
sensors

Article

Use of Acoustic Emission and Pattern Recognition for
Crack Detection of a Large Carbide Anvil

Bin Chen 1,*, Yanan Wang 1 and Zhaoli Yan 2

1 School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China;
sumrainfn@bupt.edu.cn

2 Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences,
Beijing 100190, China; zl_yan@mail.ioa.ac.cn

* Correspondence: binchen@bupt.edu.cn; Tel.: +86-10-6228-3022

Received: 25 December 2017; Accepted: 26 January 2018; Published: 29 January 2018

Abstract: Large-volume cubic high-pressure apparatus is commonly used to produce synthetic
diamond. Due to the high pressure, high temperature and alternative stresses in practical
production, cracks often occur in the carbide anvil, thereby resulting in significant economic losses
or even casualties. Conventional methods are unsuitable for crack detection of the carbide anvil.
This paper is concerned with acoustic emission-based crack detection of carbide anvils, regarded
as a pattern recognition problem; this is achieved using a microphone, with methods including
sound pulse detection, feature extraction, feature optimization and classifier design. Through
analyzing the characteristics of background noise, the cracked sound pulses are separated accurately
from the originally continuous signal. Subsequently, three different kinds of features including
a zero-crossing rate, sound pressure levels, and linear prediction cepstrum coefficients are presented
for characterizing the cracked sound pulses. The original high-dimensional features are adaptively
optimized using principal component analysis. A hybrid framework of a support vector machine
with k nearest neighbors is designed to recognize the cracked sound pulses. Finally, experiments
are conducted in a practical diamond workshop to validate the feasibility and efficiency of the
proposed method.
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1. Introduction

Synthetic diamond has unique physical and chemical characteristics, such as hardness,
semi-conductivity and high thermal conductivity [1]. In China, synthetic diamond is commonly
produced by large-volume cubic high-pressure apparatus, which has three pairs of tungsten carbide
anvils, as shown in Figure 1. When the apparatus is in operation, it provides 5 GPa pressure and
1500 ◦C temperature, which is required for the growth of diamond through six hydraulic rams and
electric heating mode [2].

Nowadays, the total amount of cubic apparatuses has reached about 6000 in China. Due to
the high pressure, high temperature and alternative stresses, the carbide anvil is highly prone to
material fatigue. A common form of the failure is cracking, including nucleation, propagation and
fragmentation. If the released energy is less than a critical value, the crack does not grow; otherwise,
it grows spontaneously. When a cracked anvil is still operating, an unbalance force is exerted on the
other five anvils. If not found early enough, it is extremely easy for a cracked carbide anvil to have
a serious blowout or even cause casualties. The destruction of tungsten carbide anvils due to blowouts
has become one of the most significant economic losses for the manufactures since the apparatuses
have a value of 0.05 g/carat.
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Traditionally, regular maintenance and subsequent maintenance methods have been applied in
synthetic diamond production. During downtime, the anvil is overhauled by observing or sweeping
the surface with a saw blade. While in the production process, the currently available detection method
is manual monitoring by experienced workers, seriously influenced by strong background noise.
In conclusion, these methods lack the ability to accurately judge the state or analyze the health of the
carbide anvil, thereby causing poor reliability and inaccuracy. To adequately protect the rest of the
anvils prior to a blowout and improve the market competitiveness and production safety, conducting
on-line crack detection of the tungsten carbide anvils is necessary.
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Figure 1. Large-volume cubic high-pressure apparatus. (a) Appearance; (b) internal anvils.

When a crack occurs in the material, it results in a rapid release of energy, transmitting in the form
of an elastic wave, namely acoustic emission (AE). The AE-based detection method has been intensively
used in nondestructive assessments of cracks [3–8]. Caesarendra et al. proposed an AE-based method
for low speed reversible slew bearings, including AE signal processing, feature extraction and pattern
classification [3]. Rabiei and Modarres revealed a log-linear relationship between the AE features
and crack growth rate, and presented an end-to-end approach for structural health management [4].
Qu et al. presented a comparative study of the damage level diagnostics of gearbox tooth using AE and
vibration measurements; the results indicated that vibration signals were easily affected by mechanical
resonance, while the AE signals showed a more stable performance [5]. Zhang et al. studied defect
detection of rails using AE and wavelet transform at a high speed [7]. In the above methods, the AE
sensors are usually attached to the surface of the monitoring object. This is not suitable for crack
detection of the carbide anvil because of the high temperature and limited inner space in the apparatus.

