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Abstract: The traditional unsupervised change detection methods based on the pixel level can only
detect the changes between two different times with same sensor, and the results are easily affected
by speckle noise. In this paper, a novel method is proposed to detect change based on time-series data
from different sensors. Firstly, the overall difference image of the time-series PolSAR is calculated by
omnibus test statistics, and difference images between any two images in different times are acquired
by Rj test statistics. Secondly, the difference images are segmented with a Generalized Statistical
Region Merging (GSRM) algorithm which can suppress the effect of speckle noise. Generalized
Gaussian Mixture Model (GGMM) is then used to obtain the time-series change detection maps in
the final step of the proposed method. To verify the effectiveness of the proposed method, we carried
out the experiment of change detection using time-series PolSAR images acquired by Radarsat-2 and
Gaofen-3 over the city of Wuhan, in China. Results show that the proposed method can not only
detect the time-series change from different sensors, but it can also better suppress the influence of
speckle noise and improve the overall accuracy and Kappa coefficient.
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1. Introduction

The successful launch of China’s first multi-polarization synthetic aperture radar (SAR) imaging
satellite (Gaofen-3, GF3) on 10 August 2016 [1], has greatly promoted research on PolSAR in China [2].
The GF3 data possess not only the advantages of the traditional SAR images, such as being immune
to the influence of weather and illumination, but they also feature a variety of polarization imaging
modes, allowing us to obtain more information on the scattering of objects and achieve improved object
interpretation [3]. With the development of PolSAR satellites, a large number of time-series PolSAR
images are now available from different sensors (such as ENVISAT-ASAR, ALOS-PALSAR, TerraSAR-X,
Radarsat-2), which can better reflect the dynamic changes of the Earth’s surface. These images have
been used in a wide range of applications in the fields of disaster prevention and mitigation [4–6],
agriculture monitoring [7], forestry [8], land-cover change [9,10] and weather forecasting [11]. Therefore,
research on change detection with PolSAR time-series images is of great significance and has aroused
widespread interest [12–14].

Although the traditional pixel-based unsupervised change detection methods for PolSAR images
can detect the change between two different times with the same sensor (see Table 1 for a summary
of advantages and disadvantages using traditional unsupervised change-detection methods [15,16]),
they cannot detect the total change of a time series from different sensors [17]. To solve these problems,
some researchers have simply compared pair-wise images in the time-series images and detected
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the time-series change, which suffers from some deficiencies, i.e., it is time-consuming and cannot
detect some small, continuous changes [17]. On the other hand, the results of traditional pixel-based
unsupervised change detection methods are susceptible to speckle noise [18], which can result in a
high false alarm rate. In recent years, to address these issue, researchers have proposed object-oriented
change detection methods that use a segmentation algorithm to segment the PolSAR images from
two different times, and then used the traditional pixel-based method to detect the change [19,20].
Although these methods can reduce the effect of speckle noise, they cannot maintain the consistency of
segmentation. When analyzing the difference images, traditional methods such as Two-Dimensional
Entropic Segmentation (TDES) algorithm [21], Otsu’s thresholding algorithm [22], improved Kittler
and Illingworth (K&I) algorithm [23] and Kapur’s entropy algorithm [24], assume that the Probability
Density Function (PDF) of the difference image complies with a Gaussian distribution. However,
the difference images calculated by omnibus test statistic and Rj test statistic algorithm do not comply
with a Gaussian distribution [17]. As a consequence, traditional algorithms are not suitable for the
analysis of difference image which obtained by omnibus or Rj test statistic algorithms. Fortunately,
Gaussian Mixture Models (GMM) can fit any distribution of data [25]. In our previous work [26],
by improving the GMM algorithm, we are better able to analyze image differences.

Table 1. A summary of the traditional unsupervised change detection methods.

Methods Relative Algorithms Advantages Disadvantages

Algebraic
Operation

Image ratioing; Log-ratio operator;
Regression analysis

Simple and easy to
interpret change
detection results.

Difficult to select the optimal
threshold and easy to lose

change information.

Transformation

Vegetation index
differencing(VID); Change vector

analysis (CVA); Principal
component analysis (PCA);

Tasselled cap transformation (KT)

Can reduce the data
redundancy and also

emphasize the different
information of the

derived components.

Strictly require the remotely
sensed data acquired from the
same phenological period and
difficult to select the optimal

threshold.

Object-based
change detection Direct object-basedcomparison

Allow straight forward
comparison of objects

and reduce the influence
of speckle noise.

Some of the traditional
segmentation algorithms

cannot maintain the
consistency of PolSAR images
and might cause higher false

alarm rates.

Other methods
Hidden Markov chain model

(HMM); Kullback-Leibler
divergence and so on.

Simple and can be
applied in

multi-temporal
single-channel SAR
change detection.

Cannot be applied in
multi-temporal PolSAR

change detection and the
selection of thresholding based

on a Gaussian distribution.

