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Abstract: The measurement error of the differencing (i.e., using two homogenous field sensors
at a known baseline distance) magnetic gradient tensor system includes the biases, scale factors,
nonorthogonality of the single magnetic sensor, and the misalignment error between the sensor arrays,
all of which can severely affect the measurement accuracy. In this paper, we propose a low-cost
artificial vector calibration method for the tensor system. Firstly, the error parameter linear equations
are constructed based on the single-sensor’s system error model to obtain the artificial ideal vector
output of the platform, with the total magnetic intensity (TMI) scalar as a reference by two nonlinear
conversions, without any mathematical simplification. Secondly, the Levenberg–Marquardt algorithm
is used to compute the integrated model of the 12 error parameters by nonlinear least-squares fitting
method with the artificial vector output as a reference, and a total of 48 parameters of the system is
estimated simultaneously. The calibrated system outputs along the reference platform-orthogonal
coordinate system. The analysis results show that the artificial vector calibrated output can track
the orientation fluctuations of TMI accurately, effectively avoiding the “overcalibration” problem.
The accuracy of the error parameters’ estimation in the simulation is close to 100%. The experimental
root-mean-square error (RMSE) of the TMI and tensor components is less than 3 nT and 20 nT/m,
respectively, and the estimation of the parameters is highly robust.

Keywords: magnetic gradient tensor system; least-squares method; vector calibration;
artificial reference

1. Introduction

In the last decades, many kinds of magnetic gradient tensor systems based on fluxgate
magnetometers or superconducting quantum interference devices (SQUID) have been developed;
such systems are relatively sensitive to magnetic anomaly signals and show higher spatial resolution,
therefore they have been widely used in civil and military magnetic exploration applications, such
as aeronautical magnetic detection and navigation, detection of ferrous metals in the soil, searching
for underground unexploded bombs, submarine investigation, and demining [1–3]. The magnetic
gradient tensor systems comprised of magnetometers with differencing are generally composed of
multiple three-axis fluxgate sensors in accordance with a certain shape combination array [4]. Many
measurement factors exist that give rise to errors in measurements performed using a magnetic gradient
tensor system [5,6]; because of manufacturing technology and process limitations, fluxgate sensors will
always exhibit systematic errors, such as triaxial scalar output deviation and differences of sensitivity
and nonorthogonality; displacement and rotation misalignment errors also arise between the different
sensor axes when multiple magnetic sensors are used to arrange the tensor system. In addition, the
sensor itself exhibits a core temperature coefficient and magnetic hysteresis, and hard and soft magnetic
interference in the background field can also affect the measurement accuracy. The existence of these
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errors means that the deviation of the tensor system’s output may reach thousands of nT/m, severely
affecting the measurement accuracy and necessitating the calibration of the system.

The traditional calibration approaches for a differencing magnetic gradient tensor system can
be divided into the following: (1) calibration of the system error of a single magnetic sensor and
(2) calibration of the misalignment error between the sensor arrays. There are two types of single
magnetic sensor calibration methods, namely, vector calibration and scalar calibration. The current
vector calibration method requires the use of high-precision equipment and a platform to obtain the
geomagnetic field vector standard output as the reference [7], but the cost of this equipment is typically
much higher than the cost of the system itself and is not suitable for practical applications. Scalar
calibration is a low-cost method in which a high-precision proton magnetometer is used to measure
the total magnetic intensity (TMI) scalar output for calibration reference [8]; this method ignores the
actual environmental magnetic non-uniform field characteristics, resulting in overly idealized TMI
calibration results, which we refer to as the “overcalibration” (OC) phenomenon. The misalignment
error in current research works can be used only in vector calibration; thus, tensor system calibration
is generally performed in two steps: first, the scalar method is used to calibrate the output of the
individual triaxial sensors to obtain the ideal sensors’ output; then, the misalignment error is calibrated
using one of the calibrated ideal sensors as a vector reference. However, this approach causes each
sensor output of the system to be aligned to only one sensor and cannot use the output of the system
structure’s center point as a reference. Yin et al., Pang et al., and Yu et al. have already calibrated the
magnetic gradient tensor system using the two-step method [9–13], obtaining favorable results, and all
used the scalar calibration method in the first step. In this work, we attempt to combine the advantages
of both methods based on the advantages and disadvantages of vector and scalar calibrations: (1) a
linear model of the sensor system error is constructed to calibrate the platform output using the scalar
method and obtain the low-cost ideal vector output of the platform, and (2) the artificial platform
vector output is used as a reference to integrate the 12 error parameters of the sensors in a single model,
and the parameter value is estimated quickly and accurately using the least-squares nonlinear fitting
method. This approach attempts to eliminate the sensor biases, scale factors, nonorthogonality error
and sensor arrays’ misalignment error efficiently to improve the accuracy of parameter estimation
using a low-cost procedure, providing a method and concept for the quick batch calibration of the
tensor magnetic measuring instrument.