More recently, some scholars introduced an AE technique for crack detection of carbide anvils
using microphones and have produced in-depth studies on the criterion mechanism of the crack [9–12].
Han et al. successfully established a tungsten carbide anvil model based on the finite element
method (FEM) and indicated that the cracks usually arise around the bevel edge [9]. Li and Wang
created a template library of cracking sounds and designed a detection device using voiceprint
recognition with an accuracy of 77% [10]. Han et al. combined the Hurst exponent and the neural
network to develop a crack detection algorithm of carbide anvils [11]. Subsequently, Yan et al.
designed a signal sampling and processing platform based on the digital signal processor and the
field-programmable gate array, with a low false-alarm rate of 5.8× 10−4 using the sliding time window
(STW) technique [12]. This method suffers from the trade-off between the missing-alarm rate and
false-alarm rate, with 24 cracked samples misclassified as normal ones among 63 testing samples.
The recognition rate is 95% when combined with the STW technique, which takes cost of the real-time
performance into account. A more practical crack detection method is still lacking.

Aiming to improve recognition accuracy and generalization, a novel crack detection method
based on acoustic emission and pattern recognition is proposed. In this method, the cracked sound
pulses are firstly separated from the original signal by preprocessing. According to the mechanism of
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the crack, three different kinds of features are presented. The high-dimensional features are reduced
adaptively by using principal component analysis (PCA). The algorithm combines a k-nearest neighbor
(kNN) classifier with a support vector machine (SVM) to refine the classification outcome. Finally,
experiments are carried out in a practical synthetic diamond workshop to validate the feasibility and
efficiency of the proposed method.

The remainder of the paper is organized as follows. Section 2 presents the principle of the
acoustical crack detection method of the carbide anvil based on acoustic emission and pattern
recognition. The effectiveness of the proposed method is supported by the experimental work
described in Section 3. Finally, conclusions are drawn in Section 4.

2. The Proposed Crack Detection Method

When a cracked anvil operates continuously under high-pressure, it generates a typical burst-type
AE signal in terms of the sound pulses in time-domain waveform. The sound pulse contains
a significant crack information about the anvil. In this paper, crack detection is conducted by
recognizing the cracked sound pulses. This is a problem of pattern recognition, consisting of pulse
detection, feature extraction, feature optimization and classifier design.

2.1. Pulse Detection

2.1.1. Preprocessing

In practical application, there are many normal sound pulses mixed in with background noise,
such as knocking, hydraulic cylinder operation noise and so on. Figure 2 shows the waveform and
time-frequency presentation for a normal sound pulse and a cracked one. Clearly, the power spectrum
of background noise is mainly below 5000 Hz, while the normal and cracked sound pulses distribute
in higher frequency, reaching more than 32,000 Hz. The duration of a cracked sound pulse is much
shorter, lasting less than 64 millisecond (ms).

When background noise is strong, a small cracked sound pulse is too weak to be detected.
According to the spectral characteristic of background noise, a high-pass filter is designed to remove
the high-energy low-frequency components in the measuring signal.
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2.1.2. Extract Valid Sound Pulses

The high-pass filter makes the small sound pulse more visible. However, there still exists residual
noise, which has slight effects on the location of the sound pulse. To find the start and end coordinates
of the sound pulses accurately, the threshold of residual noise should be estimated.

Firstly, randomly select a continuous filtered signal and divide it into equal segments. Some of the
segments contain sound pulses, while the others do not. They have a remarkable difference in energy.

Secondly, calculate the energy of all segments and select the segments with the energy below
a predefined threshold Q. The average energy E of residual noise can be calculated by

E =
∑P

i=1

√
1

N1
∑N1

j=1 X2
i,j

P
(1)

where N1 denotes the length of segment; P denotes the number of objective segments, Xi,j denotes the
i-th objective segment. The initial threshold of noise is set as T = E + K, where K is a positive constant,
equaling the minimum energy between the sound pulses and residual noise. Parameters Q and K are
specific to experiments.

In practice, the noise is actually time-variant, which also affects the location of the sound pulse.
Thus, a fixed threshold is not suitable; instead, a real-time renewal mechanism is designed. When
the average energy of new signal Fnew is greater than the previous threshold T, it remains constant;
otherwise, it is updated by Equation (2).