In this paper, we expand on our previous work in time-series analysis and present an unsupervised
change detection method (named OT_GSRM_GGMM) for different sensors. Firstly, the overall
difference image of the time-series PolSAR images is calculated by omnibus test statistics, and the
difference images between any two images in different times are acquired by Rj test statistics. Secondly,
the difference images are segmented with a GSRM algorithm which can suppress the effect of speckle
noise. GGMM is used to obtain time-series change detection maps in the last step for the proposed
method. Since the city of Wuhan in China has undergone tremendous changes during the ‘Twelfth
Five-Year Plan‘ period [27], the proposed method of this paper was used to detect the changes in
Wuhan’s urban development from 2011 to 2017.

This paper is organized as follows: in Section 2, the framework of time-series change detection is
described and the methods of omnibus test statistic, GSRM and GGMM techniques are introduced.
Section 3 details the results of the proposed approach on time-series PolSAR images from the city of
Wuhan. Section 4 discusses the results of the case study. Finally, the conclusions are drawn in Section 5.
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2. Materials and Methods

2.1. Omnibus Test Statistic

The omnibus test statistic algorithm effectively utilizes polarimetric and temporal information
from time-series PolSAR images. A PolSAR image includes the backscattering coefficients of the four
polarimetric channels of the object [28]. For orthogonal polarization basis, the scattering information
of ground objects can be represented by the following covariance matrix C:

C =

〈 |Shh|2 ShhS∗hv ShhS∗vv
ShvS∗hh |Shv|2 ShvS∗vv
SvvS∗hh SvvS∗hv |Svv|2

〉 (1)

Different elements in covariance matrix C represent the backscattering coefficients. For the
multi-look conditions, the covariance matrix C of a PolSAR image obeys the complex Wishart
distribution (X ∈W(p, n, ΣX)) and PDF of C can be described as follows:

f (C) = 1
Γn(p)

1
|ΣC |n
|C|n−p exp

{
−tr[Σ−1

C C]
}

Γp(n) = πp(p−1)/2
p

∏
j=1

Γ(n− j + 1)
(2)

where, tr(·) is the trace of covariance matrix C, n is the number of looks of PolSAR image, and p
represents the dimension of matrix C. For fully a PolSAR image, p is equals to 3 [17].

We assume that the multi-parameters ∑X1
, ∑X2

, . . . ∑Xj−1
, ∑Xj

, . . . ∑Xk
of time-series (t1 < t2 <

. . . < tk) PolSAR images are independent, and they obey the complex Wishart distribution:

X1 ∈W(p, n1, ΣX1)

X2 ∈W(p, n2, ΣX2)

· · ·
Xk ∈W(p, nk, ΣXk )

(3)

where p represents the dimension of X1, X2, . . . , Xk, n1, n2, . . . , nk is the number of look of
X1, X2, . . . , Xk, and ΣX1 , ΣX2 , . . . , ΣXk represent the scattering matrix of X1, X2, . . . , Xk.

According to omnibus test statistic theory, the H0 hypothesis can be described as
H0 : ∑X1

= ∑X2
= . . . = ∑Xj−1

= ∑Xj
= . . . ∑Xk

, which means the matrices of time-series PolSAR
images are equal. In other words, if H0 hypothesis were the case, the feature has not changed in
the time interval [t1, tk]. If not, the feature has at least one change in the time-series [t1, tk] of
PolSAR images.

We supposing that the omnibus test statistic based on maximum likelihood estimation (MLE) has
a joint density f (∑X1

, ∑X2
. . . ∑Xk

, θ), where θ is the set of parameters of the probability function that
has generated the data. H0 states that θ ∈ H0, and the likelihood ratio of the omnibus test statistic is as
follows:

Q =
maxθ∈H0 L(θ)
maxθ∈ΩL(θ)

=
L(∑S)

i=k
∏
i=1

LX1(ΣXi )

(4)
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where:
i=k

∏
i=1

LXi (ΣXi ) =
1

i=k
∏
i=1

Γp(ni)

i=k

∏
i=1

∣∣ΣXi

∣∣−ni
i=k

∏
i=1

∣∣ΣXi

∣∣ni−p exp{−tr(
i=k

∑
i=1

Σ−1
Xi

Xi)}

L(ΣS) =
1

i=k
∏
i=1

Γp(ni)

|Σ|
−

i=k
∑

i=1
nk i=k

∏
i=1

∣∣ΣXi

∣∣ni−p exp{−tr(Σ−1|X|)}

(5)

If n1 = n2 = · · · = nk = n, this leads to the desired likelihood-ratio omnibus test statistic [29]:

Q =
maxθ∈H0 L(θ)
maxθ∈ΩL(θ)

=
L(∑S)

i=k
∏
i=1

LX1(ΣXi )

=

kpk

i=k
∏
i=1
|Xi|

|X|k


n

(6)

where, X =
i=k
∑

i=1
Xi, Xi = n < C >i and Equation (6) in logarithmic form is as follows:

lnQ = n{pklnk +
i=k

∑
i=1

ln|Xi| − kln|X|} (7)

In general, the overall similarity of time-series PolSAR images is measured by −lnQ. The larger
the value, the greater the probability that change will occur in time-series PolSAR images.