2. Magnetic Tensor Theory and System Construction

The magnetic field is a vector field, and the spatial change rate of the three components in the
orthogonal axes’ direction is defined as the magnetic gradient tensor [1]. Nine components exist and
can be represented by the product of two vector elements as follows:

G =

 ∂/∂x
∂/∂y
∂/∂z

[ Bx By Bz

]
=


∂2φm
∂x2

∂2φm
∂x∂y

∂2φm
∂x∂z

∂2φm
∂y∂x

∂2φm
∂y2

∂2φm
∂y∂z

∂2φm
∂z∂x

∂2φm
∂z∂y

∂2φm
∂z2

 =

 Bxx Bxy Bxz

Byx Byy Byz

Bzx Bzy Bzz

, (1)

where G is the magnetic gradient tensor matrix; Bx, By, and Bz are the magnetic field triaxial orthogonal
components; φm is the magnetic scalar potential; Bij (i, j = x, y, z) is the tensor component in the j
direction of the i axis. If a magnetostatic field is present in the environment and the current is absent,
according to the Maxwell equations, the magnetic field divergence and curl are equal to zero, which
can be expressed as ∇·B = ∂Bx

∂x + ∂By
∂y + ∂Bz

∂z = 0, ∇× B = 0, so that G is a symmetric matrix with a
trace of zero. Thus, there are only five elements independent of each other, and these five components
must be measured to obtain G.

However, it is challenging to measure the gradient of the magnetic vector field in the actual
measurement. Therefore, when constructing the magnetic gradient tensor measuring system, the tensor
component is estimated using the difference between the measured values of the multiple magnetic
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sensors. Several different configurations of the magnetic gradient tensor system are analyzed in [14],
and, because of the simple structure, straightforward installation, and minimal structural error, we
adopt the planar cross-shaped structure to construct a magnetic gradient tensor system that consists
of a planar nonmagnetic platform and four triaxis magnetic sensors. The x and y axes lie along the
orthogonal baselines, and the z axis is chosen to make a right-handed Cartesian coordinate system.
The baseline distance between two magnetometers in the same direction is d, as shown in Figure 1.
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Figure 1. Structural design of the planar cross-magnetic gradient tensor system.

We use the short-distance magnetic vector difference method on the baseline to approximate the
magnetic tensor gradient as Bij ≈ ∆Bi/dj, where ∆Bi is the component difference of the two magnetic
sensors in the direction i, and dj is the distance between the two magnetic sensors in the direction j;
then, the magnetic field vector Bo at the centre point O and the magnetic gradient tensor matrix G can
be expressed as 

Bo =

 Bxo

Byo

Bzo

 = 1
4

 Bx1 + Bx2 + Bx3 + Bx4

By1 + By2 + By3 + By4

Bz1 + Bz2 + Bz3 + Bz4


G = 1

d

 Bx1 − Bx3 By1 − By3 Bz1 − Bz3

Bx2 − Bx4 By2 − By4 Bz2 − Bz4

Bz1 − Bz3 Bz2 − Bz4 −(Bx1 − Bx3)− (By2 − By4)


(2)

where Bmn (m = x, y, z; n = 1, 2, 3, 4) represents the magnetic field component reading of the nth
magnetic sensor in the direction m. The matrix shown here is not symmetric. Measurement noises and
high-order gradients will create differences between the estimates of Bxy and Byx. So, we average the
two estimates and use a truly symmetric matrix with off-diagonal elements in the actual exploration
process, and the tensor Bxy and Byx components are treated separately in this paper to achieve more
accurate calibration results.

3. Artificial Vector Calibration Method

3.1. System Error Parameter Model for Single Magnetic Sensors

Single magnetic sensors have a series of systematic errors, such as biases, scale factors, triaxial
nonorthogonality, and temperature error. Pang et al. [15] used the least-squares support vector
machine to nonlinearly compensate the temperature error of the fluxgate sensor that arises primarily
from the temperature coefficient of the core material. Here, for the time being, we do not consider
the temperature error because of the small difference of the working temperature and because the
working time is generally sufficiently short relative to other significant system errors. Thus, we can
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construct a mathematical model for the error of a single sensor that contains biases, scale factors, and a
nonorthogonal angle.

The actual magnetic sensors are not entirely orthogonal to each other, i.e., a nonorthogonal error
exists. The established nonorthogonal angles’ diagram of a single magnetic sensor triaxial coordinate
system is shown in Figure 2, in which we set the actual coordinate system of the sensor as O-X1Y1Z1,
the ideal orthogonal coordinate system of the sensor as O-X2Y2Z2, and the standard reference platform
frame-orthogonal coordinate system as O-XYZ. In Figure 2, the actual coordinate axis OZ1 of the
sensor is perfectly aligned with the ideal coordinate axis OZ2, and the plane X1OY1 is coplanar with
the plane X2OY2. The angle between the axis OY1 and the axis OY2 is ψ, the angle between the axis
OX1 and the plane X2OY2 is φ, and the angle between the axis OX2 and the projection OX1’ of the axis
OX1 in the plane X2OY2 is θ. Once the nonorthogonal angles are determined, the ideal orthogonal
coordinate system of the sensor is uniquely determined.
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Figure 2. Magnetic sensor axis nonorthogonal angle.

