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Abstract: Low visibility on expressways caused by heavy fog and haze is a main reason for traffic
accidents. Real-time estimation of atmospheric visibility is an effective way to reduce traffic accident
rates. With the development of computer technology, estimating atmospheric visibility via computer
vision becomes a research focus. However, the estimation accuracy should be enhanced since fog
and haze are complex and time-varying. In this paper, a total bounded variation (TBV) approach
to estimate low visibility (less than 300 m) is introduced. Surveillance images of fog and haze are
processed as blurred images (pseudo-blurred images), while the surveillance images at selected
road points on sunny days are handled as clear images, when considering fog and haze as noise
superimposed on the clear images. By combining image spectrum and TBV, the features of foggy
and hazy images can be extracted. The extraction results are compared with features of images on
sunny days. Firstly, the low visibility surveillance images can be filtered out according to spectrum
features of foggy and hazy images. For foggy and hazy images with visibility less than 300 m, the
high-frequency coefficient ratio of Fourier (discrete cosine) transform is less than 20%, while the
low-frequency coefficient ratio is between 100% and 120%. Secondly, the relationship between TBV
and real visibility is established based on machine learning and piecewise stationary time series
analysis. The established piecewise function can be used for visibility estimation. Finally, the visibility
estimation approach proposed is validated based on real surveillance video data. The validation
results are compared with the results of image contrast model. Besides, the big video data are
collected from the Tongqi expressway, Jiangsu, China. A total of 1,782,000 frames were used and the
relative errors of the approach proposed are less than 10%.

Keywords: total bounded variation; image spectrum; low visibility estimation; piece stationary;
fog and haze

1. Introduction

Low visibility caused by heavy fog and haze, especially the dumpling fog in the waterfront area,
remains a great threat to expressway traffic safety. For instance, on 6 November 2016 [1] in Pudong,
Shanghai, China, nine people were killed and over 40 people were injured in two traffic accidents
resulting from heavy fog. Besides, 144 traffic accidents occurred in Dubai on 12 January 2017 because of
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heavy fog [2]. Real-time perception and human intervention are both vital methods to cut down traffic
accidents in virtue of fog and haze. Nowadays, there are two types of visibility estimation methods:
optics based method and vision based method. The main drawbacks of the optics based method are
the limited spatial volume of sampling and the high cost in the implementation [3]. The advantages of
vision based method are low costs and easiness when it came to the accomplishment of the visibility
map of the road network, the method turned out to be a research focus in recent years. However, the
estimation accuracy should be improved because of the complexity and time-varying characteristics.

Koschmieder [4] presented an atmospheric visibility formula, in which an exponential relation
model between various variables, e.g., luminance, observed visibility and extinction coefficient of
aerosols, was established. The Koschmieder formula (Koschmieder law) laid the foundation for the
atmospheric visibility estimation. Blackwell [5] explored observed threshold values of human eyes on
account of a subjective observation method later. Based on [4,5], different kind of vision-based methods
of visibility estimation are presented, such as the exploratory studies in the early stages [6–8], the
luminance curves models [9–12], image contrast models [13–17], road sign models [18–23], regression
models [24,25], etc. However, regarding practical applications, the current vision based methods are
facing some challenges: (1) How should different visibility situations be handled? The situations
include different visibility value intervals and different kinds of road. One method cannot be used
to estimate all visibility. It is a reasonable choice to design different algorithms according to different
situations. The situations with more traffic accidents should be firstly focused on. (2) The methods
above were not verified by big data collected from real world. As such, big estimation errors could
happen in practical application. This study aims to overcome the above drawbacks. Therefore, a novel
low-visibility estimation approach based on image spectrum and TBV, hereinafter referred to as S-TBV,
is presented. The contributions of this paper can be presented as follows:

(1) It is the very first time that image spectrum and TBV were applied to characterize features of
fog and haze and estimate visibility. From the practical standpoint, the expressway visibility
of less than 300 m caused by heavy fog and haze, being more dangerous, was chiefly explored.
While the visibility and the high frequency (HF) coefficient ratios of image Fourier transform
(discrete cosine) were increasing, low frequency (LF) coefficient ratios decrease correspondingly.
The TBV of foggy and hazy images climbed. For foggy and hazy images with visibility of less
than 300 m, HF coefficient ratios were under 20%, and LF coefficient ratios ranged from 100% to
120%. Based on this spectrum feature, foggy and hazy images with low visibility images can be
sorted out, and the TBV trend was consistent with the trend of foggy and hazy visibility.

(2) Considering the polynomial regression and piecewise stationary time series analysis, a nonlinear
relationship between TBV and real visibility was established.

(3) To overcome the effect of different road landscape and sunshine luminance, the relative ratio of
image spectrum and total bounded variation were adopted.

(4) Unlike the current visibility estimation methods (model-driven), the method proposed in this
study is a semi-data-driven approach. It is the very first time that a big dataset (1,782,000 frames)
collected from real world, Tongqi expressway, China, was used to train the semi-data-driven
model. The proposed approach was validated by the big video data.