2.2. Rj Test Statistic

The omnibus test statistic algorithm can be used to detect the overall change of the time-series
PolSAR images, but it is limited to detecting the change between any two different times.
To compensate for the shortcoming of omnibus test statistic, Conradsen et al. formulated the Rj
test statistic algorithm, which is used to generate the different images in different time intervals [17].
According to Rj test statistics, if the matrices of any two different PolSAR images in time are equal
(H0 : ∑Xj−1

= ∑Xj
), it indicates that there is no change in the time interval [tj−1, tj]. Instead, if the

matrices are not equal (H1 : ∑Xj−1
6= ∑Xj

), the change happens between the two images. According to
Rj test statistics, the likelihood ratio of the statistic can be shown as follows:

Rj = jjpn

(j−1)(j−1)pn
|X1+...+Xj−1|(j−1)n|Xj|n

|X1+...+Xj|jn
=

{
jjp

(j−1)(j−1)p
|X1+...Xj−1|(j−1)

|X1+...Xj|j

} n

(8)

Equation (8) in logarithmic form is as follows:

lnRj = n{p(jlnj− (j− 1)ln(j− 1)) + (j− 1)ln

∣∣∣∣∣j−1

∑
i=1

Xi

∣∣∣∣∣+ ln
∣∣Xj
∣∣− jln

∣∣∣∣∣ j

∑
i=1

Xi

∣∣∣∣∣ (9)

Similarly, the similarity of PolSAR images from two any different times is measured by −lnRj.
The larger the value, the greater the probability that change will occur between the two images.

2.3. Generalized Statistical Region Merging (GSRM)

PolSAR data are often seriously affected by multiplicative speckle noise. Even with filter
processing, the results obtained with traditional pixel-based change detection methods are still affected
by speckle noise. Thus, object-oriented change detection algorithm was proposed to suppress the
influence of speckle noise [29] and its core is segmentation.
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The Statistical Region Merging (SRM) algorithm, with its small computation burden,
is independent of the statistical characteristics of data. What is more, it has a strong capability of
speckle noise immunity, when compared with the super-pixel segmentation algorithm, such as Ncut
segmentation [30] and Mean Shift algorithm [31]. However, SRM was originally used in optical image
processing with a range of [0, 255], and it cannot be used to segment PolSAR images whose numerical
range was not fixed. Fortunately, Lang et al. extended SRM and proposed the generalized SRM (GSRM)
algorithm [32].

GSRM algorithm defines two necessary elements: the merging criteria and merging order.
Merging criteria indicates that if two adjacent regions in PolSAR image meet a certain condition,
the two regions are merged. According to the martingale theory in probability theory, for two adjacent
regions (R, R′) in PolSAR image I, there is:

Pr

∣∣∣(R− R′
)
− E

(
R− R′

)∣∣∣ ≥
√√√√√ B2

2Q

E2(R)
|R| +

E2
(

R′
)

|R′e|

 ln
2
δ

 ≤ δ (10)

where 0 < δ ≤ 1. The two adjacent regions (R, R′) are merged under condition of Equation (11):∣∣∣R− R′
∣∣∣ ≤ b(R, R′) (11)

where:

b(R, R′) = g

√
1

2Q

(
1
|R| +

1
|R′|

)
ln

2
δ

(12)

Merging order defines which two areas should be merged first when merging PolSAR images.
GSRM algorithm adopts a pre-sorting strategy, where the adjacent pairs of pixels in the PolSAR image
I are first sorted according to the gradient function f (p, p′). Gradient function defined is as follows:

f (p, p′) = ‖ p− p′

p + p′
‖

1
(13)

2.4. Generalized Gaussian Mixture Model (GGMM)

GMM [25] is an algorithm that can fit any distribution of PDF. Therefore, it is widely used in
remote sensing data interpretation, such as clustering and unsupervised change detection. Since the
distribution of difference images obtained by GSRM is unknown, the GMM algorithm is more suitable
for the analysis of difference images than the traditional algorithms, such as TDES, K&I and Otsu’s
thresholding algorithm. Assuming that the number of Gaussian functions of GMM model is k and its
expression can be given by Equation (14):

f (x) =
k

∑
i=1

αi p(x|θi)

θ =
{

µ1, .., µm, σ2
1

, . . . , σ2
m

} (14)

where αi is the weight of ith Gaussian function, total value of αi equals 1, µi and σ2
i represent the mean

and variance of ith Gaussian function, respectively. In the process of analysis, difference image can be
described as sum of change class ( p(x|θc) ) and no-change class ( p(x|θu) ) as shown in Equation (15).
Notably, p(x|θu) and p(x|θc) have different weights:

p(xd) =
K

∑
k=1

p(k)p(xd|k) = ∑
∀θu∈Mu

p(θu)p(x|θu) + ∑
∀θc∈Mc

p(θc)p(x|θc) (15)
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where, p(θu) and p(θc) represent the weight of p(x|θc) and p(x|θu) , respectively, p(x|θu) and p(x|θc)

are the PDF of change class and no-change class. In general, the parameters of Equation (15) can
be solved by log-likelihood function. However, the existence of unknown parameter θ makes
this impossible.

