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Abstract: Nowadays, the current vehicles are incorporating control systems in order to improve
their stability and handling. These control systems need to know the vehicle dynamics through the
variables (lateral acceleration, roll rate, roll angle, sideslip angle, etc.) that are obtained or estimated
from sensors. For this goal, it is necessary to mount on vehicles not only low-cost sensors, but also
low-cost embedded systems, which allow acquiring data from sensors and executing the developed
algorithms to estimate and to control with novel higher speed computing. All these devices have to
be integrated in an adequate architecture with enough performance in terms of accuracy, reliability
and processing time. In this article, an architecture to carry out the estimation and control of vehicle
dynamics has been developed. This architecture was designed considering the basic principles of
IoT and integrates low-cost sensors and embedded hardware for orchestrating the experiments.
A comparison of two different low-cost systems in terms of accuracy, acquisition time and reliability
has been done. Both devices have been compared with the VBOX device from Racelogic, which
has been used as the ground truth. The comparison has been made from tests carried out in a real
vehicle. The lateral acceleration and roll rate have been analyzed in order to quantify the error of
these devices.

Keywords: IoT; low-cost sensor; small single-board computer; Raspberry Pi; Intel Edison; low-cost
devices; vehicle dynamics

1. Introduction

Given the high number of vehicle-crash victims, it has been established as a priority to reduce this
figure in the transportation sector. For this reason, many of the recent research works are focused on
including different control systems in commercial vehicles in order to improve their stability, comfort
and handling [1–3]. These systems need to know in every moment the dynamics of the vehicle through
variables such as longitudinal and lateral accelerations, yaw rate, roll rate, roll angle and sideslip angle,
among others, when different maneuvers are performed, in order to actuate by means of the systems
in the vehicle (brakes, steering, suspension) and, in this way, achieving a good behavior.

IMU sensors directly provide measurements of angular rates (yaw, roll and pitch rates) and
accelerations (longitudinal, lateral and vertical accelerations) via rate gyroscopes and accelerometers.
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However, there are some difficulties in obtaining the vehicle angles (sideslip, roll and pitch angles)
directly from sensors. A GPS dual-antenna system provides measurements of these angles, but this
technique is very expensive. For this reason, this system is not mounted on commercial vehicles.
Nowadays, many researches are focused on the design of observers in order to estimate these variables
using the data provided by sensors that are installed on current vehicles, or by low-cost devices in
order to solve this problem. In some studies, the vehicle roll angle is estimated by fusing the data of
longitudinal acceleration, lateral acceleration, yaw rate and roll rate [4,5], through the fusion of lateral
accelerations and roll rate [6], fusing the data obtained from an inertial angle sensor and a gyroscope [7],
fusing the information obtained from a six-dimensional IMU [8] or fusing the information provided by
a low-cost GPS with the data provided by a wheel speed sensor, steering angle sensor and a yaw rate
sensor [9]. Regarding these works, the most common sensors used to estimate the vehicle dynamics
are accelerometers and gyroscopes, which are integrated in an IMU sensor.

Concerning the estimation of vehicle sideslip angle, in [10], a sensor fusion of lateral acceleration,
longitudinal velocity and yaw rate is carried out. In [11], the sideslip angle is estimated through the
yaw rate. In [12,13], the estimation of sideslip angle is obtained through the lateral acceleration and
yaw rate.

In [14], both the roll angle and sideslip angle are estimated using the measurements provide by
sensors installed on commercial vehicles, such as the longitudinal velocity, the wheel speed, the steer
angle, the lateral acceleration and yaw rate.

The observers’ design to estimate the vehicles angles is based on different techniques.
These techniques are based on artificial intelligence [4,10], Kalman Filter [4,8,10], Bayesian Filters [9],
sliding mode observer [6] and robust observers [5,11,13]. All these observers must work under
real-time constraints.

Nowadays, some researches analyze and design embedded systems for vehicles’
applications [15–17]. With the objective of developing vehicle on-board systems, it is necessary that
they have a small size, a small response time and enough accuracy. Another characteristic is that they
must be low-cost in order to maintain the price of production vehicles. The use of small computers
with a high processing capacity and a number of input/output interfaces allows incorporating into
vehicles both estimators and controllers, increasing their safety. Previous research [18] analyzed the
integration of low-cost sensors in vehicles. This research indicates that this kind of low-cost kit could
present relevant bias and noise that need to be studied experimentally. Even more, this research
provides recommendations for packaging these devices with plastic boxes. This research supports the
need and opportunity for the research discussed in this article.

Small computers are used as data acquisition systems. Nowadays, the most popular small
single-board computers are the Raspberry Pi and Intel Edison. They have a low price, flexibility
and have high support from the creators and Internet community developing new libraries to give
solutions for complex necessities. The use of these devices has been increasing in recent years.