The structure of this paper is listed as follows. In Section 2, the related works are introduced.
In Section 3, the definition of visibility is introduced and the application of the algorithm is then
elaborated. Furthermore, the TBV approach is introduced in detail. Firstly, the image spectral feature
of foggy and hazy images is discussed. Secondly, the rationality of TBV in characterizing the feature of
foggy and hazy images is analyzed, and an innovative piecewise and stationary function is established.
In Sections 4 and 5, validated results for the algorithm are analyzed based on surveillance videos from
Chinese expressways. Finally, conclusions are made.



Sensors 2018, 18, 392 3 of 18

2. Related Works

Based on the Koschmieder law [4] and the human eye threshold [5], some exploratory studies
of atmospheric visibility estimation were presented in the early stages. Middleton and Mungall [6]
assumed that the contrast threshold value of eyes was 0.02. An inverse proportional relationship
between visibility and extinction coefficient was established as Vis = 3.9/k, in which the Vis is
the atmospheric visibility and k is the extinction coefficient. Horvath [7] verified the feasibility
of estimating the atmospheric visibility based on Koschmieder’s formula, and analyzed possible errors.
According to [4], Steffens [8] estimated the atmospheric visibility with black and white photo, which
is considered to be a pioneering exploration of the vision based method. Nevertheless, there was no
breakthrough in the vision based method for a few decades due to limitations in imaging technologies.
Fortunately, Bell laboratories verified the possibility of producing a charge-coupled device (CCD) in
1969. After that, Fairchild Semiconductor developed the CCD image sensors in 1973. In the 20 years
following 1973, the development of semiconductor and computer technologies was booming, which
laid good hardware foundations for academic research of the vision based method.

Recently, the luminance curve models of vision based method are rapidly developed. In these
models, the luminance curves are often used independently, or combined with other parameters [9–12].
Hautière, et al. [9] proposed an applicable visibility estimation method, and he, based on Koschmieder’s
law, put forward the rigorous mathematical derivation. One type of the luminance curve was firstly
proposed and their inflection points were collected by second derivatives of luminance curves.
The method proposed in [9] had the probability of practical application for the first time, and it
laid the foundation for the video based subjective visibility observation. Based on [9], Lenor, et al. [10],
Negru and Nedevschi [11] studied visibility estimations further with luminance curves. Lenor [10]
introduced a model with the theory of radiative transfer. Through modeling in-scattered light, a
relationship between extinction coefficients of atmosphere and inflection points of luminance curves
can be established. In [11], the presence of fog was perceived based on the fog’s density estimation.
When the horizon line and the inflection point in fog images were acquired, the fog visibility can
therefore be calculated. Guo, et al. [12] presented a visibility estimation method based on the
combination of camera parameter estimation and region of interest (ROI) search. The position of the
inflection point was measured in practice and the visibility was forecasted.

In addition, numerous studies contributed to the image contrast models which are based on
contrast threshold and gradient [13–17]. Boussard, et al. [13] focused on the study of low visibility
condition. The depth map of vehicle environments was obtained with onboard cameras, and the
contrast threshold value (5%) was used for visibility estimations. Hermansson and Edstam [14] raised
a contrast calibration method that changed the weather background of outdoor images and was
capable of inspiring the visibility estimation. The weather parameters incorporated atmospheric
conditions, illumination, visibility, etc. Hautière, et al. [15,16] proposed a generic method for visibility
estimation based on stereo vision, and the fog image was initially collected by the camera onboard.
According to the atmospheric visibility definition given by CIE, the contrast threshold value (5%) was
taken advantage of, and the real-time disparity contrast was combined. Graves and Newsam [17] put
forward a prediction model for visibility estimation in view of the image contrast. Regression trees,
multivariate linear regression, and a semi-supervised learning framework were used for the learning
of the regression model. Besides, a set of images were utilized there.

Moreover, road signs, such as road lane line, pavement, traffic signs, etc., are frequently used
to estimate the atmospheric visibility [18–23]. Based on [13], Bronte, et al. [18] proposed a real-time
fog estimation system using onboard b&w camera. Three unlike levels—“sunny or cloudy with low
fog”, “cloudy with medium fog”, and “cloudy with high fog”—can be estimated. Boussard, et al. [19]
estimated the visibility distance in view of the structure from motion. The scene images were filmed
by an onboard camera primarily, and the information of vehicle motion was extracted. Based on this, a
spatial partial structure was established to evaluate the visibility distance. Lenor, et al. [20] estimated
atmospheric visibility based on object tracks in the surveillance images, and he obtained the visibility
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and established the likelihood cost function for computing extinction based on the conventional
Koschmieder’s formula. Belaroussi and Gruyer [21] estimated visibility with the knowledge of road
signs in the digital map. The features of road signs were extracted, and the priori information implanted
on the infrastructure was utilized, all of which were integrated together to estimate the fog visibility.
There were relationships between the defog algorithm and the fog visibility estimation method, and
the defog algorithm gave inspiration to foggy and hazy visibility estimation. He, et al. [22] proposed
a simple but effective image prior-dark channel prior algorithm to remove haze from a single input
image. Based on that, Song, et al. [23] presented a real-time visibility estimated method based on
dark channel prior and lane detections. The variable box search (VBS) algorithm was raised for lane
detections. To compute the extinction coefficient, two endpoints of one traffic lane were extracted.