The Expectation Maximization (EM) algorithm is a better solution to the model with unknown
parameters in GMM [33]. The main idea of EM is to use an iterative method to calculate the weight,
mean and variance of all Gaussian functions in GMM. To calculate the mean and variance of each
Gaussian function, MLE is the best choice. EM method mainly contains two steps, one is expectation
(E) step and another is maximization (M) step. E-step can estimate the parameters of αi, µi and σ2

i by
iteratively operating with likelihood function (16):

Q(θ, θ̂(t)) ≡ E[log p(X, γ|θ )|X, θ̂(t)] = log p(X, γ̂|θ ) (16)

where:

γ̂im = E[γim
∣∣x, θ̂(t) ] =

α̂m(t)p(xi
∣∣θ̂m (t))

k
∑

j=1
α̂j(t)p(xi

∣∣θ̂j (t))
(17)

M-step obtains the desired maximum with the derivation operation (Equation (18)) and
parameters from E-step:

∂(Q(θ, θ̂(t)))
∂θ

= 0 (18)

Finally, according to the convergence condition of EM algorithm, the iterative updating of each
unknown parameter is realized:

αi =
n

∑
i=1

γ̂im/n

µi =
n

∑
i=1

γ̂imxi/
n

∑
i=1

γ̂im

σ2
i =

n

∑
i=1

γ̂im(xi − µi)
T(xi − µi)/d

n

∑
i=1

γ̂im

(19)

Nevertheless, the parameter k (the number of Gaussian function) in traditional GMM algorithm
is unknown. Researchers can only estimate the value of k using empirical parameter values or by
iterative operating, which is time-consuming and gives unsatisfactory results [25]. Therefore, in our
previous study [26], we improved the traditional GMM model and used the elbow method to obtain
the optimal value of k in advance, which can solve the problem of the traditional GMM algorithm,
where parameter k cannot be determined.

2.5. Quantitative Evaluation Criteria

It is very important to evaluate the results of proposed method using quantitative evaluation
criteria. The False Alarm (FA) rate, Omission Factor (OF) rate, Overall Accuracy (OA) and Kappa
coefficient (Kappa) [23] of the experimental results were calculated in this study and the quantitative
evaluation criteria are calculated as follows:

FA = FP
Nu

OF = FN
Nc

OA = TP+TN
N

Kappa = OA−Pe
1−Pe

Pe = (TP+FN)(TP+FP)+(FP+TN)(FN+TN)
N2

(20)
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where, FP means the number of unchanged points incorrectly detected as changed; FN means the
number of changed points incorrectly detected as unchanged; TP means the number of changed points
correctly detected; TN means the number of unchanged points correctly detected; Nu and Nc are the
number of unchanged points and changed points of the ground-truth change map; and N is the sum
of Nu and Nc, respectively.

2.6. The Proposed Method of Time Series Change Detection Using Images from Different Sensors

The procedure of time-series unsupervised change detection based on different sensors is shown
in Figure 1. The process of change detection includes, (1) Data preprocessing, including radiometric
correction, geometric correction, co-registration and filtering. (2) Calculating the overall difference
image of a time-series image by omnibus test statistic and acquiring the difference images between
any two images in different times by Rj test statistic. (3) Segmenting the obtained difference images
by the GSRM algorithm. (4) Modeling the segmented difference images by GGMM model, obtaining
the statistical distribution of change and no-change classes. (5) Making decision analysis according to
Equation (21) and calculating the change:

CD(i, j) =

{
255, p(wu)p(x|wu) < p(wc)p(x|wc)

0, otherwise
(21)

where, ‘0’ represents no-change class and ‘255’ represents change classes.
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3. Experiments and Results