The Intel Edison is meant to be a deeply-embedded IoT computing module. Although it is
not a single-board computer, there are many studies that use it like an acquisition and processing
system. Like Raspberry Pi, Intel Edison is very popular, and there are many resources to improve the
capabilities of this processor. In [19], a prototype implementation based on the Intel Edison was used
to verify an identity-based data aggregation protocol. In [20], real-time vital parameters on neonates
were acquired using Intel Edison and IoT integration with biomedical devices. In [21], Intel Edison
was used to develop a neurofeedback system to enable anyone with an attention deficit to practice
regulating their brain to reach an attentive state of mind. In [22], Intel Edison was used to create a
prototype to analyze and process geospatial data.

In [23], a Raspberry Pi was used to acquire the riding dynamics of a human-powered vehicle.
In [24], a Raspberry Pi was used to develop an virtual laboratory, which allows the sensor and data
fusion to be employed in autonomous, robotic and transportation systems. In [25], a low-cost contact
angle goniometer/tensiometer was constructed based on a Raspberry Pi. In [26], a voltage regulation
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system was proposed for photovoltaic energy sources based on Raspberry Pi. The Raspberry Pi
managed the data acquisition and controlled the system. In [27], the Raspberry Pi was used as a
gateway for an efficient integration of wireless sensor networks with the Internet through IoT.

As can be seen, in previous works, these small computers are used for very specific works. In [28],
the comparison of some of their inherent capabilities, such as connectivity and consumption, was
performed under static conditions.

The novelty reflected in this work is the analysis of low-cost small computers and sensors under
high dynamic conditions, by following specific best practices and considerations. The set of these
devices is integrated with a specifically-designed IoT architecture oriented towards smart vehicles.

One of the main results of this research is the design of an architecture based on IoT, which
integrates low-cost sensors and a small single-board computer to be mounted on a vehicle in order
to carry out the estimation and control of vehicle dynamics, comparing the results with a high-end
professional device. In this work, the low-cost sensor considered is an IMU due to it being the most
common sensor used to estimate the vehicle dynamics. This research is focused on the comparison
of two different low-cost systems (Raspberry Pi with IMU BNO0055 and Intel Edison with IMU
LSM9DSO) in terms of accuracy, acquisition time and reliability. Both devices are going to be compared
with the VBOX device from Racelogic, which will be used as the ground truth.

This article is organized as follows. In Section 2, the methodology is presented, including
the experimental testbed design, experiments’ definitions, and the data gathering and analysis,
the experimental results and the calculation of the RMS error are presented in Section 3. Finally,
in Section 4, the discussion and conclusion of the results and the method are exposed.

2. Methodology

In this section, firstly, the design of the experimental testbed defined to achieve the research goals
is presented; then, the experiments to gather the data required are specified; and finally, the data
gathered to analyze low-cost sensor kits’ performance and reliability are presented, indicating the data
analysis strategies for identifying relevant results and conclusions.

2.1. Experimental Testbed Design

The design of the experimental testbed considered for this research work is composed of three
perspectives: hardware, software and communications.

• Hardware perspective:

The experimental testbed is an Internet of Things (IoT) architecture embedded in a vehicle.
Although the complete architecture is packaged in a product that can be integrated in any vehicle,
the Ford Fiesta was used.

To perform the comparative analysis properly, three kits of sensors were considered:

– Reference or ground truth kit. This is composed of a VBOX 3i dual antenna data logger [29]
having an IMU (Inertial Measurement Unit) connected and a dual antenna for incremental
GPS from Racelogic. To accurately measure the roll rate, the two antennas form a 90-degree
angle with respect to the traveling direction. For IoT kits’ synchronization and data
gathering, the VBOX controller is connected to a laptop embedded in the vehicle. The actual
specifications of the ground truth kit hardware elements are detailed in Table 1.
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Table 1. Technical specifications of hardware elements included in the VBOX kit (ground truth).

VBOX 3i Data Logger Plus GPS Dual Antenna IMU (RLVBIMU04)

Latency 8.5 ± 1.5 ms Memory Compact Flash: Angular rate ±150◦/sType I range

Sampling rate 100 Hz Velocity 0.1 km/h Acceleration ±1.7 gaccuracy range

Velocity range from 1000 mph Power Max. 5.5 Watts Angular rate 0.01◦/sto 0.1 Km/h consumption resolution

Weight C Size 170 × 121 × 41 mm Acceleration 0.01 gresolution

Price >13,000 e Price >3000 e

– First low-cost sensor kit composed of a Raspberry Pi 3 Model B [30,31], low-cost Inertial
Measurement Unit Shield [32]. The actual specifications of the Raspberry kit hardware
elements are detailed in Table 2.