Furthermore, the regression models of visibility estimation are presented in recent years.
Some features are extracted from the foggy images and some relationship functions are then
constructed [24,25]. Babari, et al. [24] come up with a visibility estimation means based on the
gradient magnitude and Sobel gradient weighted. The fog video gathered from roadside cameras
and the non-linear regression were used for calibration. Varjo and Hannuksela [3] assessed the fog
visibility based on feature vectors and the high dynamic range imaging. Therefore, the quality of the
night image can be enhanced and applied to the visibility estimation. Kim [25] presented a method
with relevant knowledge of the chromatic analysis and a nonlinear function. A correlation between
visibility and the vertical coordinate position of the visual images was established, and the visual
range can thus be estimated.

The drawbacks of the vision based visibility methods above have been summarized in this paper
(as shown in Section 1). To overcome the drawbacks, the total bounded variation (TBV) is introduced to
design a new approach for atmospheric visibility estimation. The texture of image can be characterized
by TBV and various practical applications in image processing were studied. Rudin, et al. [26] proposed
a constrained optimization type of numerical noise removal algorithm based on TBV, and the noise
statistics were employed to minimize the TBV of images. Rudin and Osher [27] made a research on
the image restoration based on TBV and free local constraints of images. Chambolle and Lions [28]
proposed an image recovery algorithm based on TBV minimization. Osher, et al. [29] put forward an
iterative regularization means based on TBV, and the image was reestablished. Other image restoration
and de-blurred algorithms in view of TBV were demonstrated in [30–35]. Cheng, et al. [36] proposed
an image distortion metric based on TBV, and a complete mathematical derivation was then given.
The result in [36] was that the bigger the TBV is, the clearer the image is, and vice versa. Based on
the previous research above (vision based methods and TBV), the TBV approach will be introduced
in details.

3. Research Methods

3.1. Visibility Definition and Application

Visibility reflects atmosphere transparency, which is closely related to floating fine and ultrafine
particles in the atmosphere. Parallel light is scattered by floating particles involving water vapor
coagulation and dry matter, and atmospheric visibility is varied as a consequence. In addition, visibility
is linked to the observer’s visual ability and understanding. In addition, it is affected by some other
factors like illumination and background. Hence, visibility estimation is a complex physical and
psychological process. Based on the definition of International Commission on Illumination (CIE) [37],
atmospheric visibility is the longest distance at which a black object with suitable dimensions can be
recognized during daytime.

When visibility is short of 200 m [38], the driving speed should be lower than 60 km/h and the
safe distance should be further than 100 m. When visibility is less than 100 m, driving speed should be
lower than 40 km/h and the safety distance should exceed 50 m. When the visibility is no more than
50 m, the expressway ought to be closed and all vehicles should leave the expressway from the nearest
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exit. The speed should be lower than 20 km/h, and the danger alarm flash of vehicles should be
turned on. In reality, most traffic accidents resulting from fog and haze occur on the expressway with
foggy and hazy visibility of less than 200 m [39]. These facts motivate the study on the low visibility
estimation in this paper.

At present, there is a set of high definition (HD) surveillance cameras every 5–10 km in China’s
expressways. For those special sections with high traffic accident rates, the density of surveillance
camera is one group/km, and the application of the visibility estimation algorithm is shown in Figure 1.
The TBV approach presented in this paper is a sub-model of the “foggy and hazy visibility estimation
system based on the visual sensor network”. The surveillance video of the road network is processed
by the TBV approach, and the road network visibility map can be generated. With the estimated
visibility information, the traffic flow can be controlled by expressway administrators. The foggy and
hazy visibility map of the road network can be released through many ways, such as cell phones. Then,
drivers can avoid dangerous sections, and the number of traffic accidents will be largely reduced.
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3.2. Pseudo-Blurred Image

It is assumed that the occurrence of fog and haze is a linear and process. Suppose fog and haze
are additive noise, and foggy and hazy images are superposition of fog (haze) and sunny dayimages in
the same scene, fog and haze images thus are processed as blurred images (also named pseudo-blurred
images in this paper). Assume that function f (x, y) denotes a sunny day image and the texture of f (x, y)
is blurred by fog and haze; the pseudo-blurred image g(x, y), hence, can be obtained.

g(x, y) = h(x, y) ∗ f (x, y) + n(x, y) (1)

where h(x, y) is the spatial representation of the degradation function, and it is the blur filter for blurring
image f (x, y). The symbol “*” indicates convolution, and n(x, y) is noise. Concerning simplicity, the
noise item in Formula (1) is ignored, and then we can get the formula below

g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f (q, p)h(x− q, y− p)dqdp (2)

where h(x, y) meets the constraints, that is

∞∫
−∞

∞∫
−∞

h(x, y)dxdy = 1, h(x, y) ≥ 0 (3)
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Formula (3) ensures that the blurred image g(x, y) is fuzzier than the sunny day image f (x, y).
The heavier the fog and haze are, the deeper the degree of degradation of f (x, y) is and the lower
the visibility is, and vice versa. For the foggy and hazy image with visibility of less than 300 m, the
degradation is severe, and the image texture is blurry. Based on this feature, the foggy and hazy image
can be filtered out by image spectrum.