3.1. Study Area and Background

The city of Wuhan (as shown in Figure 2) lies at East longitude 113◦41′–115◦05′, North latitude
29◦58′–31◦22′, and is the only megalopolis in the west of China. Wuhan is known as ‘River City’ as it
is where the third largest river (Yangtze River) in the world and the largest tributary of the Yangtze
River (Han River) converge. There are also many lakes in Wuhan, such as East Lake, LiangZi Lake and
so on. Dramatic changes have taken place in the city of Wuhan during the ‘Twelfth Five-Year Plan’
period (from 2011 to 2015). Furthermore, the continuous heavy rain occurred in July 2016 and some
areas showed dramatic change, especially LiangZi Lake. In order to detect the dramatic changes of city
and flooded regions, time-series PolSAR images were acquired from the Radarsat-2 and GF-3 sensors.
In this study, our aim was to detect the dramatic changes of city and flooded region (LiangZi Lake)
and monitor the changes associated with the tunnel construction on East Lake.
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In order to detect the dramatic changes of the city, the C-band (single look complex) time-series
full PolSAR images of Wuhan were acquired from Radarsat-2 and Gaofen-3 sensors and the parameters
of the PolSAR images from the different sensors are shown in Table 2. The sizes of time-series PolSAR
images are 2400 × 4200 pixels and the PauliRGB images are shown in Figure 3.
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Table 2. The parameters of the Radarsat-2 and Gaofen-3 images.

Acquisition Date Sensors Mode Processing Level Polarization ProductId

7 December 2011 Radarsat-2 FQ21 Single Look Complex HH + HV + VH + VV RD2011000503-0
25 June 2015 Radarsat-2 FQ21 Single Look Complex HH + HV + VH + VV PDS_04516040
6 July 2016 Radarsat-2 FQ21 Single Look Complex HH + HV + VH + VV PDS_05215280

30 April 2017 Gaofen-3 QPSI Single Look Complex HH + HV + VH + VV 2335427
29 May 2017 Gaofen-3 QPSI Single Look Complex HH + HV + VH + VV 2390686

The preprocessing of PolSAR images is crucial to change detection when using time-series PolSAR
images from different sensors. The pixel values are related to the backscatter from different PolSAR
data, so the radiometric calibration of data is necessary. In particular, QualifyValue calibration of GF3
data is required using relevant parameters, which can be found in header file of GF3 data. Due to
the different projection modes and spatial resolutions of different sensors, it is necessary to perform
geometric correction and co-registration on the time-series PolSAR images using PolSARPro_v4.2.0
software and NEST software and the Root-Mean-Square Errors (RMSE) of co-registration were less
than one pixel in this study. By comparing some filter methods of decreasing the influence of speckle
noise, we found that the Lee Sigma filter has the better balance in the accuracy of results and less
time-cost. Moreover, we also found that Lee Sigma filter could better retain details and preserve the
shape of small land parcels when compare with other filters [33]. Therefore, a 7 × 7 Lee Sigma filter
was chosen to decrease the influence of noise for the time-series PolSAR images.

3.2. Results

In order to assess the effectiveness of the proposed change detection algorithm,
OT_GSRM_GGMM experiments were conducted with data from LiangZi Lake and East Lake.
As mentioned above, omnibus test statistic algorithm is designed to generate the difference image over
the entire time period, and Rj test statistic is used to generate the difference images in any different
time intervals.

3.2.1. Omnibus Test Statistic of Time Series Change Detection over LiangZi Lake

The datasets used in this research were time-series PolSAR images from Radarsat-2 acquired on
7 December 2011, 25 June 2015 and 6 July 2016, respectively. The Pauli-RGB images are shown in
Figure 4a–c. Due to the restriction of natural conditions and observation data, we can only confirm the
change caused by flooding on 6 July 2016, around LiangZi Lake. Meanwhile, other places and changes
(such as the extension of the urban) in different time were obtained by visual interpretation of the
optical imagery of GF-2 images corresponding to the time of PolSAR images. The ground references
around LiangZi Lake are shown in Figure 4d–g.
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Figure 4. The Pauli-RGB images of LiangZi Lake after preprocessing on (a) 7 December 2011;
(b) 25 June 2015; and (c) 6 July 2016; (d) Ground reference (2011–2015); (e) Ground reference
(2015–2016); (f) Ground reference (2011–2016); (g) Ground reference (2011–2015–2016).

The overall difference image for LiangZi Lake was obtained by omnibus test statistic algorithm
using time series (2011–2015–2016) PolSAR images and it is shown in Figure 5a. Affected by speckle
noise, the difference image obtained by the traditional pixel-based change detection method still
contains finely divided spots in Figure 5a. For this reason, the GSRM algorithm was used for
segmentation, and the result after segmentation is shown in Figure 5b. The segmentation parameters
are the scale parameter and gradient threshold, which were set to 32 and 0.5, respectively.
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Figure 5. (a) The difference image based on omnibus test statistic; (b) The difference image after GSRM.