Table 2. Technical specifications of hardware elements included in the Raspberry Pi kit.

Raspberry Pi Controller (3 Model B) IMU (BNO055)

RAM 1 GB Angular rate range From ±125◦/s–±2000◦/s

CPU 4xARM Cortex-A53, 1.2 GHz Acceleration range From ±2 g–±16 g

GPIO 40 pins on 0.1” headers Angular rate 16 bits

resolution (From 0.003◦/s for ±125◦/s
to 0.06◦/s for ±2000◦/s)

Power 5 V @ < 1.5 W–6 Wo
Acceleration

14 bits
consumption

resolution
(From 0.0002 g for ±2 g

Dimensions 85.60 × 56.5 mm to 0.002 g for ±16 g)

Price 33.70 e Price 29.50 e

– Second low-cost sensor kit composed of an Intel Edison System on Chip [33] linked to
a SparkFun 9 Degrees of Freedommodule [34]. The actual specifications of the Intel kit
hardware elements are detailed in Table 3.

Table 3. Technical specifications of hardware elements included in the Intel Edison kit.

Intel Edison Controller IMU (LSM9DSO)

RAM 1 GB Angular rate range From ±245◦/s– ±2000◦/s

CPU
4x Intel Atom Tangier

Acceleration range From ±2 g–±16 gx86 dual core processor
+Intel Quark core

GPIO 70-pin Hirose. 4 mm Angular rate 16 bits

resolution (From 0.007◦/s for ±245◦/s
to 0.06◦/s for ±2000◦/s)

Power 3.3 V @ < 1 W Acceleration 14 bits
consumption resolution (From 0.0002 g for ±2 g

Dimensions 35.5 × 25 mm to 0.002 g for ±16 g)

Price 42.00 e Price 13.50 e

The IMU and the low-cost sensor kits were located in the gravity center of the vehicle considered
in the testbed as is represented in Figure 1. These three kits were also interconnected using a WiFi
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router to manage the communications among them to synchronize the experiments and gather
the information ready to be compared. According to [18], the accurate determination of IMU and
controller position is essential for enhancing the precision of low-cost kits.

Figure 1. Test vehicle equipped with different low-cost systems, VBOX data logger, 3 IMU sensors and
GPS dual-antenna.

• Software perspective:

A software architecture was designed to gather the data provided by the sensor kits in a
synchronized way and to provide the datasets necessary to analyze the precision and performance
of each kit considered for this research work. The main components of this architecture are shown
in Figure 2).

The Experiments Manager Componenthas the responsibility to synchronize the data-gathering of
the kits taking part in the experiments. The specific classes included in this component are:

1. Experiments Managerthat includes the user interface to let the researcher send a signal to
the experimental kits for starting and finishing an experiment in a synchronized way.

2. Communications Client that has the responsibility of managing the communication
between the Experiments Manager and the Communications Server running in each
experimental kit. The possible signals that can be sent from the Communications Client
in the Experiments Manager and the Communications Servers in experimental kits are:
0, shutdown experimental kit; 1, keep running the experiment; 2, start the experiment; and
3, end the experiment and save the data in a file.

3. Dataset Storage Manager that is in charge of taking the data coming from the kits and storing
them in a CSV file. The information stored includes gyroscope and accelerator data gathered
considering a sampling rate of 100 Hz.
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Figure 2. Testbed software design.

The Intel Edison Software component is in charge of gathering the information provided by
gyroscope and accelerator sensors included in its hardware architecture. This component was
implemented in C++. The specific classes included in this component are:

1. The NTP Client is in charge of registering the actual date-time in the hardware controller
of the experimental kit to ensure that all the kits in the testbed have the same date-time,
supporting comparison during the data analysis stage in this research work.

2. Communications Server that is in charge of receiving the signals from the Experiment
Manager and sends the Experiment Launcher the order to start a new experiment. Moreover,
this class sends the experiments’ ending order to the Experiment Stopper class to process the
information gathered during the experiment.

3. The Experiment Manager class is in charge of creating an empty data structure in RAM
memory when it receives the start experiment signal from the communications server
and sending the data structure having the data gathered during an specific experiment
to the Experiments Manager for storage purposes when it receives the end experiment signal.

4. The Sensors Handler class has the responsibility of registering data items from sensors
attending to the pre-configured sampling rate (100 Hz for this research work). The data
are obtained from the gyroscope and accelerometer drivers that were obtained from
GitHub [35,36].

The Raspberry Pi Software component has the same class structure as the Intel Edison Software
Component, but it was developed in Python because the available drivers for low-cost IMU were
only available in this language.

