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Abstract: This paper analyzes the measurement error, caused by the position of the current-carrying
conductor, of a circular array of magnetic sensors for current measurement. The circular array of
magnetic sensors is an effective approach for AC or DC non-contact measurement, as it is low-cost,
light-weight, has a large linear range, wide bandwidth, and low noise. Especially, it has been
claimed that such structure has excellent reduction ability for errors caused by the position of the
current-carrying conductor, crosstalk current interference, shape of the conduction cross-section, and
the Earth’s magnetic field. However, the positions of the current-carrying conductor—including
un-centeredness and un-perpendicularity—have not been analyzed in detail until now. In this paper,
for the purpose of having minimum measurement error, a theoretical analysis has been proposed
based on vector inner and exterior product. In the presented mathematical model of relative error,
the un-center offset distance, the un-perpendicular angle, the radius of the circle, and the number
of magnetic sensors are expressed in one equation. The comparison of the relative error caused by
the position of the current-carrying conductor between four and eight sensors is conducted. Tunnel
magnetoresistance (TMR) sensors are used in the experimental prototype to verify the mathematical
model. The analysis results can be the reference to design the details of the circular array of magnetic
sensors for current measurement in practical situations.

Keywords: circular array; current measurement; un-center; un-perpendicular; tunnel magnetoresistance
sensors

1. Introduction

The non-contact current measurement technology are continuously developing. One hand, high
performed linear magnetic sensor and signal conditioning IC for closed—loop magnetic current
sensor have been lunched, e.g., DRV5055 and DRV401-EP form TI. On the other hand, new types of
current sensors are been widely studied, e.g., Anisotropic magnetoresistance (AMR) sensors, Giant
magnetoresistance (GMR) sensors [1], Tunnel magnetoresistance (TMR) sensors, magneto-optical
sensors and superconduction current sensors [2]. In order to improve the measurement accuracy,
the structure based on a circular array of magnetic sensors has being frequently studied during the
past two decades [3–12]. Compared to other structures (e.g., open-loop or close-loop with magnetic
cores, current transformers, etc. [13]), the circular array of magnetic sensors is considered to be an
effective scheme to achieve low-cost, large linear range, wide frequency bandwidth [14–16], light
weight, and high reliability. Especially, the circular array of magnetic sensors can be used for both DC
and high-frequency AC measurement, compared to Rogowski coil [17], which can only be used for
high-frequency and low frequency (50/60) current measurement. However, the measurement accuracy
of this structure mainly suffers from the error caused by position of the current-carrying conductor
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and the crosstalk current interference. Much research has focused on the relationship between the
error reduction ability and the parameters of the circular array of magnetic sensors.

The installation position offset of the current-carrying conductor influences the accuracy of
the magnetic sensor circular array, including wire un-centeredness and un-perpendicularity. In [6],
the relative measurement error dependence on the displacement of the conductor from the center
of the circle has been discussed, and the displacement angles between the first sensor to the x-axis
(α0) was also considered in the theoretical analysis. Different from other works, AMR sensors were
applied. Recently, Pavel Ripka et al. also presented a method of calibration and error correction for the
circular array of AMR sensors. After the calibration phase, the off-center error was reduced from 0.4 to
0.06% [12].

The effect of external magnetic fields is considered to be one of the important factors that limits the
measurement accuracy, which has been generally discussed. An algorithm based on discrete Fourier
transform (DFT) to improve the crosstalk reduction has been proposed, which can be realized on a
Digital Signal Processor (DSP) or other microcontroller [4]. In their work, a circular array of eight Hall
sensors was used to verify the efficiency of the crosstalk error reduction algorithm. In another literature,
the external magnetic fields was reduced using a spatial circular harmonic expansion of the magnetic
scalar potential [7]. Then, Roland Weiss et al. [8] improved the modeling and the experimental setup
of the above method, and verified it with six fluxgate sensors. The effect of different displacement
angles between the first sensor to the x-axis (α0) was discussed. They also analyzed the effect of the
geometry of different flat conductors in another work [9], and achieved current errors of less than 1.5%.
The latest research work of Pavel Ripka et al. [11] investigated the effect of external current on circular
array of magnetic sensors and analysed the influence of real conductor size and uneven density of AC
currents. If the geometry of the external conductor is known, the compensation of the cross-sensitivity
can be calculated.