From Figure 5b, it can be seen that the speckle noise can be suppressed using the GSRM
algorithm. Different experiments ware undertake to verify the effectiveness of the proposed method:
(1) comparison with the method of pixel-based using omnibus test statistic and GGMM algorithm
(named OT_GGMM_pix) and it is shown in Figure 6a; (2) comparison with the method of object-based
using omnibus test statistic and GGMM algorithm (named OT_GGMM_obj) and it is shown in
Figure 6b; (3) comparison with the traditional method using TDES algorithm (named OT_GSRM_TDES)
and it is shown in Figure 6c; (4) comparison with the traditional method using K&I algorithm (named
OT_GSRM_KI) and it is shown in Figure 6d; (5) comparison with the traditional method using k-means
algorithm (named OT_GSRM_Kmeans) and it is shown in Figure 6e. The white color represents change
information and black color represents no-change information in change detection map.
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3.2.2. Rj Test Statistics of Time Series Change Detection over LiangZi Lake 

The above results obtained using the omnibus test statistic are binary and they can reflect the 
overall change from 2011 to 2016, however, they cannot explain when the change occurred. 
However, by combining Rj test statistic processing, OT_GSRM_GGMM algorithm can detect the 
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Figure 6. Change detection results of different algorithms over LiangZi Lake from 2011, 2015,
and 2016. (a) Change detection result using OT_GGMM_pix (k = 22). (b) Change detection result using
OT_GGMM_obj (k = 27). (c) Change detection results using OT_GSRM_TDES. (d) Change detection
results using OT_GSRM_KI. (e) Change detection results using OT_GSRM_Kmeans. (f) Change
detection results using the OT_GSRM_GGMM (k = 26). where, k is the optimal number of GMM.

Comparing the results of different methods in Figure 6, due to the influence of speckle noise,
divided spots can be found in the result of pixel-based change detection algorithm in the Figure 6a,
which results in a higher FA. Object-oriented change detection algorithm can better suppress the
speckle noise, but the method cannot maintain the details of the changes and a higher OF can be found
in the Figure 6b. The proposed method not only can better suppress the speckle noise, maintain the
details of the changes, but also improve the OA and Kappa when compare with traditional method
(such as K&I, TDES, k-means algorithm) from the Table 3.

Table 3. Performance evaluation over LiangZi Lake from 2011, 2015, and 2016.

Method OA FA OF Kappa

OT_GGMM_pix 89.91% 1.43% 8.65% 0.54
OT_GGMM_obj 91.03% 1.13% 7.83% 0.59
OT_GSRM_KI 92.35% 1.73% 5.91% 0.70

OT_GSRM_TDES 92.29% 2.22% 5.70% 0.69
OT_GSRM_Kmeans 90.87% 0.32% 8.80% 0.59
OT_GSRM_GGMM 93.85% 0.27% 6.87% 0.71

3.2.2. Rj Test Statistics of Time Series Change Detection over LiangZi Lake

The above results obtained using the omnibus test statistic are binary and they can reflect the
overall change from 2011 to 2016, however, they cannot explain when the change occurred. However,
by combining Rj test statistic processing, OT_GSRM_GGMM algorithm can detect the change between
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two different images in any time intervals. We therefore carried out three change detection experiments
between two time intervals (2011 and 2015, 2011 and 2016, 2015 and 2016). The change detection
results are shown in Figures 7–9 respectively.
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2016. Analogously, the results shown in Figures 8 and 9 together with OA, FA, OF and Kappa (listed 
in Tables 5 and 6). These results further confirm that the proposed method obtains better a change 
detection results. 

Figure 7. Change detection results of the different algorithms over LiangZi Lake between 2011 and
2015. (a) Change detection result using OT_GGMM_pix (k = 16). (b) Change detection result using
OT_GGMM_obj (k = 14). (c) Change detection results using OT_GSRM_TDES. (d) Change detection
results using OT_GSRM_KI. (e) Change detection results using OT_GSRM_Kmeans. (f) Change
detection results using the OT_GSRM_GGMM (k = 21).

The results of change detection using different algorithms between 2011 and 2015 over LiangZi
Lake are represented in Figure 7, where it can be seen that significant changes are detected. The OA,
FA, OF and Kappa of different algorithms are listed in Table 4. The quantitative comparison of the six
detection schemes indicates that the proposed approach shows a better performance than the other
approaches as in the first experiment.

Table 4. Performance evaluation over LiangZi Lake between 2011 and 2015.

Method OA FA OF Kappa

OT_GGMM_pix 94.64% 2.43% 2.93% 0.66
OT_GGMM_obj 95.55% 2.04% 2.41% 0.69
OT_GSRM_KI 95.14% 2.23% 2.63% 0.68

OT_GSRM_TDES 95.16% 2.13% 2.71% 0.68
OT_GSRM_Kmeans 95.20% 2.31% 2.49% 0.68
OT_GSRM_GGMM 96.98% 1.29% 1.73% 0.78

We also compared and analyzed change detection results between 2011 and 2016, 2015 and 2016.
Analogously, the results shown in Figures 8 and 9 together with OA, FA, OF and Kappa (listed in
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Tables 5 and 6). These results further confirm that the proposed method obtains better a change
detection results.Sensors 2018, 18, x FOR PEER REVIEW  13 of 19 
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Figure 8. Change detection results of the different algorithms over LiangZi Lake between 2011 and
2016. (a) Change detection result using OT_GGMM_pix (k = 18). (b) Change detection result using
OT_GGMM_obj (k = 14). (c) Change detection results using OT_GSRM_TDES. (d) Change detection
results using OT_GSRM_KI. (e) Change detection results using OT_GSRM_Kmeans. (f) Change
detection results using the OT_GSRM_GGMM (k = 22).