T = αE′ + (1− α)Fnew + K (2)

where E′ denotes the average energy of the previous noise; α is a weighting coefficient.
Finally, locate the start and end coordinates of cracked sound pulses. Additionally, the cracked

sound pulses must satisfy the following: (a) the average energy of each segment is greater than the
threshold T; (b) the duration ranges from 16 ms to 64 ms.

2.2. Feature Extraction and Optimization

During diamond production, a large number of normal sound pulses are generated, especially in
the process of pressurization and decompression. Some of the normal sound pulses are similar to the
cracked ones, as shown in Figure 2. The slight differences, in terms of cracked features, can be found
by analyzing the AE signal.

2.2.1. Cracked Feature Extraction

Compared to many of the normal sound pulses, the cracked ones have a larger amount of energy
in a high frequency. The zero-crossing rate (ZCR) is able to characterize the frequency distribution.
The high ZCR implies a great proportion of high-frequency components in the signal [13]. For a given
signal x, the ZCR equals the number of times that the amplitude passes through zero [14], defined by

ZCR =
1
2∑N2−1

m=0 |sgn[x(m)]− sgn[x(m− 1)]| (3)

where m = 1, 2, . . . , N2, N2 denotes the length of the signal; the sign function is

sgn[x] =

{
1 x ≥ 0
−1 x < 0

.

Besides, the cracked sound pulses randomly have a sudden change in some frequency bands,
as shown in Figure 3. This can be roughly represented in terms of the 1/6 octave frequency band,
with a lower frequency, f lower

c = fc/21/12, and a higher frequency, f upper
c = 21/12 fc, where fc is the
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centroid frequency [15]. The sound pressure level (SPL) of the 1/6 octave frequency band is measured
in decibels and defined as

SPL = 20 log10

(
pe

pre f

)
(4)

where pe is the measured sound pressure in [ f lower
c , f upper

c ]; pre f is the reference sound pressure with
a value of 2.0× 10−5 Pa in air.
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Figure 3. Frequency representation of the cracked sound pulses in combination with normal ones.

The measuring acoustic signal is equivalent to the convolution of the excitation and transfer
function. When a crack occurs, the transfer function between the anvil and measuring microphone
changes consequently. The linear prediction cepstrum coefficients (LPCCs) stand for the linear
prediction coefficients in the cepstrum domain, reflecting the vocal tract by the logarithmic spectrum
envelope of the signal in speech recognition [16]. Thus, the LPCC is introduced to remove the excitation,
which provides a robust and reliable solution for estimating the transfer function.

In the linear prediction analysis, the current signal is predicted by the linear weighted sum of the
past points as [17]

x̂(n) = ∑R
i=1 βix(n− i) (5)

where βi denotes the prediction coefficients; R represents the order of the present prediction.
The prediction error between the actual and predicted value is given as

e(n) = x(n)− x̂(n) (6)

The prediction coefficients {βi} are determined by minimizing the mean squared error. The LPCCs
are derived directly from the linear prediction coefficient, given by

cn =

 −βn −∑n−1
i=1

(
1− i

n

)
βicn−i, 1 ≤ n ≤ R

−∑R
i=1

(
1− i

n

)
βicn−i, n > R

(7)

Finally, the feature vector, consisting of N elements of the ZCR, LPCCs and SPLs, is extracted and
used to characterize the differences between the cracked sound pulses and normal ones. The feature
matrix BM∗N is then constructed according to the feature vector, denoted by

B =


b11 b12 · · · b1N
b21 b22 · · · b2N

...
...

. . .
...

bM1 bM2 · · · bMN


M×N

(8)
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where M denotes the number of sound pulses or samples.

2.2.2. Feature Optimization

The redundancy inevitably exists in the feature vector, thereby affecting the accuracy of the
classification. Besides, the use of all of the features leads to the problem of high dimensionality and
high computational cost. The PCA focuses on a the linear projection of high dimensional data onto
low-dimensional subspace by using least-square decomposition while maintaining the maximum
variance [18]. This technique is most widely used due to its comparably low computational costs,
both in memory and computation time, and its robustness against white noise. Thus, the cracked
feature optimization was implemented with the PCA.

Firstly, calculate the mean-subtracted feature matrix H by centralizing the matrix B as

H =


b11 − γ1 b12 − γ2 · · · b1N − γN
b21 − γ1 b22 − γ2 · · · b2N − γN

...
...

. . .
...

bM1 − γ1 bM2 − γ2 · · · bMN − γN

 (9)

where γj =
1
M

M
∑

i=1
bij, denotes the mean of the j-th row.