However, although the measurement caused by un-centering has been discussed, no researcher
has addressed the problem of the conductor un-perpendicularity until now. Unfortunately,
the conductor un-perpendicularity is not an ignorable factor, especially in the situation where the
conductor is flexible, and usually it may combined with the un-center offset. Based on above issues,
this paper used the inner and exterior products in vector space and analyzed the error caused by
the current-carrying conductor position (which includes un-centeredness and un-perpendicularity).
The experiment based on high-performance commercial TMR sensors has been conducted to verify the
theoretical model. The combination effect is also discussed in our work. Finally, the allowable range of
un-centeredness offset and un-perpendicularity angle can be given by the mathematic model.

2. Mathematical Background

The structure of the circular array of magnetic sensors is shown in Figure 1—eight or some
other number of magnetic sensors uniformly arranged in a circle with radius r. The sensors can be
installed on a printed circuit board (PCB), and the sensitivity directions are always perpendicular to
r—the vector from the center to the sensor sensitivity point. The current-carrying conductor—which
is strictly straight and has a proximate infinite length—crosses from the center of the circle. In a
three-dimensional Cartesian coordinate system, according to Biot–Savart law [18], the output signal of
an individual magnetic sensor, V, can be expressed by
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Figure 1. Basic theory of the circular array of eight magnetic sensors.

V = ks(H · ŝ) = ks
I × r
2πr2 · ŝ, (1)

where, ks is the sensitivity parameter of the magnetic sensors (assuming the sensors are linear and
totally in accordance), H is the vector of the magnetic field generated by the current-carrying conductor,
I is the current vector in the conductor, ŝ is the unit vector (|ŝ| = 1) of the sensitivity direction of the
magnetic sensor. In (1), according to the definition of an exterior product, I × r means the result is
a vector which is both perpendicular to I and r, and follows the right-hand rule. At the same time,
according to the definition of an inner product, H · ŝ means the result is the projection value of the
vector H on the direction ŝ; it represents the fact that the output of the magnetic sensor only relates
with the magnetic field along the sensitivity direction.

In a circular array constructed by N magnetic sensors, the mean value of the sensor outputs can
be expressed as

Vmean =
1
N

N−1

∑
n=0

V(n) =
ks

N

N−1

∑
n=0

(H(n) · ŝ(n)) =
ks

N

N−1

∑
n=0

I × r(n)

2π(r(n))2
· ŝ(n), (2)

where the superscript (n) represents the nth sensor parameters; for instance, ŝ(1) is the sensitivity
direction of the first magnetic sensor. Vmean can be easily measured and calculated, ks can be a constant
after calibration, and the measured I is the only unknown quantity in (2). If the current-carrying
conductor is offset from the center or is not perpendicular to the circle plane, r(n) = |r(n)| will have
different values; otherwise, they will be equal (r(n) = r) in ideal conditions. Therefore, the calculated
current value, Ical , of the under measured current can be calculated by

Ical =
2πrVmean

ks
, (3)

and the relative measurement error is

ε =
|Ical − I|

I
× 100%. (4)

3. The Error Analysis

3.1. The Mathematical Model of the Errors from the Un-Centeredness and Un-Perpendicularity

Un-centeredness and un-perpendicularity of the current-carrying conductor may coexist in
practical situation. The modelling method introduced in the mathematical background is useful
for analysis of the measurement errors caused by these factors. Figure 2 shows the magnetic field



Sensors 2018, 18, 578 4 of 12

generated by the under-measured current I0, which crosses the offset point a from the center, and
is un-perpendicular to the circle plane. The parameter d presents the offset distance from the circle
center, and β presents the un-perpendicularity angle from the z-axis, where d < r0 and 0 < β < π/2.
The definitions and values of the vectors in Figure 2 are listed in Table 1. Note that the superscript (n)
is not used for the moment.
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Figure 2. The error caused by the current-carrying conductor position: (a) Schematic of un-centeredness
and un-perpendicularity; (b) The relationship of the key vectors

Table 1. Parameters and vectors in Figure 2.