3.3. Foggy and Hazy Image Spectrum

High and low frequency coefficients of image discrete cosine transform (DCT), the simplification
of Fourier transform, are used to filter out low visibility images. The image is transformed from the
spatial domain to the frequency domain, and the image frequency (spatial frequency) indicates the
situation where the image pixel gray value changes in the spatial domain. Suppose the resolution
of image f (x, y) is n × n, then the image spectral coefficient of f (x, y) can be obtained by DCT. It is
an n × n spectral matrix. The upper left corner of the spectral matrix is a low frequency component
indicating the smooth area of the image, and the gray value variety is small. The lower right corner is
high frequency component which indicates large and fast gray value variety. F(0, 0) denotes the direct
current (DC) component, and F(u, v) denotes the alternating current (AC) component. They are shown
as Formulae (4) and (5).

F(0, 0) =
1
n

n−1

∑
x=0

n−1

∑
y=0

f (x, y) (4)

F(u, v) = 2
n

n−1
∑

x=0

n−1
∑

y=0
f (x, y) · cos

[
π
2n (2x + 1)u

]
cos
[

π
2n (2y + 1)v

]
u, v = 1, 2, · · · , n− 1

(5)

As mentioned above, foggy and hazy images are processed as noise blurred images, and the
sunny day images are processed as clear images. Suppose that the foggy and hazy image is the result
of convolution between sunny day image and foggy and hazy noise, the image spectral coefficient,
based on the hypothesis can be calculated. The background differences in disparate road surveillance
points are vast, resulting in wide differences in image spectrum. To overcome the effect of different
road points, lighting and other factors, we use the relative ratio:

Fr(u, v) = Fl(u,v)
Fh(u,v) × 100%

u, v = 1, 2, · · · , n− 1
(6)

where Fr(u, v) denotes the DCT coefficient ratio and Fl(u, v) denotes the DCT coefficient of foggy
and hazy images with low visibility. Fh(u, v) indicates the DCT coefficient of sunny day images with
high visibility.

It should be emphasized that the pseudo-blurred images caused by fog and haze differ from the
real blurred images caused by white noise, salt and pepper noise, or other noises. Firstly, foggy and
hazy images are still clear images with HD, which are only assumed to be blurred images, and thus
it is referred to as pseudo-blurred image in this paper. Secondly, fog and haze are continuous, and
differences between local boundaries of images are smaller. The HF coefficient ratio of pseudo-blurred
images fluctuates in a small range. For instance, when visibility exceeds 200 m, the HF coefficient ratio
will steadily increase; when visibility is no more than 300 m, it will be less than a constant. Additionally,
the smaller the visibility is, the larger the LF coefficient ratio is. The reason lies in that the texture
of low visibility images is smooth, and the differences between image pixel gray values are limited.
Based on this spectral feature, the foggy and hazy image (visibility is less than 300 m) can be classified.
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3.4. Total Bounded Variation

After low visibility images are sorted out, the TBV method is applied for extracting foggy and
hazy image features and characterizing the distinctions of image local boundaries, and the visibility,
therefore, can be estimated.

Let f (x, y) denote the sunny day image which is processed as the clear image in this paper, and
the varying rate of function f (x, y) in x and y directions can be calculated. Then, its absolute values and
square of summation are computed, and the TBV of f (x, y) obtained is listed below:

TBVf =

∞∫
−∞

∞∫
−∞

[∣∣∣∣∂ f (x, y)
∂x

∣∣∣∣+ ∣∣∣∣∂ f (x, y)
∂y

∣∣∣∣]2

dxdy (7)

where the sunny day image is collected from the same road point with foggy and hazy images and the
sunny day visibility surpasses 1 km. The start time of image collection is 12:00 and the duration is
50 min. Based on Formula (7), TBV of foggy and hazy image g(x, y) is

TBVg =

∞∫
−∞

∞∫
−∞

[∣∣∣∣∂g(x, y)
∂x

∣∣∣∣+ ∣∣∣∣∂g(x, y)
∂y

∣∣∣∣]2

dxdy (8)

For digital images, TBV of blur images is invariably less than TBV of clear image [36].

∫ ∞

−∞

∫ ∞

−∞

[∣∣∣∣∂g(x, y)
∂x

∣∣∣∣+ ∣∣∣∣∂g(x, y)
∂y

∣∣∣∣]2

dxdy ≤
∫ ∞

−∞

∫ ∞

−∞

[∣∣∣∣∂ f (x, y)
∂x

∣∣∣∣+ ∣∣∣∣∂ f (x, y)
∂y

∣∣∣∣]2

dxdy (9)

Inequality Formula (9) demonstrates that TBV of sunny day images is more than that of foggy
and hazy images. At the same road point, the more the atmospheric visibility is, the larger the TBV is.
The backgrounds of expressway surveillance points are relatively fixed and the TBV trend tends to
converge to a constant number when visibility outnumbers 500 m. Therefore, the TBV of surveillance
image in low visibility scene is proportional to the corresponding atmospheric visibility, which is
shown in Figure 2.
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Figure 2. Relationship of atmospheric visibility, extinction coefficient and total bounded
variation (TBV).