Then, decompose the feature matrix H with the singular value decomposition (SVD) by H = UΣW,
where U denotes left eigenvector matrix; W denotes right eigenvector matrix; Σ denotes diagonal
matrix. The singular values of matrix Σ in descending order, {ηl}, represent the directions of the
variances. The proper number of principal components is indicated by the cumulative contribution
rate (CCR), given by

CCR =
I

∑
l=1

ηl/
G

∑
l=1

ηl (10)

where l = 1, 2, . . . , G; G denotes the number of principal components; I denotes the number of selected
principal components.

The reduced matrix X could be calculated by

XM×I = HM×NWT
I×N (11)

2.3. Classifier Design

Crack detection of the anvil is a typical two-class classification problem. The support vector
machine has proved to be effective for solving the binary problems and less prone to over fitting [19].
The goal is to find the optimal hyperplane, namely the separating hyperplane, which can separate the
data with a maximum margin.

For a given labeled training data set {(x1, y1), . . . , (xM, yM)}, the basic SVM aims to solve the
following optimization problem:{

min F(w, b) = 1
2 wTw + C∑M

i=1 ξi
s.t yi(w · xi + b)− 1 + ξi ≥ 0, ξi ≥ 0

(12)

where yi ∈ {−1,+1} is the class label of the i-th training sample xi; w is the normal vector of
hyperplane; b is a bias. The non-negative slack variable ξi represents a permitted training error.
C is a predefined penalty factor, which controls a fraction of the outliers by the trade-off between the
training errors and hyperplane complexity.

The decision function is constructed as

f (x) = sgn(w · x + b) (13)
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Usually, there exist some erroneously classified objects near the separating hyperplane [20].
The kNN technique is used to modify the SVM model. The detailed steps are briefly illustrated
as follows.

Step 1: Approximate the posterior probability based on the output of the SVM classifier by
a sigmoid calibration function, inspired by Platt [21], denoted as

p =
1

1 + exp(A f + B)
(14)

where p ∈ [0, 1]. If the posterior probability p is less than 0.5, the corresponding sample is classified as
the cracked sound pulse; otherwise, it is normal.

In Equation (14), parameters A and B are determined by solving the following maximum
likelihood problem on the training set.

min
z=(A,B)

F(z) = −
M

∑
i=1

(
1 + fi

2
log(pi) +

1− fi
2

log(1− pi)

)
(15)

Step 2: Find questionable samples from predefined probabilistic interval based on Paüta
criterion [22], denoted by

Ω =
[

p2 + λ2σ2, p1 − λ1σ1

]
(16)

where p1 and σ1 denote the mean and standard deviation of probability for normal sound pulses
respectively, while p2 and σ2 denote the cracked ones; λ1 and λ2 are used to adjust the suspicious
probability interval, being a positive integer.

Step 3: Calculate distances between questionable samples u and support vectors v, based on
kernel function, given by

d(u, v) = k(u, u)− 2k(u, v) + k(v, v) (17)

Step 4: Sort the support vectors with the distance in ascending order, and use the class labels of
first k support vectors to predict the questionable samples.

The flow chart of the proposed method is shown in Figure 4.

3. Experiment and Discussions

To validate the effectiveness of the proposed method, experiments are conducted in the practical
synthetic diamond workshop in Henan Golden Canal Group Co., Ltd. in China. The measuring
microphone, B&K 4189, is mounted at one operation port of the apparatus by a bracket, as shown
in Figure 5. The acoustic signal is recorded by the B&K Pulse. The normal sound pulses are directly
collected from the apparatuses in regular operation, consisting of pressurization, maintaining pressure
and decompression pressurization; moreover, these apparatuses continuously work well after a long
time. The cracked sound pulses are recorded from experimental apparatus preinstalled on six cracked
anvils. Figure 6 shows a cracked anvil with serious surface damage caused by the crack, the location
of which is marked by a circular red line. It is noted that the cracked sound pulses are confirmed and
labeled by playbacks and discussions with experienced workers.

The choice of sampling frequency is based on the following considerations. In practice, the cracked
sound pulses can be distinguished from the normal ones through artificial hearing (20 Hz–20,000 Hz).
This means the upper sampling frequency of the measuring signal only needs to be 40,000 Hz. However,
the applied B&K Pulse can only adjust the sampling frequency to 8192 Hz, 16,384 Hz, 32,768 Hz,
65,536 Hz or 131,072 Hz. Thus, the 65,536 is finally chosen. The parameters in the sound pulse detection
algorithm are listed in Table 1.
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Table 1. Parameters of the sound pulse detection.