Vector Norm Value Definition

I0 I0 I0(sin β, 0, cos β)T Under-measured current
d d (d, 0, 0)T Offset vector from the center
r0 r0 r0(cos α, sin α, 0)T * Position vector from O to sensor
v v r0 − d Position vector from point a to sensor
r1 r1 v− u Position vector from I0 to sensor
u u see (5) Position vector from O to r1
ŝ ** 1 (− sin α, cos α, 0)T Sensitivity direction of sensor

* α is the angle between x-axis and r0. ** ŝ is perpendicular to r0.

Additionally, the norm of u is the projection of v on I0, according to the definition of vector inner
product, u can be calculated by

u = |u| Î0 = (v · Î0) Î0 =

 sin2 β(r0 cos α− d)
0

sin β cos β(r0 cos α− d)

 . (5)

From the vectors relationship schematic diagram in Figure 2, the vector from I0 to the sensor can
be calculated by

r1 = r0 − d− u =

 cos2 β(r0 cos α− d)
r0 sin α

sin β cos β(d− r0 cos α)

 . (6)
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According to (2), the mean value of the output signal of the sensors can be straightforwardly
written as

Vmean =
ks Ical
2πr0

=
1
N

N−1

∑
n=0

V(n) =
ks

N

N−1

∑
n=0

(H(n)
0 · ŝ(n)) =

ks

N

N−1

∑
n=0

I0 × r(n)1

2π(r(n)1 )2
· ŝ(n)

= I0
ks

2πN

N−1

∑
n=0

cos β(r0 − dcosα(n))

cos2 β(r0 cos α(n) − d)2 + r2
0sin2α(n)

,

(7)

where α(n) is the angle between the nth sensor position vector r(n)0 and the +x-axis, which is
expressed by

α(n) =
2πn

N
+ α0 (n = 0, 1, ..., N − 1), (8)

where α0 is the offset angle between the magnetic sensor array and the +x-axis, which is a
non-negligible parameter affecting the measurement error (refer to [6,9]). We will analyze the effect of
α0 later.

The calculated current Ical in (7) is the calculated current by the circular array of magnetic sensors,
which can be written as

Ical = I0
r0

N

N−1

∑
n=0

cos β(r0 − dcosα(n))

cos2 β(r0 cos α(n) − d)2 + r2
0sin2α(n)︸ ︷︷ ︸

∆

= I0∆,
(9)

where ∆ is the key part that leading the measurement error, and it can be proved that

lim
N→+∞

∆ = 1. (10)

Therefore, Equation (10) leads to Ical being approximately equal to the actual under-measured
current I0, which theoretically proves that the sum of the output of the circular array is an
approximation of Ampere’s circulation when N → +∞. According to the method proposed by
Weiss et al. [8], the relative error ε/I0 is used to present the effect caused by d and β, which actually is
the ∆ in our Equation (9). Therefore, the relative measurement error caused by d and β is

εdβ =
Ical − I0

I0
× 100% = ∆− 1 =

r0

N

N−1

∑
n=0

cos β(r0 − dcosα(n))

cos2 β(r0 cos α(n) − d)2 + r2
0sin2α(n)

− 1. (11)

Finally, for convenience, the situation of un-centeredness and un-perpendicularity are discussed,
respectively. For β = 0, the relative measurement error caused by d is

εd =
r0

N

N−1

∑
n=0

r0 − d cos α(n)

r2
0 + d2 − 2r0d cos α(n)

− 1, (12)

and for d = 0, the relative measurement error caused by β is

εβ =
1
N

N−1

∑
n=0

cos β

(1− cos2α(n) sin2 β)
− 1. (13)

Note that r0 does not exist in εβ, meaning that εβ has no relationship with r0.