The VBOX Component is in charge of gathering the information provided from the Racelogic
IMU sensor and GPS dual antenna data.
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• Communications perspective:

In order to provide homogeneity in communication among the different items that compose
the solution and ensure synchronization when performing the different tests, a communications
architecture has been defined.This architecture is shown in Figure 3.

Figure 3. Testbed communications perspective.

Given the nature of Racelogic VBOX devices, they need to be physically connected via a cable to
the experiments managerand among themselves. However, both Raspberry Pi 3 and Intel Edison
come with wireless communication interfaces that ease the connectivity among components and
allow one to locate them in virtually any place of the vehicle without worrying about setting up
specific data cables. Even more, the sensors used by these low-cost platforms are straightforwardly
attached to the development boards by using the GPIO ports. By means of a wireless (802.11 g)
access point, they can be connected to the experiments manager, which signals to them their
operation mode via a TCP socket connection.

2.2. Experiments Definition

The hypotheses to evaluate during this research work are the following:

• H1: The precision of low-cost sensor kits is similar to the precision provided by expensive
experimental kits (i.e., VBOX-based kits).

• H2: The performance and reliability of the low-cost sensor kits (i.e., Raspberry Pi and Edison
Kits) is similar to the performance and reliability provided by expensive experimental kits
(i.e., VBOX-based kits).

To evaluate the previous hypothesis, eight controlled experiments were executed (see Table 4.
The experiments considered typical maneuvers such as J-turn and lane change maneuvers. These
maneuvers are the most common used to test the vehicle’s behavior. Furthermore, a long test simulating
a general execution has been done. In the experiments carried out, the lateral acceleration and the
roll rate are the variables that have suffered higher variation, and for this reason, these variables are
considered in order to analyze the accuracy of different devices.
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The experimental tests have been carried out in Leganes (Madrid, Spain) on a commercial vehicle
and a Ford Fiesta, as can be seen in Figure 4 in a period were the setting had no traffic restrictions
interfering with the appropriate execution of the considered experiments.

Table 4. Experiments proposed.

ID Description Purpose Variables to Observe

1
A vehicle taking two roundabouts with (1) Evaluation of Lateral acceleration

a radius of around 20 m at a constant measures accuracy and roll rate
speed of approximately 30 km/h.

2 A vehicle doing a lane change (1) Evaluation of Lateral acceleration
at approximately 20 km/h. measures accuracy and roll rate

3
A vehicle taking several roundabouts (1) Evaluation of Lateral accelerationwith a radius of around 20 m at a measures accuracy and roll rateconstant speed of approximately 35 km/h.

4
A vehicle taking several roundabouts (1) Evaluation of Lateral accelerationwith a radius of around 20 m at a measures accuracy and roll rateconstant speed of approximately 45 km/h.

5 A vehicle doing a lane change (1) Evaluation of Lateral acceleration
at approximately 60 km/h. measures accuracy and roll rate

6
A vehicle taking a single roundabout (1) Evaluation of Lateral accelerationwith a radius of around 20 m at a measures accuracy and roll rateconstant speed of approximately 30 km/h.

7 A vehicle doing a lane change

(1) Evaluation of

Lateral acceleration
at approximately 80 km/h.

measures precision

and roll rate

(2) Performance and
reliability evaluation,
specifically sampling

frequency of the
devices and sensors

8

A vehicle simulates a normal
(1) Evaluation of

Lateral accelerationcirculation behavior. Several curves
measures precision

and roll ratewere taken, and the vehicle was at the
(2) Performance and

most appropriate speed for the road
reliability evaluation,

and the situation.
specifically sampling

frequency of the
devices and sensors

Figure 4. Experiments’ context (Map scale 1:7800 cm).
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2.3. Data Gathering and Analysis

The data obtained for the sensors considered for the previously-defined experiments were:
For each experiment, the controller of each kit stored a CSV formatted file identifying the experiment
and its execution date and time. The variables considered were the lateral acceleration measured by
the accelerometer and the roll rate measured by the gyroscope included in each kit for the three axes.
The measures were gathered according to the sampling rate stated for the experiments, which was
100 Hz. Figure 5 presents an example of the data gathered in each experiment.