Local boundary differences of images can be distinguished by TBV and the varying trend of TBV
is identical with the trend of atmospheric visibility. Consequently, the nonlinear relationship function
between TBV and real visibility is established based on piecewise stationary time series analysis.
The function is listed as follows

Visn = anTBV2
n + bnTBV1

n + cnTBV0
n (10)

where n denotes visibility intervals, and coefficients an, bn and cn are unlike in different visibility
intervals. Based on machine learning, big data can be used for training, and an, bn and cn, therefore, are
obtained. In application, TBV is calculated by Formulae (7) and (8), and the atmospheric visibility can
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be obtained via Formula (10). Moreover, the original TBV value is large. To overcome the difference of
road points background, the relative ratio of TBV as follows is used in this paper.

TBVr =
TBVl
TBVh

× 100% (11)

where TBVl denotes the TBV of foggy and hazy images, and TBVh denotes the TBV of sunny day
images. To compute the relative ratio, the sunny day images required in Formulae (6) and (11) are
collected from the same road point at 12:00 and the duration is 50 min. The singular values (Fh(u, v) or
TBVh) are removed and the average value is computed. Detailed steps of the TBV approach presented
are shown in Algorithm 1. To evaluate the performance of the TBV approach, we use relative error in
this paper.

error =
Vis′ −Vis

Vis
× 100% (12)

where Vis′ is the visibility estimated by the TBV approach and Vis is the real atmospheric visibility.

Algorithm 1: Total bounded variation approach to low visibility estimation

Input: Surveillance video, 990 min × 60 s/min × 30 frame/s = 1,782,000 frames
Output: S-TBV model, visibility Vis
Initialization: Sampling interval time
Step:
1. Surveillance video preprocessing and sampling;
2. ROI extraction based on different road points;
3. Search low visibility frame (less than 300 m);

(1) DCT processing for sunny day images captured from the same road point (50 min);
(2) Analyze the HF and LF coefficients of images processed in Step 3.1, and their median value is used;
(3) DCT processing for fog and haze surveillance images;
(4) Analyze image spectrum, e.g., DC component F(0, 0) and F(n − 1, n − 1), and calculate relevant

values based on Formula (6) and Steps 3.1–3.4;
(5) Search the low visibility frame on the basis of Fr(0, 0) and Fr(n − 1, n − 1);
(6) Notes: if the visibility of fog and haze is less than 300 m, go to Step 4, or stop and output message,

which is “more than 300 m”.
4. Compute foggy and hazy visibility;

(1) Calculate the TBV value for sunny day images in the same road point (50 min);
(2) Use the median value to analyze the TBV above;
(3) Calculate the TBV value for foggy and hazy images using the relative TBV;
(4) Piecewise stationary function construction with machine learning (polynomial regression)

(1) Training set: the coefficients an, bn and cn in Formula (10) are obtained by training.
(2) Testing set: video data of road points 2, and 4–6 are used as the testing set respectively.
(3) Notes: the training set and the testing set are independent. For example, data of road Points 2 are

used as the testing set, and data of other road points (1, 3–6) are used as the training set.
5. Optimize algorithm parameters.

The greater the amount of the training set is, the better the training effect is. Therefore, all data of
6 road points (1,782,000 frames) are used for S-TBV model training, and then coefficients an, bn and
cn in Formula (10) are obtained.

4. Results

To validate the TBV approach presented in this paper, we analyze the foggy and hazy surveillance
videos of expressways. The frames shown in Figure 3 are collected from Tongqi expressway (China)
operated by the Intelligent Transport System (ITS) which works 24 h per day, in Jiangsu province
of China.
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In expressway sections where fog and haze happen frequently, a good deal of foggy and hazy
videos are gathered with gradual variation. As shown in Table 1, the videos for six road points are
all collected in the early morning. During the collection process, fog and haze disappear gradually
until atmospheric visibility reaches 300 m. The HD video used in this paper is 990 min, and it has
990 min × 60 s/min × 30 frames/s = 1,798,200 frames.

Since the ITS system works 24 h per day, the sunny day videos needed by TBV approach can be
collected easily. The parameters required in Formulae (6) and (11) can also be obtained, which are
Fh(0, 0), Fh(n − 1, n − 1) and TBVh. The video is captured from 12:00, the duration is 50 min when the
road point visibility is over 1000 m. In view of the data collection above, the spectral coefficients and
TBVs of sunny day images are calculated. The average is computed after removing singular values
and the results are used in Formulae (6) and (11).
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Figure 3. Foggy and hazy images (Sample images of road points 2–4, and 6 are shown
in (a–d), respectively).