3.2. Analysis of the Effect of Displacement Angles of the Sensor Array

To analyze the effect of the displacement angles of the sensor array α0 on εd and εβ, we calculated
the εdβ with the sensor number N = 4 and N = 8. In our case, r0 = 40 mm. In Figure 3a,b, it can be
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seen that for d ranges from 0 mm to 23 mm, the relative error εd reaches a max point when α0 = 2πn/N,
and a min point approximately when α0 = π(2n + 1)/2N. Note that for d = 23 mm, the maximum εd
reduces from 12.27% to 1.21%, while N increases from 4 to 8. The same above results can also be found
in Figure 3c,d, while d = 0, β ranges from 0◦ to 60◦.

Based on the above analysis, it can be concluded that the change of α0 can reduce the relative
error effectively. The relative error may be particularly reduced to a small level that can be ignored.
However, unfortunately for practical situations, the position of the conductor is usually uncertain, and
so is the α0. Therefore, we keep the α0 = 0◦ in the rest of our analysis in order to study the maximum
effect on measurement accuracy of the position error of the current-carrying conductor.
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Figure 3. The theoretical relative error analysis depending on α0, β, and d, with r0 = 40 mm.

3.3. Analysis of the Effect of Un-Centeredness and Un-Perpendicularity

The un-centeredness and un-perpendicularity of the current-carrying conductor usually coexist
in practical situations. Especially, the effect of the conductor position error will become increasingly
difficult to ignore in the situation where the conductor is a soft wire, which may not be strictly
straight and fixed in a certain position. For that reason, the combination of the relative error, εdβ,
caused by un-centeredness and un-perpendicularity become more necessary to consider together.
In Figure 4, εdβ is calculated by Equation (11) with N = 8, r0 = 40 mm; it can be seen that the
relative errors are retained within 0.5% of the major region of d and β. With the approximate region
of −10 mm< d <10 mm and −30◦ < β < 30◦, the relative errors stay within 0.077%, and increase
rapidly as the absolute value of d and β both increase. For the extreme situation, εdβ increases to 20.25%
with β = ±60◦, d = ±23 mm, and N = 8. Table 2 lists the values of εdβ with N ranges from 2 to 16
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with different d and β. From the table, extreme εdβ can be reduced to 2.896% by increasing N to 16,
and becomes an ignorable level within the region of −10 mm< d <10 mm and −30◦ < β < 30◦.
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<0.5%

(b)

Figure 4. The theoretical relative error depending on d and β, N = 8, α0 = 0◦. (a) 3-D view; (b) The contour
line, red circle is the contour line of 0.5%.

Table 2. Theoretical εdβ with N ranges from 2 to 16, r0 = 40 mm.

N εdβ (%) with εdβ (%) with
β = ±60◦, d = ±23 mm * β = ±30◦, d = ±10 mm

2 198.8 23.17
4 72.48 2.9464
6 36.05 0.4665
8 20.25 0.07696
10 12.04 0.01279
12 7.382 0.002129
14 4.601 0.0003544
16 2.896 0.000005899

* The extreme situation in our case.

4. Experimental Procedure

The experimental setup is shown in Figure 5. Four or eight commercial TMR sensors (TMR2103)
were placed on an annular PCB. The circle radius of the sensor array was 40 mm. The TMR2103
was manufactured by MultiDimension Technology (MDT), with the linear measurement range of
±30 Oe [19] and high sensitivity of 6 mV/V/Oe (1 Oe = 1 Gauss in air = 0.1 millitesla = 79.8 A/m).
TMR2103 includes four magnetic tunnel junction (MTJ) elements constructing a Huygens bridge.
In comparison with Hall effect sensors, AMR sensors, GMR sensors, and other magnetic sensors,
the TMR sensor has higher sensitivity, better temperature stability, lower power consumption, and
better linearity [20,21]. Especially, the TMR sensor has a higher frequency range [22], which is an
advantage for higher-frequency AC or transient current measurement.