Table 5. Performance evaluation over LiangZi Lake between 2011 and 2016.

Method OA FA OF Kappa

OT_GGMM_pix 92.46% 1.23% 6.29% 0.58
OT_GGMM_obj 94.03% 0.57% 5.38% 0.65
OT_GSRM_KI 93.16% 0.82% 6.01% 0.61

OT_GSRM_TDES 93.29% 0.75% 5.95% 0.62
OT_GSRM_Kmeans 93.28% 0.75% 5.96% 0.62
OT_GSRM_GGMM 95.95% 0.60% 3.44% 0.71

Table 6. Performance evaluation over LiangZi Lake between 2015 and 2016.

Method OA FA OF Kappa

OT_GGMM_pix 95.12% 2.07% 2.97% 0.70
OT_GGMM_obj 95.41% 1.90% 2.74% 0.73
OT_GSRM_KI 95.30% 3.51% 1.17% 0.74

OT_GSRM_TDES 95.49% 2.12% 2.38% 0.74
OT_GSRM_Kmeans 94.29% 4.58% 1.12% 0.71
OT_GSRM_GGMM 96.22% 1.56% 2.20% 0.76
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results using OT_GSRM_KI. (e) Change detection results using OT_GSRM_Kmeans. (f) Change 
detection results using the OT_GSRM_GGMM (k = 25). 

Through a comprehensive comparison of omnibus test statistic and jR  test statistic change 
detection results, it is clear that omnibus test statistic result (Figure 6f) reveals the overall change 
from 2011 to 2016, while jR  test statistic results (Figures 10a–c) display the change for different 
locations and areas between two different times. Area 1 marked by a red rectangular box is a 
conspicuous change area between year 2011 and 2015. In the same location, the significant change 
also took place between 2015 and 2016 (Figure 10c), while there was little change between year 2011 
and 2015. The reason for this is that the white part in area 1 was covered with water in year 2011 
and 2016 and but was dry land in 2015. Moreover, from the white part of area 2 which identically 
marked by a red rectangular box, we can also see the different changes between different time 
intervals. Affected by the flooding in 2016, the change range between 2011 and 2016, 2015 and 2016 
are larger than the change between 2011 and 2015.  
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Figure 10. Change detection results (a) Between 2011 and 2015 using the OT_GSRM_GGMM.  
(b) Between 2011 and 2016 using the OT_GSRM_GGMM. (c) Between 2015 and 2016 using the 
OT_GSRM_GGMM. 

Figure 9. Change detection results of the different algorithms over LiangZi Lake between 2015 and
2016. (a) Change detection result using OT_GGMM_pix (k = 21). (b) Change detection result using
OT_GGMM_obj (k = 33). (c) Change detection results using OT_GSRM_TDES. (d) Change detection
results using OT_GSRM_KI. (e) Change detection results using OT_GSRM_Kmeans. (f) Change
detection results using the OT_GSRM_GGMM (k = 25).

Through a comprehensive comparison of omnibus test statistic and Rj test statistic change
detection results, it is clear that omnibus test statistic result (Figure 6f) reveals the overall change from
2011 to 2016, while Rj test statistic results (Figure 10a–c) display the change for different locations and
areas between two different times. Area 1 marked by a red rectangular box is a conspicuous change
area between year 2011 and 2015. In the same location, the significant change also took place between
2015 and 2016 (Figure 10c), while there was little change between year 2011 and 2015. The reason for
this is that the white part in area 1 was covered with water in year 2011 and 2016 and but was dry
land in 2015. Moreover, from the white part of area 2 which identically marked by a red rectangular
box, we can also see the different changes between different time intervals. Affected by the flooding
in 2016, the change range between 2011 and 2016, 2015 and 2016 are larger than the change between
2011 and 2015.
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3.2.3. Time-Series Change Detection over the East Lake Tunnel

The validity of the proposed algorithm applied to different sensors was verified. From 2011 to
2017, construction of a new tunnel and its ancillary buildings took place on East Lake in Wuhan, China.
After the new tunnel was constructed, the ancillary buildings were removed in 2016. The land-cover
types of this area are lake, bridge, city, and forest. PolSAR images acquired by Radarsat-2 and GF-3
sensors display the changes associated with the construction of the new tunnel on East Lake and the
RGB images(1200 rows, 1000 columns) in Pauli basis are shown in Figure 11.
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Figure 11. RADARSAT-2 PolSAR images acquired on (a) 7 December 2011. (b) 25 June 2015.
(c) 6 July 2016; and GF-3 PolSAR images acquired on (d) 30 April 2017. (e) 29 May 2017.