We define I = (ix, iy, iz)T as the triaxis output biases and ci (i = x, y, z) as the sensitivity scale
factors. Thus, we construct the parameters θ, φ, ψ, cx, cy, cz, ix, iy, and iz, which are the nine system
error parameters of the magnetic sensor. If the actual output of the sensor is B1 = (B1x, B1y, B1z)T and
the ideal output is B2 = (B2x, B2y, B2z)T, then we can construct the mathematical model of the output
from O-X1Y1Z1 to O-X2Y2Z2 as:

B1 =

 cx

cy

cz


 cos θ cos φ sin θ cos φ sin φ

cos ψ sin ψ

1

× B2 + I = CAB2 + I, (3)

where C and A are defined as the scale factor error matrix and the nonorthogonal error
matrix, respectively. Setting kx = 1/cxcosφcosθ, ky = 1/cycosψ, kz = 1/cz, g = (sinθsinψcosφ −
sinφcosψ)/cosθcosψcosφ, m = −sinθ/cosθ, and n = −sinψ/cosψ, we obtain:

B2 =

 B2x
B2y
B2z

 =

 kx mky gkz

ky nkz

kz


 B1x − ix

B1y − iy

B1z − iz

⇒ B2 = M(B1 − I). (4)

Equation (4) is the error parameter calibration model of a single magnetic sensor. The parameter
matrices M and I can convert the actual output B1 of the sensor into the ideal output B2 to complete
the system error calibration process of the sensor.
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3.2. Solving the Integrated Error Parameter Model

3.2.1. Integrated Error Parameter Model

In this paper, the planar cross-magnetic gradient tensor system is arranged in pairs with four
single vector triaxial magnetometers. Because of the technical limitations, we cannot guarantee the
complete alignment for the magnetometer, and, after calibration of the single-sensors’ system error,
the output direction of each axis changes again so that a misalignment error is present between the
orthogonal coordinate systems. Pang [16] calibrated the misalignment error using one of the sensors
as a reference, but this method cannot convert the output of the tensor system along the platform
orthogonal system.

To ensure the practicability of the calibration results, it is necessary to calibrate the misalignment
errors between the ideal outputs of the sensors using the platform frame-orthogonal coordinate system
as a reference, to realize an accurate measurement of the tensor system, as shown in Figure 3.
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The ideal output of the sensors can be converted to the output of O-XYZ by rotating around three
orthogonal axes. We define α as the roll angle of the rotation around the X-axis, β as the pitch angle of
the rotation around the Y-axis, and Γ as the yaw angle of the rotation around the Z-axis. Considering
that only the roll, pitch, and yaw angles are present, we represent the roll conversion output as Bα, the
pitch conversion output as Bβ, and the yaw conversion output as BΓ, as given by:

Bα =

 B2x
B2y cos α + B2z sin α

B2z cos α− B2y sin α

 =

 1
cos α sin α

− sin α cos α


 B2x

B2y
B2z

 = AαB2

Bβ =

 B2x cos β− B2z sin β

B2y
B2x sin α + B2z cos β

 =

 cos β − sin β

1
sin β cos β


 B2x

B2y
B2z

 = AβB2

Bγ =

 B2x cos γ + B2y sin γ

B2y cos γ− B2x sin γ

B2z

 =

 cos γ sin γ

− sin γ cos γ

1


 B2x

B2y
B2z

 = AγB2

. (5)

In the above formula, Aα, Aβ, and AΓ are defined as the roll, pitch, and yaw rotation matrices,
respectively. Thus, the output on the orthogonal coordinate of the magnetometer can be converted to
the output of the reference platform.
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The sequence of the three rotation matrices and the order of the output conversion route of the
coordinate system are both fixed; thus, the misalignment angle calibration sequence is fixed as well.
The three-axis orthogonal output of the ideal sensor is B2 = (B2x, B2y, B2z)T, and the output being
calibrated to the reference orthogonal coordinate system is B = (Bx, By, Bz)T. Setting the order of
calibration as the roll angle α, the pitch angle β, and then the yaw angle Γ, we obtain the following
output conversion:

B = AγAβAαB2 = TB2, (6)

here, T is the rotation matrix in any spatial orientation. The ideal orthogonal output B2 of the sensor can
be converted to the output B of the reference using Equation (6), thus completing the alignment process.