TIME GYRO_X GYRO_Y GYRO_Z ACCEL_X ACCEL_Y ACCEL_Z

2017-11-06 10:39:31:748 -0.149536 1.824341 -0.859833 -0.125000 0.104187 -1.037964

2017-11-06 10:39:31:761 -0.411224 1.667328 -0.919647 -0.121826 0.103027 -1.037720

2017-11-06 10:39:31:781 -0.291595 2.093506 -1.091614 -0.124207 0.104675 -1.037109

2017-11-06 10:39:31:802 -0.358887 1.510315 -0.904694 -0.123779 0.102478 -1.037781

2017-11-06 10:39:31:822 -0.321503 1.801910 -0.912170 -0.124390 0.104065 -1.039612

2017-11-06 10:39:31:842 -0.179443 2.093506 -1.151428 -0.125671 0.103333 -1.038025

2017-11-06 10:39:31:862 -0.381317 1.547699 -0.777588 -0.122864 0.104980 -1.036011

2017-11-06 10:39:31:882 -0.381317 1.846771 -1.009369 -0.125549 0.103882 -1.038513

2017-11-06 10:39:31:903 -0.157013 1.816864 -1.143951 -0.123901 0.105408 -1.038391

2017-11-06 10:39:31:923 -0.216827 1.816864 -0.859833 -0.123657 0.103638 -1.037537

2017-11-06 10:39:31:943 -0.037384 1.757050 -1.091614 -0.122314 0.103333 -1.039124

2017-11-06 10:39:31:964 -0.201874 1.652374 -0.889740 -0.126038 0.104065 -1.037964

2017-11-06 10:39:31:984 -0.500946 2.011261 -0.971985 -0.125183 0.104614 -1.041748

2017-11-06 10:39:32:400 -0.291595 1.876678 -1.465454 -0.123779 0.104370 -1.037170

Figure 5. Example of the file including data registered during the experiments’ execution.

To determine the accuracy of the values obtained from low-cost kits, the root mean square
(RMS) error was calculated. The maximum error comparing each point has also been calculated.
This comparisons has been done using Racelogic VBOX as the ground truth.

Section 3 presents the results obtained in the different tests.

2.4. Threats to Validity

In order to analyze the validity of the results obtained in this experimental work, several threats
were considered prior to the experiments’ execution:

• Internal validity is the extent to which a causal conclusion based on the experiments defined
is appropriate avoiding the introduction of systematic errors in the data used to determine the
results and conclusions.

• External validity is the extent to which the results of a study can be generalized to other situations.

(A) Internal validity: In this research, the only factor contributing to internal validity is related to
the specific sensors used to configure each low-cost kit and the software components implemented to
manage the required data:

• The first threat was mitigated using two different kits for each type in order to prevent errors
produced by sensors providing incorrect values. Even more, all the kits considered were tested in
a static environment configuring the corresponding calibrations to assure that specific sensors
included were providing appropriate data.
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• Regarding software components, the possible threats were mitigated implementing an exhaustive
unit testing process to ensure that each functionality properly processes the received values and
the synchronization among devices is correctly implemented.

• To verify the validity of the results, three similar tests for J-turn and double lane change maneuvers
have been carried out.

(B) External validity: In the scope of this research, the factors that influence the external validity
are related to the replication of this experiment. These replications must consider several relevant
factors: sensors and controllers included in the experimental kits, their location in the vehicle and
road conditions:

• Regarding sensors and controllers, the possible threats were mitigated using sensors and
controllers available on the market having regular features [37–39]. In this sense, the conclusions
obtained are valid for the low-cost sensors currently available on the market, and as the technology
is always improving the prior conditions, the conclusions can be used for future low-cost sensors.

• Regarding vehicle conditions, the threats were related to the appropriate location of experimental
kits in order to ensure equal conditions among them. This threat was mitigated creating a box
to put the three sensor kits in a 3D printed box that was located in the vehicle gravity center.
These issues are important to replicate this experiment properly in other vehicles. In this research,
as the experiments have been carried out with a real vehicle, it has been difficult to maintain
the same exact driving conditions related to steering wheel angle and velocity. In spite of this
problem, similar tests for typical maneuvers have been carried out.

• Regarding road conditions and experiments execution, the threats were related to the
representativeness of the scenarios considered. This threat was mitigated considering a road
without relevant slope variations and including different experiments with different types of
directions, constant and variable speed.

3. Experimental Results

As is indicated in Section 2, a Ford Fiesta was used for this research (Figure 1). For the experimental
tests, a total of eight driving maneuvers was carried out. Table 5 shows a summary of the successful
tests. For both VBOX and Intel Edison, the percentage of successful tests is 100%. However, the
percentage of successful tests for Raspberry Pi is 37.5%. This result together with the connectivity
problems suffered previously in the performance of tests indicates a low reliability of Raspberry Pi
compared with the other devices. In Table 6, the vehicle speed for the three successful tests in three
devices is shown.

Table 5. Results of reliability.

VBOX Raspberry Pi Intel Edison

Total tests 8 8 8
Successful tests 8 3 8
% of reliability 100 37.5 100

Table 6. Vehicle speed for tests.