The output of TMR2103 was differential and connected to a PCI DAQ system of National
Instruments (NI PXIe-6366) through PCB wires and twisted-paired cables. Differential signals might
effectively reduced the affect from the cables and the spatial distribution interference. The signals were
read and processed via LabVIEW software. The current source (AHY-15-10-200) can provide a stable
maximum 200 A current with a frequency range of 40 to 600 Hz. The current in the current-carrying
conductor was also measured by a TCP0150 current probe with an accuracy of 0.01% and a frequency
range of DC to 2 MHz, which could be treated as a reference current sensor in our case. With the
purpose of reducing the power noise, the power of the sensor array was supplied by a battery through
a linear DC stabilizer voltage supply board. The system diagram of the experimental setup was similar
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to the proposed work by Renzo Bazzocchi et al. [4]. Furthermore, we improved that by an adjustable
shelf so that the d and β could be adjusted conveniently and accurately. The yellow arrows in Figure 5
indicate that the equipment is adjustable along the pointed directions. Most components in the setup,
including the adjustable shelf and the optical platform, are made of non-ferromagnetic materials in
order to ensure that the stray magnetic field interference was minimized.

d

TCP0150

Battery

and power

supply board

Adjusetable

NI DAQ

Connector

Sensor Array

β
0
I

 Twisted-paired cables

Figure 5. Experimental setup with adjustable platform.

Firstly, the calibration was conducted with five separate measurement cycles with the current
from 10 A to 140 A and back at a frequency of 400 Hz. The output signals of all the sensors in the array
and the measurement results of the TCP0150 were detected. The root-mean-square (RMS) of each
signal was calculated. Then, the sensors’ outputs and the reference result from TCP0150 were fit by the
linear least-squares method in LabVIEW and Matlab. After that, the differences in the sensitivity of
all TMR sensors could be minimized. In this procedure, the current-carrying conductors were strictly
crossing the center of the circle and perpendicular to the sensor array’s plane.

Following the calibration, β = 0◦ was maintained, for the d changing from −24 mm to 24 mm
with steps of about 5 mm, and multiple RMS measurements of the output signals of the TMR sensor
array were conducted. After that, the same procedure was conducted for β changing from −60◦ to 60◦,
keeping d = 0. Note that we kept α0 = 0 in all procedures, because only the maximum relative error
was considered in our analysis.

5. Results

5.1. Calibration Results

The calibration for individual sensors was conducted as presented in the experimental procedure
section. In Figure 6, the curves were fit by the linear least-squares method and the results are listed.
It can be seen that the differences between the eight TMR sensors are obvious, which also exist in
other kinds of magnetic sensors (e.g., GMR sensors, AMR sensors, or Hall sensors). After fitting
the individual sensor output characteristics, the parameters were used to calculate every sensor
measurement result, so that the differences were effectively minimized. This validates the assumption
in the mathematical model that the sensitivities of sensors ks were equal.
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S2 1.35403 0.96312 0.99997
S3 1.58082 1.02996 0.99997
S4 1.40558 1.00076 0.99997
S5 1.49075 1.06624 0.99997
S6 1.43504 0.9878 0.99997
S7 1.35892 0.9383 0.99997
S8 1.30536 0.95674 0.99997

Figure 6. Calibration result for individual outputs of sensors. The results of the linear fit for individual
sensors are listed in the table.

5.2. The Result of Un-Centeredness and Un-Perpendicularity

According to the procedure proposed in the experimental procedure section, the theoretical and
experimental results of the relative error caused by un-centeredness and un-perpendicularity were
obtained. For d changing from −24 mm to 24 mm, the result of εd is shown in Figure 7a with N = 4,
and in Figure 7b with N = 8. It can be seen that εd achieved the maximum value for d = ±23 mm
and retained a small value in the range of −10 mm to 10 mm. The theoretical results were verified
by the experimental results with four and eight TMR sensors. With −10 mm< d <10 mm, the
relative error εd reduced below 0.2% (for example) in the N = 8 cases, much less than that in the
N = 4 cases. From another perspective, for the purpose of keeping relative error below 0.2% (for
example), the allowable range of d would be expanded from ±5 mm to ±10 mm while increasing the
number of sensors from 4 to 8.
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Figure 7. The un-center effect with various offset distances d from −23 mm to 23 mm, with β = 0◦,
α0 = 0◦, and test current f = 400 Hz @ 50 A.