Length of Segment N1 Energy Threshold Q Weight Coefficient α Constant K

256 0.1 0.95 0.15

Sensors 2018, 18, x FOR PEER REVIEW  8 of 15 

 

Table 1. Parameters of the sound pulse detection. 

Length of Segment N1 Energy Threshold Q Weight Coefficient α Constant K 
256 0.1 0.95 0.15 

Y

Input acoustic emission signal

High-pass filter

  Divide residual signal into equal segment  

N

Calculate average energy F 

F< Q

Initial P=0, E=0

E =E+F , P=P+1

T =E +K

E =E /P

Extract valid pulses

Calculate initial threshold

If satisfies duration and 
threshold? 

The threshold T  is updated by

N

Y

Feature optimization by 
principal component analysis

Classified by  support vector machine

Zero-crossing rate Sound pressure 
levels

Linear prediction 
cepstrum coefficients

Extract features

 Approximate  probability p(f) 

   p(f) ？

Reclassified by the k-nearest neighbor
Y

Output

N
Classification

Pulse detection

T =a E+(1-a )F+K

 
Figure 4. The general block diagram of the proposed method. 

 
Figure 5. The location of the measuring microphone. 

Figure 4. The general block diagram of the proposed method.

Sensors 2018, 18, x FOR PEER REVIEW  8 of 15 

 

Table 1. Parameters of the sound pulse detection. 

Length of Segment N1 Energy Threshold Q Weight Coefficient   Constant K 
256 0.1 0.95 0.15 

Y

Input acoustic emission signal

High-pass filter

  Divide residual signal into equal segment  

N

Calculate average energy F 

F< Q

Initial P=0, E=0

E =E+F , P=P+1

T =E +K

E =E /P

Extract valid pulses

Calculate initial threshold

If satisfies duration and 
threshold? 

The threshold T  is updated by

N

Y

Feature optimization by 
principal component analysis

Classified by  support vector machine

Zero-crossing rate Sound pressure 
levels

Linear prediction 
cepstrum coefficients

Extract features

 Approximate  probability p(f) 

   p(f) ？

Reclassified by the k-nearest neighbor
Y

Output

N
Classification

Pulse detection

T =a E+(1-a )F+K

 
Figure 4. The general block diagram of the proposed method. 

 
Figure 5. The location of the measuring microphone. 

Figure 5. The location of the measuring microphone.



Sensors 2018, 18, 386 9 of 15

Sensors 2018, 18, x FOR PEER REVIEW  9 of 15 

 

 

Figure 6. The cracked anvil. 

Figure 7 shows an example of the cracked sound pulse extraction from a continuous signal 
recording from the apparatus preinstalled on six cracked anvils. Clearly, three cracked sound pulses 
are located at about 0.35 s, 1.1 s and 1.25 s and are indicated in the blue dashed frame. Compared to 
the last two pulses, the first one is covered up by significant background noise as shown in subgraph 
(b); however, it becomes more obvious by using a 5000 Hz high-pass filter. The start and end 
coordinates are located by comparing the average amplitude and threshold of energy. Besides, some 
sound pulses are still observed from the filtered signal, as shown in subgraphs (a) and (c). These 
sound pulses do not match the criteria of duration and average energy as illustrated in Section 2.1, 
thus they are discarded. This confirms that the proposed method extracts the cracked sound pulses 
effectively. 

 
Figure 7. The cracked sound pulse extraction from the original AE signal. (a) Normal sound pulse 
with its duration less than the criteria; (b) cracked sound pulse covered up by significant background 
noise; (c) normal sound pulse with its average energy smaller than the threshold. 

Figure 6. The cracked anvil.