Maneuver Speed (km/h)

Test 1: J-turn 31
Test 2: Lane change 79

Test 3: Normal driving Variable (see Figure 6)
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Figure 6. Test 3: Vehicle speed profile.

3.1. Test 1: Roundabout

This first test is carried out with the vehicle taking a roundabout with a radius of 22 m (see Figure 7)
at a constant speed on dry pavement. The car takes the roundabout with a velocity of 31 km/h.
Figures 8 and 9 show the lateral acceleration and roll rate data, respectively, obtained from the lateral
accelerometers and roll rate sensors contained in IMUs installed on Raspberry Pi (blue points) and
Intel Edison (green). In order to prove the accuracy of these sensors, they have been compared with
the data obtained from the IMU of VBOX, which is considered as the ground truth. It can been seen
that the behaviors of the sensors in the three different devices are very similar.

To quantify the accuracy of the sensor, the norm, RMS (root mean square) and maximum errors
have been calculated. The norm error as a function of time is calculated as follows [5]:

Et =
εt

σt
· 100, (1)

where:

ε2
t =

T∫
0
(φGT − φlc)

2 dt

σ2
t =

T∫
0
(φGT − µGT)

2 dt
(2)

φGT represents the ground truth data, φlc represents the low-cost sensor data and µGT is the mean
value of the ground truth data obtained during the period T .

In Table 7, the error values are given. To verify the validity of the results, three similar tests for
the J-turn maneuver have been carried out. To quantify the dispersion of data values, the standard
deviation has been included for the RMS error (see Table 7). The results show that the errors are higher
for the Intel Edison than the Raspberry Pi. Concerning the norm and RMS errors, the difference is
about 1%, 0.01 g’s and 3%, 0.02◦/s for lateral acceleration and roll rate, respectively. For maximum
errors, the difference between them is higher (about 0.2 g’s and 6◦/s, for lateral acceleration and roll
rate, respectively). This is due to the Intel Edison being more sensitive to noise. In Figures 8 and 9,
a high scattering for the Intel Edison IMU is observed.
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Table 7. Test 1: Errors of lateral acceleration and roll rate data for the accelerometers and gyroscopes
mounted on Raspberry Pi and Intel Edison compared with the IMU from VBOX (ground truth).

Lateral Acceleration

Norm Error RMS Error Maximum Error

(%) (g’s) (m/s2) (g’s) (m/s2)

Raspberry Pi 24.27 0.0541 ± 0.0041 0.5305 ± 0.04 0.2063 2.0238
Intel Edison 25.08 0.0692 ± 0.0072 0.6788 ± 0.0706 0.3844 3.7709

Roll Rate

Norm Error RMS Error Maximum Error

(%) (◦/s) (rad/s) (◦/s) (rad/s)

Raspberry Pi 143.15 2.2737 ± 0.1555 0.039 ± 0.0027 8.3404 0.1455
Intel Edison 146.43 2.3093 ± 0.4153 0.04029 ± 0.0072 14.3173 0.2498

Figure 7. Test 1: Map and vehicle trajectory (Map scale 1:2100 cm).

Figure 8. Test 1: Lateral acceleration obtained from the IMU of VBOX (red points), from the IMU of
Raspberry pi (blue points) and from the IMU from Intel Edison (green points).
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Figure 9. Test 1: Roll rate obtained from IMU of VBOX (red points), from IMU of Raspberry pi
(blue points) and from IMU from Intel Edison (green points).

3.2. Test 2: Double Lane Change

This second test is carried out with the vehicle doing a slalom maneuver at 79 km/h on dry
pavement as shown in Figure 10. In this kind of test, the lateral acceleration varies very fast, so the
sampling frequency of the devices and sensors can be checked. Figures 11 and 12 show the lateral
acceleration and roll rate data, respectively, obtained from the lateral accelerometers and roll rate
sensors contained in IMUs installed on Raspberry Pi (blue points) and Intel Edison (green). In order to
prove the accuracy of these sensors, they have been compared with the data obtained from the IMU of
VBOX, which is considered as the ground truth. It can been seen that the behavior of the sensors in
the three different devices is very similar. Furthermore, it can be seen that the two devices are able to
sample the signal sufficiently to show no differences with the Racelogic VBOX device.