The software platform for validating the TBV approach is Matlab 2017a, and the hardware
incorporates CPU i7-5500U, 2.4 GHz, 16 GB RAM and double graphics cards. One graphics card
is NVIDIA Geforce 940M and display RAM is 1 GB. From the application standpoint, the visibility
estimation result will be used by the car drivers or the staffs of expressway control center. Therefore, the
perception of human eye is significantly important. Based on the visibility definition of CIE, 36 subjects
are invited for subjective assessment experiments of foggy and hazy visibility. Finally, the visibility
estimated values in this paper are confirmed by the real visibility obtained from actual observations.

Figures 4 and 5 show HF coefficient ratios and LF coefficient ratios, respectively. The blue data
points are the spectral coefficient ratios of foggy and hazy images, and the red data points are the
spectral coefficient ratios of sunny day images. It is not continuous between the blue data points
and the read data points. Due to the huge background difference of road points in expressways, the
disparity in the corresponding DCT coefficients are vast. To overcome the impact of relevant factors,
such as road points background, light and camera angles, we use the relative value of the spectral
coefficient computed in Formula (6). In Figures 4 and 5, the red numbers (1, 2, and 3) reveal real
visibility (100 m, 200 m, and 300 m), for the highest visibility in road points 5 is 200 m and there is
no number 3 in Figures 4c and 5c. For the sake of LF coefficient ratios of images, DC component
F(0, 0) is adopted in this paper; for the sake of HF coefficient ratios of images, the AC component
F(n − 1, n − 1) is applied. In the foggy and hazy dissipation process, fog and haze dissipate faster than
before when atmospheric visibility varies from 200 m to 300 m. Hence, the corresponding surveillance
frame number turns out to be smaller, and red sign number 2 draws near to red sign number 3 in
Figures 4 and 5. In general, there are two spectral features of foggy and hazy images in Figures 4 and 5.
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Firstly, the whole Fr(n − 1, n − 1) values of foggy and hazy images with low visibility (less than 300 m)
are less than 20%, which is demonstrated in Figure 4. When the visibility goes up, Fr(n − 1, n − 1) of
corresponding foggy and hazy images will rise. Secondly, F(0, 0) values of foggy and hazy images with
low visibility (less than 300 m) shown in Figure 5 are entirely between 100% and 120%. Based on the
two spectral features, the foggy and hazy images with visibility of less than 300 m can be sorted out.

Table 1. Road points information.

Road Points No. Chainage District Start and End Time Duration Maximum Visibility Date

1 K113 + 000 Dasheng 06:30–09:22 172 min 306 m 14 April 2016
2 K148 + 150 Haimen 06:00–09:20 200 min 306 m 14 April 2016
3 K159 + 950 Haimen 06:00–09:34 214 min 315 m 14 April 2016
4 K106 + 980 Dasheng 06:00–08:57 177 min 262 m 14 April 2016
5 K159 + 950 Haimen 06:00–08:06 126 min 200 m 13 April 2016
6 K208 + 027 Chenqiao 06:00–07:41 101 min 303 m 15 March 2016
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Figure 4. High frequency coefficient ratios ((Fr(n − 1, n − 1) = Fl(n − 1, n − 1)/Fh(n − 1, n − 1).
The red numbers 1, 2 and 3 indicate 100 m, 200 m and 300 m, respectively. The upper limit visibility
in road points 5 is 200 m, and so there is no red number 3 in (c). The ratio values shown in (a–d) are
corresponding to the Points 2, 4, 5 and 6, respectively.).
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Figure 5. Low frequency coefficient ratios ((Fr(0, 0) = Fl(0, 0)/Fh(0, 0). The red numbers 1, 2 and 3
indicate 100 m, 200 m and 300 m, respectively. The upper limit visibility in road points 5 is 200 m, and
so there is no red number 3 in (c). The ratio values shown in (a–d) are corresponding to the Points 2, 4,
5 and 6, respectively.).
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The varying trend comparison between TBV and real visibility can be seen in Figure 6. The left
column of Figure 6 is the TBV varying trend of images during the foggy and hazy dissipation period,
and the right column is the corresponding visibility. The data shown in Figure 6 correspond to road
points 2, and 4–6 in Table 1. In reality, the TBV varying trend of images in road points 1, and 3 is
identical with that of others. However, the data in road points 2, and 4–6, exclusively and obviously
shown in Figure 6, are used as the testing set. Throughout the foggy and hazy disappearance process,
the visibility varies from low to high levels, and there is fluctuation in a certain time interval. In general,
the varying trend of TBV is completely consistent with the variation trend of foggy and hazy visibility.
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Figure 6. Varying trend comparison between the TBV ratio and the real visibility. (The data shown
in (a,c,e,g) denote the TBV ratio values of Points 2, 4, 5, and 6, respectively. The data shown in (b,d,f,h)
indicate the foggy and hazy visibility values of the Points 2, 4, 5, and 6, respectively.)