According to the above derivation, the two-step model of tensor system’s error parameters can be
integrated by Equations (4) and (6):

 Bx

By

Bz

 =

 cos γ sin γ

− sin γ cos γ

1


 cos β − sin β

1
sin β cos β


 1

cos α sin α

− sin α cos α


 kx mky gkz

ky nkz

kz


 B1x − ix

B1y − iy

B1z − iz


⇒ B = TM(B1 − I)

. (7)

3.2.2. Estimation Algorithm

Equation (7) is an integrated nonlinear equation with 12 error parameters. The sensor’s actual
output B1 and the standard output B of the reference platform of N (N > 12) spatial posture points can
be extended to nonlinear equations of N groups with different orientation:

B = TM(B1 − I)
extending→

 Bx1 Bx2

By1 By2

Bz1 Bz2

· · ·
BxN−1 BxN

ByN−1
ByN

BzN−1
BzN

 = TM×

 B1x1 B1x2

B1y1 B1y2

B1z1 B1z2

· · ·
B1xN−1 B1xN

B1yN−1
B1yN

B1zN−1
B1zN

. (8)

Solving the 12 specific error parameters in the nonlinear Equations (8) is crucial and can be treated
as a nonlinear least-squares problem. Generally, let function f : Rn → Rm be continuously differentiable
with m ≥ n, and consider the nonlinear least-squares problem of finding a local minimizer of ‖f (x)‖, or,
equivalently, of finding x* = argminx {F(x)}, where

F(x) =
1
2

m

∑
i=1

( fi(x))2 =
1
2
‖f(x)‖2 =

1
2

f(x)Tf(x), (9)

which is the basic theory of the nonlinear least-squares problem [17]. Least-squares problems can be
solved by general optimization methods, but we shall prefer special methods that are more efficient.
We compare the merits and demerits of a variety of estimation algorithms, such as the unscented
Kalman filter (UKF), genetic algorithm (GA), recursive least squares (RLS), differential evolution (DE),
Gaussian–Newton (GN) iteration algorithms, and Levenberg–Marquardt (LM) algorithm, the latter
being an improved form of the GN iteration method. LM is a least-squares nonlinear fitting algorithm
that does not require to strictly set the initial parameters, which makes this method suitable for the
actual calibration with unknown error parameters. Shawash et al., and Pang et al. [18,19] used the
LM algorithm to calibrate and estimate the system parameters of instruments (such as cameras and
magnetic sensors) to improve the performance of the estimation; these methods can be used as the
basis for this work.

The basic idea of the LM algorithm is to use a Taylor series expansion instead of applying the
nonlinear regression model in an approximate way [20]. After several iterations, the regression
coefficient is corrected to approach the optimal solution of the nonlinear model continuously, and the
square sum of residuals of the parameter model is minimized.
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In the description of the methods in [21], we shall need formulas for derivatives of F: provided
that f has continuous second partial derivatives, we can write its Taylor expansion as:

f(x + h) = f(x) + J(x)h + O(‖h‖2), (10)

where ‖ · ‖ denotes the 2-norm, ‖h‖ =
√

h2
1 + h2

2 + · · ·+ h2
n and J is the Jacobian matrix.

Setting the parameter vector as W(n) (n = 1, 2,..., n), the iterative process is represented as:

W(n + 1) = W(n) + ∆W(n), (11)

where n is the number of iterations. According to the LM algorithm, for small ∆W we see, from the
Taylor expansion (10) with inserting definition (9), that{

f(W + ∆W) ' f(W) + J(W)∆W
F(W + ∆W) ' F(W) + ∆WTJTf + 1

2 ∆WTJTJ∆W = L(∆W)
(12)

(with J = J(W) and f = f(W)); it is easily seen that the gradient and the Hessian of L are [22]:

L′(∆W) = JTf + JTJ∆W, L′′ (∆W) = JTJ. (13)

Further, the matrix L′′ (∆W) is independent of ∆W. It is symmetric, and if J has full rank, i.e., if
the columns are linearly independent, then L′′ (∆W) is also positive definite. This implies that L(∆W)

has a unique minimizer, which can be found by solving:[
JTJ + µI0

]
∆W = −JTf

⇒ Q∆W = −JTf
, (14)

where J is the Jacobian matrix of the parameter vector, I0 is the unit matrix, µ is the adjustment
coefficient satisfying the minimum error of the computed scalar values, and f = [f 1(W), f 2(W), . . . ,
f 12(W)]T is the error vector of 12 estimated parameters; we define Q as a coefficient matrix, and then
for all µ > 0, Q is positive definite, thus ensuring that ∆W is in a descending channel. The nonlinear
Equation (8) can be solved by invoking the lsqnonlin function in MATLAB [22] under the LM algorithm
to obtain the solution vector of least-squares fitting.