To quantify the accuracy of the sensor, the norm, RMS and maximum errors have been calculated.
In Table 8, the error values are given. To verify the validity of the results, three similar tests for
the double lane change maneuver have been carried out. The standard deviation for the RMS error
is shown in Table 8. Results show that the errors are higher for Intel Edison than Raspberry Pi.
Concerning the norm and RMS errors, the difference is about 20%, 0.04 g’s and 65%, 2◦/s for lateral
acceleration and roll rate, respectively. For maximum errors, the difference between them is higher
(about 0.5 g’s and 57◦/s, for lateral acceleration and roll rate, respectively). This is due to the Intel
Edison being more sensitive to noise. In Figures 11 and 12, a high scattering for Intel Edison IMU
is observed; it also can be seen that the maximum error for roll rate on Intel Edison is 66.0722◦/s.
This error is due to the noise that causes atypical data, as can be see in Figure 13.
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Table 8. Test 2: Errors of lateral acceleration and roll rate data for the accelerometers and gyroscopes
mounted on Raspberry Pi and Intel Edison compared with the IMU from VBOX (ground truth).

Lateral Acceleration

Norm Error RMS Error Maximum Error

(%) (g’s) (m/s2) (g’s) (m/s2)

Raspberry Pi 46.48 0.0447 ± 0.0097 0.4385 ± 0.0951 0.2655 2.6045
Intel Edison 68.44 0.0842 ± 0.0175 0.8260 ± 0.1716 0.7863 7.7136

Roll Rate

Norm Error RMS Error Maximum Error

(%) (◦/s) (rad/s) (◦/s) (rad/s)

Raspberry Pi 98.92 1.7007 ± 0.5142 0.0296 ± 0.0089 9.2531 0.1614
Intel Edison 163.66 3.8715 ± 1.1463 0.0675 ± 0.02 66.0722 1.1529

Figure 10. Test 2: Map and vehicle trajectory (Map scale 1:2100 cm).
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Figure 11. Test 2: Lateral acceleration obtained from the IMU of VBOX (red points), from the IMU of
Raspberry pi (blue points) and from the IMU from Intel Edison (green points).

Figure 12. Test 2: Roll rate obtained from the IMU of VBOX (red points), from the IMU of Raspberry pi
(blue points) and from the IMU from Intel Edison (green points).
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Figure 13. Test 2: Roll rate obtained from the IMU of VBOX (blue points) and from the IMU from Intel
Edison (red points).

3.3. Test 3: General Circulation

Compared to the tests described above, in this case, there are not only severe maneuvers, low
and medium speed circulation and smooth movements are performed. At the end of the trial, two
roundabouts (J-turn maneuver) and a Lane Change (LC maneuver) at a speed suitable for the testing
environment have been made. It should be considered that in this test, low speed movements and
high speed severe movements have been made.

This last test is carried out on the route shown in Figure 14. This test simulates a normal circulation
behavior. Several curves were taken, and the vehicle was at the most appropriate speed for the road and
the situation. The speed range on this test was from 15 km/h–75 km/h (see Figure 6). Figures 15 and 16
show the lateral acceleration and roll rate data, respectively, obtained from the lateral accelerometers
and roll rate sensors contained in IMUs installed on Raspberry Pi (blue points) and Intel Edison (green).
In order to prove the accuracy of these sensors, they have been compared with the data obtained from
the IMU of VBOX, which is considered as the ground truth. It can been seen that the behaviors of the
sensors in the three different devices are very similar.

To quantify the accuracy of sensor, the norm, RMS and maximum errors have been calculated.
In Table 9, it can be observed that the errors are higher for Intel Edison than the Raspberry Pi.
Concerning the norm and RMS errors, the difference is about 2%, 0.007 g’s and 18%, 0.35◦/s for lateral
acceleration and roll rate, respectively. For maximum errors, the difference between them is higher
(about 0.3 g’s and 5◦/s, for lateral acceleration and roll rate, respectively). This is due to the Intel
Edison being more sensitive to noise. In Figures 15 and 16, a high scattering for the Intel Edison
IMU is observed. However, the error on this test is lower than the other two. The reason is that the
highest value for lateral acceleration was reached, so the influence of noise decreases compared to the
measured value.
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Figure 14. Test 3: Map and vehicle trajectory (Map scale 1:5036 cm).

Figure 15. Test 3: Lateral acceleration obtained from the IMU of VBOX (red points), from the IMU of
Raspberry pi (blue points) and from the IMU from Intel Edison (green points).
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Figure 16. Test 3: Roll rate obtained from the IMU of VBOX (red points), from the IMU of Raspberry pi
(blue points) and from the IMU from Intel Edison (green points).

Table 9. Test 3: Errors of lateral acceleration and roll rate data for the accelerometers and gyroscopes
mounted on Raspberry Pi and Intel Edison compared with the IMU from VBOX (ground truth).