The relative error caused by un-perpendicularity was measured and calculated, as shown in
Figure 8a,b. The proposed theory was also well verified by the experimental results. For different β
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from−30◦ to 30◦, the relative error caused by β stay within 0.2% with eight TMR sensors. It is illustrated
that increasing the number of sensors led to a more accurate and reliable current measurement by the
sensor array.
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Figure 8. The un-perpendicular effect with the offset angle β varying from −60◦ to 60◦, with d = 0,
α0 = 0◦, and test current f = 400 Hz @ 50 A.

6. Discussion

However, there were still errors between the experimental and theoretical results, which might
have been caused by the position error of the experimental setup—especially the adjustable shelf.
Another reason is the fluctuation of the separation lengths between the TMR sensors, even the sensors
were installed in the PCB by SMT component placement system. The experimental setup can be
improved by using a high-precision electromotional translation stage which has multiple degrees of
freedom. Other source of error may have been residual calibration error in individual TMR sensors,
and the sensitivity axis error of the TMR sensors may also have contributed error (i.e., may not have
been strictly perpendicular to r0). Besides these, the fluctuation of the current source may also cause
the different between the calculated and measured relative error.

Despite these errors, the experimental and theoretical results in this paper can be a reference for the
design of circular arrays of TMR sensors for current measurement in practical cases. From Equation (11),
the effect of the un-center offset d, the un-perpendicular angle β, the number of TMR sensors N, and
the radius of the circle r0 are obvious. At the same time, the linear range of the TMR sensors and the
maximum under-measured current limit the radius of the circle by Equation (1). With the purpose
of reducing the relative error εdβ, the un-center offset d and un-perpendicular angle β can be limited
by mechanical structure design. For instance, the gap between the current-carrying conductor and
the shell of the sensors array can be minimized to limit the offset d. It is also possible to limit the
un-perpendicular angle β effectively by increasing the thickness of the shell of the sensor array along
the direction of the z-axis.

Furthermore, the relative error εdβ can be reduced below the usual level that can be neglected
by increasing the number of magnetic sensors to 16 or more by the calculated result of Equation (11).
It is necessary to have a tradeoff between the accuracy and the cost in an actual case. Although the
analysis has been presented in the case of several conditions, there are also many factors that may cause
measurement error which have not been discussed in this paper. For instance, the crosstalk current
interference, the Earth’s magnetic interference, etc. For individual TMR sensors, their hysteresis [23–26],
nonlinearity, bandwidth, temperature property, etc. cannot be neglected. In the application of a circular
array of TMR sensors, the signal process circuit must be designed well to calibrate the individual
sensors and output the sum of all the sensors. Because the approach proposed in this paper has the
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ability to measure DC to high-frequency current, further work will focus on the AC frequency response
test and the extension of the frequency bandwidth of the circular array of magnetic sensors.

7. Conclusions

We analyzed the relative measurement error of a circular array of magnetic sensors caused
by position error of the current-carrying conductor in this paper. For the purpose of achieving
minimum measurement error, the theoretical results were proposed and verified by an experimental
setup. The effects of un-center offset, un-perpendicular angle, number of magnetic sensors, and
the radius of the circle on relative error are expressed in one equation. The allowable range of
un-center offset and un-perpendicular angle are given to ensure the relative error is retained within
an acceptable level. The relative measurement error can be reduced by limiting the displacement
of the conductor. In the case of 8 TMR sensors, the relative measurement error can be retain within
0.2% with the un-center offset of ±10 mm and the un-perpendicular angle of ±30◦. For the un-center
offset and un-perpendicular angle can not be measured easily in practice, the further work may be
the estimation of the the un-center offset and un-perpendicular angle (and other parameters such
as crosstalk current, etc.) using the output signals of the magnetic sensors, base on the relative
measurement error model.
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