3.3. Artificial Platform Reference Output

According to the aforementioned theory, if the platform ideal reference output B is known, then
we can obtain the sensor 12 error parameters at once. However, it is challenging to measure the
true magnetic field vector B, and we therefore construct an artificial platform reference output as an
alternative. From (2), we know that the magnetic field vector Bo at the center point O is not the ideal
platform output because of the lack of calibration of the actual output of each sensor. According to
the description of [23], we assume that it is a truly magnetic sensor at point O, and then Bo can be
considered to have the same system error as a single sensor. We use the system error parameter model
described in Section 3 to convert Bo to the ideal orthogonal output B, using the measured TMI scalar as
the reference by the linear method, with B serving as the artificial ideal vector output of the reference
platform to achieve low-cost vector calibration. According to Equation (4), we can obtain the platform
reference output transformation model as: Bx

By

Bz

 =

 kx mky gkz

ky nkz

kz


 Bxo − ix

Byo − iy

Bzo − iz

. (15)
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By multiplying both sides of (15) with the transpose and defining variables km,g,n and i1,2,3,
we obtain

BTB = ‖B‖2
2 = k2

x(Bxo + kmByo + kgBzo − i1)
2 + k2

y(Byo + knBzo − i2)
2 + k2

z(Bzo − i3)
2

km = mky/kx, kg = gkz/kx, kn = nkz/ky

i1 = ix + m ky
kx

iy + g kz
kx

iz = ix + kmiy + kgiz

i2 = iy + n kz
ky

iz = iy + kniz , i3 = iz

Γ1
. (16)

By merging this expression and introducing the error substitution variable R1–7 and then
simplifying and expanding, we obtain the vector product form (18) as:

R1B2
xo + R2Bxo + (R1k2

m + R3)B2
yo + (R2km + R4)Byo + (R1k2

g + R3k2
n + R5)B2

zo + (R2kg + R4kn + R6)Bzo

+2R1kmBxoByo + 2R1kgBxoBzo + 2(R1kmkzx + R3kn)ByoBzo + R7 = ‖B‖2
2 = H = B2

s

R1 = k2
x , R2 = −2i1k2

x , R3 = k2
y , R4 = −2i2k2

y
R5 = k2

z , R6 = −2i3k2
z , R7 = i21k2

x + i22k2
y + i23k2

z

}
Γ2

(17)

⇒



Bxo

Byo

Bzo

B2
xo

B2
yo

B2
zo

BxoByo

BxoBzo

ByoBzo

1



T

×



R2

R2km + R4

R2kg + R4kn + R6

R1

R1k2
m + R3

R1k2
g + R3k2

n + R5

2R1km

2R1kg

2(R1kmkg + R3kn)

R7


= KT

1×10V10×1 = H. (18)

Here, Γ1 and Γ2 are the two nonlinear conversions, Bs is the measured TMI scalar, and H is the square
of the 2-norm of B, with V defined as the substitution vector and KT as the signal vector. By repeating
the rotary measurements of the N (N > 10) orientations of the system, KT can be expanded to the
N × 10 signal matrix, and the N linear equations of each orientation are obtained:

KT
N×10V10×1 = HN×1 ⇒ V = (KKT)

−1
KH. (19)

Since the dimension of KT
N×10 is greater than 10, the equations have no exact solution, and

the estimated solution can be obtained for the V vector by the multiple least-squares estimator [24].
According to (18):

R1 = V4 , R2 = V1 , R3 = V5 −V4k2
m , R4 = V2 −V1km

R5 = V6 −V5k2
n −V4(k2

g − k2
mk2

n)

R6 = V3 −V2kn −V1(kg − kmkn)

km = V7
2V4

, kg = V8
2V4

, kn =
V9−2V4kmkg

2(V5−V4k2
m)

. (20)

Using the conversion Γ1 and Γ2, so that kx =
√

R1, ky =
√

R3, kz =
√

R5, m = kmkx/ky, g = kgkx/kz,
n = knky/kz, i1 =−R2/2R1, i2 =−R4/2R3, and i3 =−R6/2R5, we obtain the nine error parameters as follows:

θ = −arctankm

√
R1
R3

, ψ = −arctankn

√
R3
R5

, φ = arctan[cos θ(tan θ tan ψ− kg

√
R1
R5
)]

cx =
√

1
R1

cos φ cos θ , cy =
√

1
R3

cos ψ , cz =
√

1
R5

iz = − R6
2R5

, iy = − R4
2R3

+ kn
R6

2R5
, ix = − R2

2R1
+ km

R4
2R3

+ (kg − kmkn)
R6

2R5

. (21)
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The aforementioned research proves that the proposed method transforms the mathematical
model into a system of linear equations by two nonlinear conversions. The above derivation process
cannot be further simplified mathematically, enabling the avoidance of the deviation caused by
neglecting the higher-order small quantities from the nonorthogonal angle and biases [23]. In theory,
this approach can realize the completely accurate estimation of the nine error parameters of the output.
Using the estimated parameters to calibrate Bo by (15), the ideal reference platform-orthogonal output
B is obtained.