In the process of TBV approach validation, the training set and the testing set are separated based
on the machine learning theory. The TBV approach is tested by big data in the training set which is
used for algorithm validation to get relevant parameters. The training and testing set information is
shown in Table 2 and the test results are presented in Figures 7–9. In Figure 7, the visibility estimated
by the TBV approach is very close to real visibility, and it should be noted that the front visibility value
estimated is similar to the back one in some short time intervals. The reason is that the piecewise
stationary theory is applied in visibility. The estimation visibility of the previous frame is used as a



Sensors 2018, 18, 392 12 of 18

reference for the visibility estimation of the next frame, and it is also, in reality, compliant with the
characteristics of fog and haze. The estimated errors shown in Figures 8 and 9 indicate the effectiveness
of the idea above. In 604 measured foggy and hazy images, there are only two images whose relative
errors are between 10% and 15%, and relative errors of other images are all less than 10%. There are
414 (68.54%) error data points with the percentage of less than 5%. According to [39], the upper limit
of estimation errors is 10% if the atmospheric visibility is less than 2000 m, and the test results of the
TBV approach presented in this paper obviously meet this requirement.

Table 2. Training and testing sets.

Testing Set Training Set

Road Points No. Duration Road Points No. Duration

2 200 min 1, 3, 4, 5, 6 790 min
4 177 min 1, 2, 3, 5, 6 813 min
5 126 min 1, 2, 3, 4, 6 864 min
6 101 min 1, 2, 3, 4, 5 889 min

To further verify the effectiveness of the TBV approach, the image contrast model of visibility
estimation [16] is used for performance comparison. The estimation results of the image contrast
model are also shown in Figures 7 and 8. Among 604 measured images, relative errors of 208 images
(34.44%) are less than 10%, while 94 images have relative errors less than 5% (15.56%).

Figure 10 is a scatter plot between real visibility and the visibility estimated by the S-TB algorithm.
Figure 10 indicate the large amount of data points with visibility of less than 200 m, since the fog and
haze dissipate slowly when the corresponding visibility is no more than 200 m. From the perspective
of machine learning, the more the training data are, the better the S-TBV model is. As a result, all the
foggy and hazy image data are used for S-TBV model training and the piecewise function coefficients
are shown in Table 3.

Table 3. Piecewise function coefficients for the S-TBV Model.

n an (Power = 2) bn (Power = 1) cn (Power = 0) Intervals

1 14.06 −169.68 548.13 [0, 50)
2 2.54 −37.20 187.41 [50, 60)
3 −6.52 × 10−4 −5.31 × 10−2 68.62 [60, 70)
4 −6.71 × 10−4 1.06 × 10−1 73.01 [70, 80)
5 −1.17 × 10−2 5.93 × 10−1 79.23 [80, 90)
6 −9.11 × 10−3 4.29 × 10−1 90.52 [90, 100)
7 7.62 × 10−3 −4.28 × 10−1 112.77 [100, 120)
8 −4.53 × 10−4 5.31 × 10−3 128.93 [120, 140)
9 −3.27 × 10−3 4.52 × 10−1 140.98 [140, 160)

10 3.22 × 10−3 −2.16 × 10−1 170.96 [160, 180)
11 −2.45 × 10−3 1.34 × 10−1 189.99 [180, 200)
12 5.07 × 10−3 −3.27 × 10−1 220.76 [200, 250)
13 −1.11 × 10−2 1.33 240.49 [250, 300]
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Figure 7. Visibility comparisons among the real values, the estimation results of the TBV approach and
the results of the image contrast model (The visibility values shown in (a–d) are corresponding to the
Points 2, 4, 5, and 6, respectively.).
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Figure 8. Relative errors comparison between the TBV approach and the image contrast model.
(The image contrast model is based on [16] and the threshold 0.05 is used. The details about the relative
error of the TBV approach are presented in Figure 9. The errors shown from in (a–d) are corresponding
to the Points 2, 4, 5, and 6, respectively.)
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Figure 9. Relative errors of the TBV approach in detail. (The training set and the testing set are
separated. A total of 604 foggy and hazy images are tested. There are only two relative errors which
are between 11% and 12%. The other errors are less than 10%. Relative errors of 414 foggy and hazy
images are less than 5%.)Sensors 2018, 18, x FOR PEER REVIEW  14 of 17 
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Figure 10. The scatter plot between the visibility estimated by the TBV approach and the real visibility.

5. Discussion

In all the collected data, the foggy and hazy images with visibility of less than 200 m can always
be obtained because of the dissipation characteristics of fog and haze. When fog forms at midnight,
the atmospheric visibility reaches its minimum. However, there is sometimes an “elephant trunk
phenomenon” and visibility suddenly becomes better before reaching the minimum. While fog
disappears gradually after sun rises, fog dissipation, is relatively slow and the characteristic of a
piecewise stationary process is obvious when the atmospheric visibility is between 0 m and 200 m.
As the fog with visibility of less than 200 m has long duration and is more dangerous, some special
management rules for Chinese expressways are made in this situation [38].