Figure 7 shows an example of the cracked sound pulse extraction from a continuous signal
recording from the apparatus preinstalled on six cracked anvils. Clearly, three cracked sound pulses
are located at about 0.35 s, 1.1 s and 1.25 s and are indicated in the blue dashed frame. Compared to the
last two pulses, the first one is covered up by significant background noise as shown in subgraph (b);
however, it becomes more obvious by using a 5000 Hz high-pass filter. The start and end coordinates
are located by comparing the average amplitude and threshold of energy. Besides, some sound pulses
are still observed from the filtered signal, as shown in subgraphs (a) and (c). These sound pulses do not
match the criteria of duration and average energy as illustrated in Section 2.1, thus they are discarded.
This confirms that the proposed method extracts the cracked sound pulses effectively.
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In the experiment, 144 cracked sound pulses and 738 normal ones are extracted and used as a data
set. Figure 8 shows results of the ZCR, SPLs and LPCCs for some of the cracked sound pulses in
combination with the normal ones.
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Figure 8. The results of feature extraction. (a) ZCR; (b) SPLs; (c) LPCCs.

As shown in Figure 8a, the ZCR of normal sound pulses is stable with the predominant value at
about 0.38, while the cracked ones have a greater value, distributed over a larger interval [0.3, 0.55].
This indicates that the cracked sound pulse has more energy in a high frequency band, and the ZCR
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has an ability to distinguish cracked sound pulses from normal ones. Besides, there is a slight overlap
between the normal and cracked sound pulses. With an increase in the number of samples, the overlaps
become more serious due to the dispersion and randomness.

Figure 8b shows the SPLs in the 1/6 octave frequency band [500 Hz, 32,768 Hz]. Since the cracked
sound pulses may have a short duration of 16 ms, the SPLs below 500 Hz do not exist. Compared to
the normal sound pulses, distinct peaks exist in cracked ones, e.g., the 1/6 octave frequency bands
[5339 Hz, 5993 Hz], marked by a dashed rectangle. Besides, the SPLs for a majority of the cracked
sound pulses have a greater value in the frequency band above 10 kHz. It should be pointed out that
this phenomenon does not always exist. In terms of the 1/6 octave frequency band, 35 SPL features
are extracted from a sound pulse.

Figure 8c depicts the results of the thirteenth-order LPCCs, the average value of which is described
by marked lines. Obviously, the second-order coefficient for the cracked sound pulses ranges from
−0.2 to 0.4, which is different from the normal ones. There are randomly some slight differences at
other orders. Since the first-order LPCC has no practical relevance, with a value of one, the other
12 LPCC features are extracted to characterize the sound pulses.

Finally, 48 high-dimensional raw features, consisting of ZCR, 35 SPLs and 12 LPCCs, are extracted.
Figure 9 plots the results of the feature reduction by the PCA. It can be seen that the CCR significantly
increases when the number of principal components rises from one to three, reaching 71.26%.
It indicates that three low-dimension principal components contain the most information in sound
pulses. Then, the increasing trend gradually flattens due to a reduced amount of information contained
in the principal components. When the number increases to 14, the CCR reaches 90.02%. Subsequently,
the CCR improves by only 10%, with the number of principal components rising from 14 to 48.
A proper number of the principal component is determined by the trade-off between CCR and data
simplification. In this way, the feature dimension is reduced significantly.

Sensors 2018, 18, x FOR PEER REVIEW  11 of 15 

 

between the normal and cracked sound pulses. With an increase in the number of samples, the 
overlaps become more serious due to the dispersion and randomness. 

Figure 8b shows the SPLs in the 1/6 octave frequency band [500 Hz, 32,768 Hz]. Since the cracked 
sound pulses may have a short duration of 16 ms, the SPLs below 500 Hz do not exist. Compared to 
the normal sound pulses, distinct peaks exist in cracked ones, e.g., the 1/6 octave frequency bands 
[5339 Hz, 5993 Hz], marked by a dashed rectangle. Besides, the SPLs for a majority of the cracked 
sound pulses have a greater value in the frequency band above 10 kHz. It should be pointed out that 
this phenomenon does not always exist. In terms of the 1/6 octave frequency band, 35 SPL features 
are extracted from a sound pulse.  

Figure 8c depicts the results of the thirteenth-order LPCCs, the average value of which is 
described by marked lines. Obviously, the second-order coefficient for the cracked sound pulses 
ranges from −0.2 to 0.4, which is different from the normal ones. There are randomly some slight 
differences at other orders. Since the first-order LPCC has no practical relevance, with a value of one, 
the other 12 LPCC features are extracted to characterize the sound pulses. 