4. Simulation

We attempt to verify the performance of the proposed calibration method using MATLAB
simulations. We set the total field intensity as 55,000 nT, the magnetic dip as 60◦, the magnetic
declination as−7◦, and the baseline distance of the magnetic gradient tensor system as 0.5 m. To obtain
the measured data in the direction of the complete space, the simulated tensor system is rotated around
the X, Y, and Z triorthogonal axes in turn at an interval of 20◦, sampling the data 18 times per circle.
Thus, there is a total of 183 posture data sampled in the complete space, which is used as the ideal
reference output B in postures of the full spatial direction of the standard platform. To simulate the
rotational noise of the platform in the real measurement, we add Gaussian noise with a mean of 0 nT
and a variance of 1 nT in the rotation process of orientations. The 48 error parameters of the four
sensors are preset, and the actual tricomponent output of the sensor in the full space orientation is
simulated. The tricomponents’ spatial distributions of the sensors’ actual output and the reference
platform’s ideal output are contrasted in Figure 4.Sensors 2018, 17, x FOR PEER REVIEW  10 of 18 
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The actual tricomponent of each sensor is calibrated by the proposed method. To compare the
calibration performance, we use the simplified linear calibration model of Zhang et al. [23] and the
nonsimplified linear calibration model of Yin et al. [9]. Before and after the calibration, the TMI output
of the sensors and the tensor components of the system center O-point are shown in Figures 5 and 6,
respectively, and the root-mean-square errors (RMSE) [25] of the sensors’ TMI are listed in Table 1,
reflecting the calibration effect of the sensor system error; the RMSE values of the tensor components
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are listed in Table 2, reflecting the calibration effect of the misalignment error between axes, and the
preset and fitting estimation parameters in simulation are listed in Table 3.
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Table 1. Comparison of root-mean-square errors (RMSE) of TMI before and after calibration using
the simulation.

Process Sensor 1 (nT) Sensor 2 (nT) Sensor 3 (nT) Sensor 4 (nT)

Before calibration 6685.23 6638.08 6548.99 4951.23
“Zhang” calibration 1003.92 927.04 827.88 690.39

“Yin” calibration 0.5835 0.5767 0.5706 0.5703
My calibration 0.5837 0.5768 0.5710 0.5704

Table 2. Comparison of RMSE of tensor components before and after calibration using the simulation.

Process
Bxx

(nT/m)
Bxy

(nT/m)
Bxz

(nT/m)
Byx

(nT/m)
Byy

(nT/m)
Byz

(nT/m)

Before calibration 24,411.4 15,523.2 6791.5 25,222.8 8000.2 29,176.6
“Zhang” calibration 2166.6 1243.5 286.5 1615.5 595.0 970.3

“Yin” calibration 1.7692 1.7361 1.7594 1.7945 1.6692 1.7999
My calibration 1.6287 1.6102 1.6221 1.6313 1.6285 1.6282

Table 3. Preset and estimated system error parameters in the simulation.

Errors
Preset Parameters Estimated Parameters PMEA %

Sensor
1

Sensor
2

Sensor
3

Sensor
4 Sensor 1 Sensor 2 Sensor 3 Sensor 4

θ/◦(rad) −2.46 −3.88 1.69 −2.62 −2.458 (−0.0429) −3.879 (−0.0677) 1.690 (0.0295) −2.618 (−0.0457) 99.92
φ/◦(rad) 3.53 1.73 1.44 −1.45 3.529 (0.0616) 1.730 (0.0302) 1.438 (0.0251) −1.450 (−0.0253) 99.86
ψ/◦(rad) 1.14 1.55 3.62 2.31 1.140 (0.0199) 1.553 (0.0271) 3.621 (0.0632) 2.309 (0.0403) 99.81

cx 1.312 0.925 0.897 1.185 1.3120 0.9250 0.8970 1.1850 100.00
cy 0.915 0.943 1.231 1.044 0.9150 0.9430 1.2310 1.0440 100.00
cz 0.881 1.315 0.888 0.818 0.8810 1.3150 0.8880 0.8180 100.00

ix/nT 351 131 201 218 351.0153 131.0000 201.0034 217.9913 100.00
iy/nT 111 −294 −335 −334 110.9985 −293.9941 −334.9951 −334.0055 100.00
iz/nT −208 217 99 −251 −207.9969 217.0019 98.9976 −250.9985 100.00

α/◦(rad) −2.93 2.64 2.92 1.64 −2.928 (−0.0517) 2.641 (0.0461) 2.922 (0.0510) 1.639 (0.0286) 99.93
β/◦(rad) 1.75 3.19 1.88 0.89 1.748 (0.0305) 3.191 (0.0557) 1.879 (0.0328) 0.888 (0.0155) 99.89
γ/◦(rad) 2.28 0.82 −3.05 −2.54 2.280 (0.0398) 0.819 (0.0143) −3.048 (−0.0532) −2.538 (−0.0443) 99.92

According to the simulation results, in the case of a uniform magnetic field with no hard or soft
magnetic interference, when we use the simplified linear calibration of Zhang et al., the second or
higher-order small quantities are neglected in the process of the single magnetometer calibration
model, and the calibration deviations are brought in. Relative to the method of Zhang et al., the effect
of the calibration of the nonlinear calibration method proposed in this paper is equivalent to that of
the nonsimplified two-step linear calibration proposed by Yin et al., with both achieving accurate
calibration in the theory of the system error in the Gaussian noise error range. However, this approach
does not match the rotation order of solving the misalignment error in the step-by-step process of
the linear two-step method, thus causing the estimation accuracy of the parameters to be affected by
the deviation of variable conversion; this outcome is an inevitable drawback of the two-step method.
The simulation results show that the parameter minimum estimation accuracy (PMEA) of the method
of Yin et al. is only 86% [9], while the PMEA of the proposed nonlinear method is as high as 99.81%,
enabling the achievement of the approximate lossless calibration of the error parameter model in the
ideal case.