The validation results show that TBV can be employed to characterize local boundary differences
of foggy and hazy images. In the sunny day images, the shape of histogram distributions is bimodal.
The TBV of the sunny day images is big because the difference among gray values of adjacent pixels is
wide. When fog and haze occur, the histogram distribution shape of surveillance images tends to be
unimodal or trapezoidal. To contrast, the corresponding TBV is low as the difference between gray
values of adjacent pixels is smaller. In general, the better the visibility is, the higher the TBV is, and
vice versa.

From the angle of image spectrum, the energy of fog and haze is chiefly concentrated in the low
frequency region, and the HF coefficients are low with its ratios shown in Figure 4 between 0% and
20%. When heavy fog and haze occur, the variations between local boundaries of surveillance images
are small, and the LF coefficients augment. As shown in Figure 5, the LF coefficients range between
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100% and 120% when the visibility is less than 300 m. Based on the spectral features shown in Table 4,
low visibility foggy and hazy images can be sorted out.

Table 4. Spectral features of foggy and hazy images.

DCT Coefficient Ratios Foggy and Hazy Image Spectrum Overall Trend

High frequency (HF)

Overall between 0% and 20%.

When the foggy and hazy visibility is
improved, the HF coefficient ratios increase.

Fluctuating around a small number when the
visibility is less than 200 m.

Increasing gradually when the visibility is
between 200 m and 300 m.

Low frequency (LF) Between 100% and 120%. The higher the foggy and hazy visibility is,
the smaller the LF coefficients are.

As mentioned above, the training set and the testing set are independent and the S-TBV model is
validated. In Figure 9, the number of points with relative errors of less than 5% is 414, which accounts
for 60% of the whole testing data. Only two data points have relative errors of more than 10%, i.e.,
11.10% and 11.48%, respectively. The validated results meet and exceed the requirements shown in [39],
where the estimated errors should be less than or equal to 10% when the visibility is less than 2000 m.
In view of the validated data above, we can see clearly that TBV is closely linked to the features of fog
and haze. A nonlinear relationship exists between TBV and real visibility, which can be analyzed by
piecewise stationary theory. When visibility is less than 300 m, texture features of corresponding foggy
and hazy images are apparent, and TBV is a well-designed parameter for characterizing such local
differences among images. Furthermore, the piecewise stationary time series analysis theory is used
for setting up the piecewise function between TBV and real visibility.

Some researchers may argue why the visibility values measured by the visibility meter were
not used for performance comparison in this study. Reasons are summarized as follows: (1) the
image contrast model has been used for performance comparison; and (2) perceived results by human
eyes are more important than results based on objective measurements and predictions by different
algorithms. Based on the visibility definition by CIE, 36 subjects were invited to participate in subjective
assessments in this study.

This study aims to solve the Chinese practical problem. According to China meteorological
industry standard [39], the performance of this study meets the practical application requirements
(as shown in Section 4). Therefore, the validation performance is encouraging. However, it should be
noted that there are still certain limitations. For example, the collection method for sunny day image
can be improved. Furthermore, the big data in this paper are only collected from China. To improve
the adaptability of the TBV approach, more data from different regions and countries are required to
optimize the TBV approach.

6. Conclusions

Heavy traffic accidents usually result from fog and haze. When visibility is less than 200 m, the
traffic accident rate will surge [39]. To alleviate this problem, a total bounded variation approach to
estimate foggy and hazy visibility was studied, and it focuses on the expressway visibility of less than
300 m. The conclusions are listed as follows:

(1) The situation, expressway visibility of fog and haze less than 300 m, was focused on firstly.
This strategy of overcoming the challenge of estimation accuracy is reasonable. The total bounded
variation approach can be used to handle this situation and the verified results are encouraging.
The relative errors of estimation are less than 10%, and 68.54% of the errors are less than 5%.

(2) Total bounded variation approach provides an effective framework for low visibility estimation on
expressway. The fogy and hazy images can be processed as pseudo-blurred images. The texture
features of pseudo-blurred images can be characterized by TBV, which is correlated to the trend
of foggy and hazy visibility.
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(3) There are wide differences between the spectral features of sunny day images and that of foggy
and hazy images of less than 300 m. Besides, HF coefficient ratios of sunny day images fluctuate
around 100%, and HF coefficient ratios of foggy and hazy images fluctuate from 0% to 20%.
LF coefficient ratios of foggy and hazy images fluctuate from 100% to 120%, and LF coefficient
ratios decrease gradually when the visibility increases steadily.

(4) Big dataset can help generate valid the S-TBV model. The dataset contains 1.78 million frames
collected from expressway.

(5) Relative ratios are used in this paper, namely the spectral coefficient ratio (HF, LF) and the TBV
ratio. Some influencing factors, such as road points background and lighting, can be eliminated.
The feasibility of the S-TBV model will be improved.

The results of the TBV approach presented are satisfactory. Moreover, it would be very meaningful
to have a comparison between the results of this paper and that of deep learning. Deep learning can
help train an end-to-end mapping from video frames to visibility. Furthermore, the nighttime visibility
analysis is a valuable research topic, and the impacts of headlights on low visibility estimation deserve
deep consideration in this topic. These will be our future works.
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