Finally, 48 high-dimensional raw features, consisting of ZCR, 35 SPLs and 12 LPCCs, are 
extracted. Figure 9 plots the results of the feature reduction by the PCA. It can be seen that the CCR 
significantly increases when the number of principal components rises from one to three, reaching 
71.26%. It indicates that three low-dimension principal components contain the most information in 
sound pulses. Then, the increasing trend gradually flattens due to a reduced amount of information 
contained in the principal components. When the number increases to 14, the CCR reaches 90.02%. 
Subsequently, the CCR improves by only 10%, with the number of principal components rising from 
14 to 48. A proper number of the principal component is determined by the trade-off between CCR 
and data simplification. In this way, the feature dimension is reduced significantly. 

 
Figure 9. The cumulative contribution rate (CCR) with the increase of the principal components. 

The selected principal components are used as an input feature vector of the SVM-kNN 
classifier. In the algorithm, to decrease the false alarm rate, 1  is set greater than 2  as 1 25, 3  

; k  is set to one-third of the total support vectors;   is set as 0.5. 
The kernel parameter   of the radial basis function and penalty factor c  are optimized by a 

grid search with a 3-fold cross validation. For example, 70% of the normal and cracked samples is 
randomly selected as a training set, and the others are selected for testing. Figure 10 gives the 
optimization results with c  as abscissa and   as ordinate, with the values ranging from -52  to 52
. The numbers in squares represent the classification accuracy. 

Figure 9. The cumulative contribution rate (CCR) with the increase of the principal components.

The selected principal components are used as an input feature vector of the SVM-kNN classifier.
In the algorithm, to decrease the false alarm rate, λ1 is set greater than λ2 as λ1 = 5, λ2 = 3; k is set to
one-third of the total support vectors; ε is set as 0.5.

The kernel parameter γ of the radial basis function and penalty factor c are optimized by a grid
search with a 3-fold cross validation. For example, 70% of the normal and cracked samples is randomly
selected as a training set, and the others are selected for testing. Figure 10 gives the optimization
results with c as abscissa and γ as ordinate, with the values ranging from 2−5 to 25. The numbers in
squares represent the classification accuracy.
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Figure 10. Results of the parameter optimization in the SVM classifier.

It can be seen from Figure 10 that the accuracy reaches a maximum and then decreases with the
increase of the penalty factor when the kernel parameter is fixed. It is clear that the best accuracy is
99.68% among 121 (c,γ) pairs. To avoid over-fitting and improve recognition accuracy on the testing
set, the minimum pair (0.5, 1) is chosen among five candidate pairs with the same value of 99.68%.

Figure 11 shows the classification results using the SVM-kNN classifier with different proportions
of the training set and five representative numbers of the principal components, being values of the 3,
5, 10, 14 and 48. Clearly, there is a high accuracy of more than 98.8% for all conditions. The curve of
the three principle components overlaps with the one of five principal components. Their accuracies
increase rapidly and then remain constant, with an accuracy of 100% with the proportion rising from
45% to 90%. When the number of principal components is 10, 14 or 48, their accuracies slightly decrease
randomly after reaching the highest value of 100%.
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Figure 11. Classification results of the SVM-kNN classifier with different principal components.

Obviously, the performance of the SVM-kNN classifier does not improve with an increase of
principal components. Taking three principal components as an input feature vector, Figure 12 plots
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the distribution of training samples, with a proportion of 70%, and the trained classification surface
in the three-dimensional coordinate. The number of normal support vectors is 25; the number of
cracked support vectors is 26. The normal sound pulses well aggregate, while the cracked ones scatter.
They are classified by the hyperplane, with an accuracy of 100%.
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Figure 13 compares the classification results of the proposed SVM-kNN model in combination
with stand-alone SVM using three principal components. Clearly, the designed SVM-kNN classifier
performs better than the stand-alone SVM; notably, the proportion ranges from 40% to 80%.
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Figure 13. Classification results of the SVM-kNN and stand-alone SVM with the three
principal components.

4. Conclusions

This paper presents an acoustical crack detection method of the carbide anvil based on pattern
recognition and the AE signal. By using the noise pretreatment and real-time renewal mechanism,
the sound pulse can be separated accurately from the original signal; even the small one becomes more
visible. Three kinds of extracted features, ZCR, SPLs and LPCCs, characterize the differences between
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cracked sound pulses and the normal ones. Feature optimization not only reduces the computation
complexity but also obtains a high classification accuracy. The designed hybrid SVM-kNN classifier has
a better performance than the stand-alone SVM. The proposed method is verified by the experimental
data in a practical synthetic diamond workshop. It is found that the proposed algorithm is able to
significantly recognize the cracked anvil, with an accuracy of more than 99%.
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