The proposed OT_GSRM_GGMM method was used to detect the changes in the construction
process of East Lake tunnel. Dramatic changes took place around East Lake from 2011 to 2017 and the
changes of different periods over East Lake are shown in Figure 12.
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To give a visual impression of the results, Figure 12 shows the time-series change detection
results over the East Lake tunnel from 2011 to 2017. Figure 12a shows the change detection result
from December 2011 to June 2015, where the changes reflect the construction of the new tunnel and
urbanization. Figure 12b shows the change detection result from 2011 to 2016, where the changes again
reflect the construction of the new tunnel and urbanization. Figure 12c shows the change detection
result from June 2015 to July 2016, where the changes reflect the removal of the ancillary buildings
and urbanization. Figure 12d,g show the change detection results from December 2011 to April 2017
and from December 2011 to May 2017, where the changes reflect the urbanization. Figure 12e,h
show the change detection results from December 2011 to April 2017 and from June 2015 to May
2017, respectively, where the changes reflect the removal of the ancillary buildings and urbanization.
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Figure 12f,i show the change detection results from July 2016 to April 2017 and from July 2016 to
May 2017, where the changes reflect the removal of ancillary buildings. Figure 12j shows the change
detection result from April 2017 to May 2017, where few changes can be observed.

4. Discussion

Many existing unsupervised change detection methods using PolSAR images are limited by
detecting change two images with different times from same sensor, and the results are subject to
the influence of speckle noise. In this paper, focusing on the aforementioned problems of existing
unsupervised change detection methods, we have proposed an automatic time-series unsupervised
change detection approach (OT_GSRM_GGMM) using PolSAR images from different sensors.

On the one hand, compared with the traditional methods of change detection, the proposed
method has certain advantages:

(1) In the aspect of generation of the difference images, many different methods, such as the log-ratio
operator, the hidden Markov chain model, and Kullback-Leibler divergence, were applied in
multi-temporal single-channel SAR change detection and test statistics was applied in full PolSAR
images. However, these traditional methods can only generate the difference image between two
different times and they cannot generate the time-series difference images. Fortunately, omnibus
test statistics can generate the difference image over the entire time series and Rj test statistics can
generate the difference images for the different time intervals in this paper.

(2) With regard to change detection analysis, some thresholding or clustering algorithms, such as
k-means algorithm, fuzzy c-means algorithm, Otsu’s thresholding algorithms, Kapur’s entropy
algorithms and K&I thresholding algorithm, can better analyze the difference image based on
assumption that the PDF is Gaussian distributed for the changed and unchanged classes, but they
are not suitable to analyze difference image of a non-Gaussian distribution. However, GGMM is
capable of better fitting the arbitrarily conditional densities of the classes and it can also select the
optimal number of components for the GMM in proposed method.

(3) In terms of image denoising, the object-oriented change detection algorithm can better suppress
the influence of speckle noise, but some of the traditional segmentation algorithms cannot
maintain the consistency between segmentation of time-series PolSAR images, the proposed
method can avoid the inconsistency of segmentation by segmenting directly time-series
difference images.

On the other hand, there still has some limitations in our proposed method:

(1) The design of our method is relatively complicated structure when compare with traditional
methods of change detection.

(2) The experiment areas only chosen in urban and additional scenes, such as crop growing with
different seasons, the change of suspended sediment concentration from different periods, were
not considered yet.

5. Conclusions

To overcome the limitations of the existing unsupervised change detection methods,
an unsupervised change detection method using time-series of PolSAR images was proposed in
this paper, which integrates advantages of the omnibus test statistic, GSRM, and GGMM techniques in
this paper. The omnibus test statistic algorithm was designed to detect the changes over the entire time
period, and Rj test statistics were used to detect changes in different time intervals. To suppress the
influence of speckle noise, the GSRM algorithm was applied to segment difference images and GGMM
was used to obtain time-series change detection maps. Using the proposed method, we were able
to detect accurately the changes associated with the construction of a tunnel on East Lake from 2011
to 2017, dramatic changes in the city of Wuhan during ‘Twelfth Five-Year Plan‘ period, and also the
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changes of water bodies caused by the heavy rainfall in July 2016. The experimental results indicates
that OT_GSRM_GGMM can not only detect small, gradual changes, but improve overall accuracy of
the change detection result when compared with traditional unsupervised change detection methods.
However, some future further improvements will still be necessary. For example, the computing
efficiency can be improved by using the GPU technique and the time-series PolSAR images could be
segmented using new segmentation techniques, such as watershed transform [34] and the level-set
method [35]. Meanwhile, more experiments with additional scenes should be conducted and it also be
of interest to try to detect seasonality in the changes.
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