5. Experimental Verification

A planar cross-magnetic gradient tensor system is built as shown in Figure 7a, consisting of four
Bartington-produced triaxial fluxgate sensors, an aluminium cross, a triaxial nonmagnetic rotation
platform (the structure design is shown in Figure 7b), a data acquisition card, and a software terminal.
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Figure 7. Calibration experiment of the magnetic gradient tensor system. (a) Experimental setup to
acquire orientation data; (b) Design of the three-axis nonmagnetic rotation platform structure.

The material of the nonmagnetic rotation platform are aluminum and copper to avoid magnetic
interference caused by operating. The main technical parameters of the platform are the following:
(1) the orientation rotation range of the roll angle is 360◦, and the pitch and yaw angle are ±40◦;
(2) the position accuracy of three Euler angles is limited to ±6’. Using Altai (Company, Beijing, China)
USB2852 signal acquisition card for the data acquisition module, with 16-channel synchronous data
acquisition and 16 bits of resolution, the frequency is 31 Hz−250 KHz.

Experiments in a stable environmental field with less magnetic interference were conducted
in a suburb of Shijiazhuang, China. The baseline distance of the tensor system was 0.4 m, and the
temperature of the working environment was 29 ◦C. To avoid the influence of geomagnetic diurnal
variation as much as possible, the time of the experiment was chosen to be 6:00 pm. Using the
scalar proton magnetometer to determine a measurement point with a comparatively more stable
uniform magnetic field, the average TMI scale value Bs of the tensor system in the rotating space was
53,902.87 nT, and the range of fluctuation was ±10 nT for different orientations.

The experimental process was divided into two parts, the first being conducted around the Z-axis
of the platform for a standard measurement, and the second being a random orientation measurement,
i.e., a random rotation of the nonmagnetic platform for arbitrary space orientation measurement point
sampling. Standard measurements were sampled once per 10◦, and a total of 36 samples were taken
around the Z-axis per circle. Random sampling was performed a total of 100 times, thus increasing
the amount of data to avoid accidental results and ensure the effect and adaptable performance of the
calibration. A total of 136 sets of spatial direction posture data were sampled, each of which contains
the magnetic field tricomponent output of each orientation for four sensors. According to (2), we
obtain an average of tricomponents of the four sensors’ output to Bo, and we use Bs as the reference to
calibrate Bo by the linear method of Section 5, to construct the artificial-reference-platform ideal output
B = (Bx, By, Bz)T of the cross tensor system center O-point. A comparison of the reference platform
outputs before and after calibration is shown in Figure 8. The RMSE of the TMI of the artificial platform
output B is 7.4 nT after the calibration, which is within the range of the TMI orientation fluctuation,
proving the validity of B.
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Figure 8. Artificial reference platform output before and after calibration.

All data were calculated using the linear calibration method of Yin et al., Zhang et al., and
the proposed artificial vector calibration method. We calibrated the output of the four sensors after
obtaining a total of 48 estimated error parameters. The calibration effect of TMI for each sensor is
shown in Figure 9, with the corresponding RMSE presented in Table 4. Since the ambient magnetic
field is a nonuniform field, and there are diurnal and environmental magnetic interferences, the
true field intensity of the geomagnetic field is not constant but fluctuating; therefore, along with
the orientation change process, the real geomagnetic total field can be represented by 136 sets of
the reference platform output B and is used as a reference in Figure 9. The six independent tensor
components of the system before and after calibration are shown in Figure 10, with the corresponding
RMSE values listed in Table 5. For comparison, Figure 11 shows the linear calibration of Yin et al. [9],
the aligning idea of Pang et al. [16] when using one of the sensors as a reference, and the spatial
distributions of the sensor’s magnetic field tricomponents before and after calibration of the first 36
orientations of standard measurements rotating around the Z-axis. The total field output RMSE [25] is
given by:

ERMS =

√√√√(
N

∑
i=1

(Bci − Bi)
2)/N, (22)

where Bi is the reference platform output of the ith posture point, Bci is the calibration output of the ith
posture point, and N is the number of orientations. We can see that the accuracy of the simplified linear
calibration of Zhang et al. is slightly worse. The results of the experimental comparison show that we
must use Bs as the reference for the two-step linear calibration of Yin et al. because of the calculation
requirements; however, this approach ignores the fluctuation along with the orientation change of the
magnetic field intensity in the actual environment, resulting in the OC phenomenon, so that the coaxial
output between the sensors and the reference platform is affected after calibration. However, this
result is not reflected in the simulation process described in Section 6 for the OC phenomenon because
of the set ideal case. By contrast, the sensor can fit the reference platform output accurately with
the proposed vector calibration method, the fluctuant tracking performance is improved, the RMSE
of TMI is reduced to less than 1 nT, and the accurate calibration is achieved in the abovementioned
average TMI scale fluctuation range of vector calibration. For the misalignment error, the aligning
idea of Pang et al. exhibits a satisfactory coaxiality after calibration, but it cannot be output along the
reference platform, making this approach impractical, while the performance of the linear method of
Yin et al. is affected by the output coincidence degree because of the OC phenomenon for a single
sensor. The RMSE of the tensor components is substantially reduced by the proposed method, and the
tricomponent spatial distributions of the sensors magnetic field are more coaxial and show a stronger
degree of coincidence with the reference platform output.
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Table 5. RMSE of tensor components before and after calibration in the experiment.
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(nT/m)

Before calibration 4365.18 958.38 2211.11 3425.93 1849.67 1474.37
“Zhang” calibration 73.3097 156.994 122.685 223.926 159.994 226.273

“Yin” calibration 58.6183 41.9891 77.3008 119.558 104.468 46.3363
My calibration 13.3575 13.4651 15.3108 10.3117 7.9620 13.9699
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To verify the robust performance of the 48 error parameters estimated by this method, we reselect
the measurement point. The obtained results show that the reproduction degree of each parameter
after two estimation iterations is higher than 95% in Table 6, indicating that the calibration results are
stable and reliable.

Table 6. Estimation error parameters of different measurement data after the calibration experiments.

Errors
Sensor 1 Sensor 2 Sensor 3 Sensor 4

Data 1 Data 2 Data 1 Data 2 Data 1 Data 2 Data 1 Data 2

θ/◦ −0.252 −0.257 0.705 0.700 −0.109 −0.111 0.819 0.823
φ/◦ −3.478 −3.477 3.071 3.086 −3.146 −3.150 3.174 3.167
ψ/◦ 0.888 0.886 0.865 0.873 −1.793 −1.797 2.498 2.481
cx 0.999 0.999 1.008 1.007 0.996 0.995 1.006 1.007
cy 1.004 1.005 1.001 1.000 1.004 1.003 1.004 1.004
cz 0.994 0.993 0.999 0.998 0.997 0.997 0.996 0.995

ix/nT 361.0 363.4 382.9 387.1 −105.9 −103.6 −310.3 −303.8
iy/nT −244.7 −248.4 196.1 201.3 218.3 220.2 −243.3 −238.7
iz/nT −47.7 −51.5 −187.2 −190.9 −131.7 −136.8 −83.2 −81.1
α/◦ 0.676 0.677 −0.911 −0.907 −0.481 −0.485 0.705 0.706
β/◦ −0.871 −0.868 0.241 0.246 0.768 0.767 −0.155 −0.152
γ/◦ −2.154 −2.152 1.633 1.641 −1.369 −1.379 1.885 1.873
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6. Conclusions

This paper proposes an artificial vector calibration method for differencing magnetic gradient
tensor systems. We use the linear calibration method to construct the artificial ideal platform output
as the reference vector. The Levenberg–Marquardt algorithm is used to realize the least-squares
fitting of nonlinear equations by establishing an integrated nonlinear mathematical model of the
single-sensor system error of biases, scale factors, nonorthogonal angles, and the measurement error of
the sensor arrays. A total of 48 parameters of the four sensors is estimated simultaneously, providing
the concept and method for the accurate calibration of aeronautical, underwater, and surface tensor
magnetic measuring instruments. As a result of using the multiorientation single-sensor vector output
calibration, the method is suitable for any triaxial magnetic sensor or accelerometer array combination
of the magnetic field, and the gravity field tensor system with an accurate and efficient parameter
estimation can achieve batch and rapid calibration of tensor measurement instruments, contributing
to the scientific literature and the commercial value. Relative to the calibration methods of Zhang et
al., Yin et al., and Pang et al., in the ideal case of a uniform magnetic field, the accuracy of parameter
estimation with the nonlinear integrated calibration is close to 100% in simulation, and a lossless
calibration is realized. As a result of the lack of the integrated parameter model, the defects of the
fixed solving sequence and distortion of conversion in the two-step method are inevitable, while,
experimentally, the ability of tracking the calibration for the magnetic field output fluctuates, following
the orientation change with the proposed method, effectively avoiding the OC problem of the linear
calibration, which must set the total field intensity to a constant value to solve the linear equations.

In this paper, the idea and method of a low-cost vector calibration for tensor systems are provided,
and the estimation of the parameters is comparatively accurate. However, we have not considered the
influence of the sensor temperature coefficient, nonlinearity, or hard or soft magnetic interference on the
accuracy of the tensor system, and the algorithm has a strong dependence on vector output based on the
standard reference platform. In the future, multiorientation magnetic field vector measurement data
can be used as the tensor system reference outputs with a more sensitive and high-frame magnetometer
to improve the calibration accuracy and reliability.
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