Lateral Acceleration

Norm Error RMS Error Maximum Error

(%) (g’s) (m/s2) (g’s) (m/s2)

Raspberry Pi 21.4 0.0525 0.5150 0.3491 3.4246
Intel Edison 23.81 0.0591 0.5798 0.6142 6.0253

Roll Rate

Norm Error RMS Error Maximum Error

(%) (◦/s) (rad/s) (◦/s) (rad/s)

Raspberry Pi 113.6 2.0583 0.0359 11.8485 0.2067
Intel Edison 131.97 2.4074 0.0420 16.0820 0.2806

4. Discussion and Conclusions

The results can be used to design, implement and test an efficient, versatile and scalable low-cost
hardware/software architectures able to be integrated on commercial vehicles. Even more, by using this
sensor fusion approach with enhanced semantics, it may be possible to perform real-time estimation
and control for more secure driving.

The following discussion is focused on the precision and performance similarity among precision
and performance in both experimental low-cost and ground truth kits.

4.1. Precision

The obtained data show that low-cost sensors are more prone to noise. One reason is that their
measurement range is higher than the VBOX ones. In case a noise reduction for the low-cost kit
captured data were required, with the consequent approximation to the VBOX results, it may be
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possible to integrate filters via software, as the low-cost controllers can assume such a computational
cost reducing the underutilization of their multiprocessing capabilities. Despite the noise influence, the
average RMS error in BNO055 is 0.05 g’s (0.4905 m/s2) for lateral acceleration and 2◦/s (0.0349 rad/s)
for roll rate, and the average RMS error in LSM9DSO is 0.07 g’s (0.6867 m/s2) for lateral acceleration
and 3◦/s (0.0523 rad/s) for roll rate.

Furthermore, it has been found that low-cost accelerometers provide better precision than
gyroscopes. A feasible justification is that the relative position among sensors guarantees the same
acceleration measurement for the three devices. BNO055 has been proven to capture better results
than LSM9DSO (with an approximate error of 0.02 g’s (0.1962 m/s2) and 1◦/s (0.01745 rad/s) less for
BNO055). Notice that BNO055 is more expensive than the later one. As future work, it is planned
to integrate BNO055 in the Intel Edison setup via the Sparkfun GPIO expansion board and also to
integrate software estimators and controllers and analyze their performance in small computers using
the information captured by the low-cost sensors.

4.2. Reliability

After concluding the experiments, a problem was identified regarding Raspberry Pi 3.
A significant number of tests was not valid. It was concluded that most of these failed tests resulted
from the lack of true parallelism in the Python main stack (to get true parallelism, it is necessary to
call low level C routines [40]). Even more, BNO055 was attached to Raspberry Pi 3 in a circuit board
without industrial-grade soldering connections, which can induct noise and additional impedances in
the circuit.

Finally, VBOX can provide a sustained 100-Hz capture rate, as accelerometer and gyroscope
sensors for the low-cost versions; however, given that the magnetometer is embedded and also
initialized (but not used) with the previous two, the sampling rate decreases to 50 Hz. In any case,
experiments determined that 50 Hz is enough sampling frequency to perform reliable experiments for
the given case [41].

4.3. Factors to Replicate and Evaluate Experiments Using Low-Cost Sensors

Some important aspects have been determined in order to properly replicate and evaluate the
experiments of the study:

• Vehicle: The chosen vehicle perfectly fulfills the established requirements. This work is focused
on commercial vehicles, so the tests must be carried out in one vehicle of these characteristics,
in order to be exposed to the same control systems integrated in the vehicle (ESC, ABS, etc.).

• Track: To take a proper measurement of sensors’ reliability, the ideal scenario consists of having a
test track without great camber and slope variations, as they can interfere with the collected data
because of the lack of capacity to directly measure them.

• Hardware: To obtain accurate values, it is necessary to properly fix the setup position inside of
the vehicle. It must be as close as possible to the vehicle’s center of mass. In addition, the relative
position between the devices should be as small as possible, and the sensors must be aligned on
the axis according to the characteristic to be measured (acceleration and angular velocity).

Regarding hardware, as indicated in [18], effective mechanical and software calibration of low-cost
IMU devices is important to reduce the bias and noise in this kind of experimental kit. The use of
VBox equipment was essential to complete this step by appropriately analyzing the reliability of
low-cost sensor kits. Moreover, the integration at the hardware level assures higher reliability
levels, avoiding kits without industrial-grade soldering connections.

• Software: Regarding synchronization and capture software components, the preferred
environment consists of using a well-proven and efficient programming language that allows
one to take direct advantage of parallel hardware features, such as C or C++, in conjunction with
efficient compilers that outcome lightweight and optimized binaries. This increases the results’
reliability and the experiments’ performance. Furthermore, it is important to define a unified test



Sensors 2018, 18, 486 20 of 22

kit that allows one to verify, prior to starting the experiments, that all the elements in the setup
are behaving properly.
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