0-3 1.388 0.933 0.162 0.402 0.786
0-4 1.143 1.026 0.183 0.549 0.444
9-1 1.345 0.681 0.145 0.398 0.571
9-2 1.616 0.815 0.177 0.406 0.875
9-3 1.458 0.942 0.225 0.622 0.810
9-4 1.989 0.966 0.235 0.581 0.405

Table 5. Standard deviation of four factors and internal RMSE in two repeat line flight.

Line Number 0-1 0-2 0-3 0-4 9-1 9-2 9-3 9-4

Quality assessment results 0.767 0.753 0.818 0.881 0.727 0.804 0.913 0.945
Internal RMSE 0.803 0.674 0.786 0.444 0.571 0.875 0.810 0.405

(Unit: mGal).Sensors 2018, 18, x FOR PEER REVIEW  14 of 18 
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Table 6. Characters of Neimeng flight.

Character Details

Aircraft type Y-12
Topography Plain

Atmosphere conditions Turbulence
Altitude above standard ellipsoid 1550 m

Flight speed 60 m/s
Trace control method Line flight control

Sampling frequency of GPS 2 Hz
Sampling frequency of SINS 200 Hz

The standard deviation of four factors, internal RMSE and quality assessment results in Neimeng
flight were shown in Table 7. Quality assessment results of 6 lines in Neimeng flight were shown in
Figure 16. The standard deviation of residuals was 0.17 mGal and the largest estimation error was
0.45 mGal in Figure 16. The quality assessment result is still an exacting index for quality assessment.
The Neimeng flight’s quality assessment results show the performance of established model when
applying in different survey. Compared four determinants in Tables 4 and 7, the stability of flight in
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Neimeng is worse than that in Xinjiang. As a result, the performance of SGA-WZ02 in Xinjiang is better
than that in Neimeng, which could be seen from the quality assessment results and internal RMSE.
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Figure 15. Gravity disturbance results in Neimeng flight.

Table 7. The standard deviation of four factors and internal RMSE in Neimeng flight.

Line
Number

Roll
Angle (◦)

Pitch
Angle (◦) fh (m/s2) fd (m/s2)

RMSE
(mGal)

Quality
Assessment Result

1 1.562 1.142 0.231 0.703 0.903 1.00
2 1.057 1.435 0.196 0.652 1.034 1.04
3 1.336 1.168 0.227 0.696 0.792 0.99
4 1.075 1.400 0.173 0.560 0.751 0.99
5 1.384 1.353 0.252 0.614 0.613 1.05
6 0.873 1.530 0.180 0.452 0.554 0.99

In conclusion, quality assessment model built the connection between the single survey line
data in strapdown gravimeter and the quality of gravimetry. Compared with internal RMSE, quality
assessment model was conservative and strict in these two surveys. The quality assessment results in
different surveys indicated that quality assessment model could be used to estimate the performance of
strapdown airborne gravimeter and could be regarded as an important reference index for surveyors
to control the gravimetry process as well. As a case, the shown method also could be applied to other
strapdown gravimeters.
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Figure 16. Different between internal RMSE and Quality assessment results in Neimeng flight.

7. Discussion and Conclusions

This research developed an efficient and pervasive method for strapdown airborne gravimetry
quality assessment using single survey line data. The single survey line data used in the method were
roll angle, pitch angle, integrated horizontal specific force, and vertical specific force, which were
regarded as quality assessment determinants and could also quantify the flight stability during the
survey task. Taking advantage of two different gravimetry surveys, the method applicability and
generality have been testified and both got promising results. Once the strapdown gravimeter quality
assessment model established, it could not only be used to assess the quality of gravimetry in this
survey but also in other surveys with similar conditions.

The quality assessment method can be described by four steps.

Step 1: Collect enough repeat line data which can be obtained from different flights.
Step 2: Calculate the standard deviation of four determinants and obtain the internal RMSE results in

those repeat lines.
Step 3: Establish the estimation model whose inputs are the standard deviation of four determinants

and output is quality estimation result.
Step 4: Extract standard deviation of four determinants in new survey line and apply the estimation

model obtained in step 3 to assess the quality of survey line.

Taking advantage of the above four steps, this method developed by SGA-WZ02 could also be
applied for other strapdown gravimeters.

Applied to real data in different surveys, the practicality of the quality assessment method has
been validated. The merits of this quality assessment method are as follows. First, using the model is
a convenient and low-cost way to obtain a reliable quality assessment result for gravimetry. Second,
besides examining the performance and work state of gravimeter, repeat line flight also can be used
to build quality assessment model, which expands the function of repeat line flight. Third, this new
assessment method could complement the traditional classical methods and help ensure the quality
of the measurements during airborne gravimetry and also allowed a more complete assessment of
the entire gravity measurement. Fourth, once the model was established, it could be applied and
improved in another different survey task. Fifth, the new assessment method has shown the advantage
of strapdown airborne gravimeter in data mining. In addition, extra repeat flights plans can be avoided
by trajectory planning during establishing a quality assessment model, and corrective models can
be constantly repaired during the survey mission. However, disadvantage of new method was that
this method just offered a conservatively estimated value of survey quality. In the future research,
the credibility of estimation quality should also receive more attention.
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