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Abstract: This paper considers two important problems for autonomous robot navigation in
a dynamic environment, where the goal is to predict pedestrian motion and control a robot with
the prediction for safe navigation. While there are several methods for predicting the motion of
a pedestrian and controlling a robot to avoid incoming pedestrians, it is still difficult to safely navigate
in a dynamic environment due to challenges, such as the varying quality and complexity of training
data with unwanted noises. This paper addresses these challenges simultaneously by proposing
a robust kernel subspace learning algorithm based on the recent advances in nuclear-norm and
l1-norm minimization. We model the motion of a pedestrian and the robot controller using Gaussian
processes. The proposed method efficiently approximates a kernel matrix used in Gaussian process
regression by learning low-rank structured matrix (with symmetric positive semi-definiteness) to find
an orthogonal basis, which eliminates the effects of erroneous and inconsistent data. Based on
structured kernel subspace learning, we propose a robust motion model and motion controller for
safe navigation in dynamic environments. We evaluate the proposed robust kernel learning in various
tasks, including regression, motion prediction, and motion control problems, and demonstrate that
the proposed learning-based systems are robust against outliers and outperform existing regression
and navigation methods.

Keywords: kernel subspace learning; low-rank approximation; Gaussian processes; motion prediction;
motion control

1. Introduction

In real-world environments, it is difficult for service robots to adapt and assist humans due to
complex and crowded situations [1]. Because of the dynamic operating environment, service robots
can easily collide with humans, leading to dangerous situations. It is normally required for service
robots to predict motions of humans and moving objects and control safely without any collisions for
successful navigation. Therefore, we focus on safe navigation of a mobile robot under human–robot
coexisting dynamic environments in this paper. There are two significant issues when operating
a robot in such environments: predicting dynamic behaviors of pedestrians and finding corresponding
controls of a robot.

Autonomous robot navigation has been studied extensively in recent years [2–16]. In their studies,
the future trajectories of moving humans and objects are estimated for collision-free safe navigation
of a robot. In [2], future motion of humans or moving obstacles is modeled into a probabilistic
framework of sequential decision problem, which integrates the localization and collision avoidance.
In [4], an inverse reinforcement learning method using maximum entropy is proposed to address
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partial observation to mimic human behavior. Asaula et al. [5] presented a stochastic modeling
of human behavior to reduce collision with obstacles by predicting the probability of dangerous
situation in human–robot coexisting environments. Fulgenzi et al. [3] utilized a Gaussian process
(GP) to model motion patterns of pedestrians. Lam et al. [7] proposed a practical navigation strategy
based on harmonious rules and a sensitive region with a safety guarantee in a human–robot shared
environment. Jetchev and Toussaint [10] proposed a speed up trajectory prediction approach based
on sparse regularized feature selection and efficient trajectory transfer. Many approaches assume
the availability of the current positions of moving objects including a robot and obstacles [4,8,12]
or predictability of positions from infrastructure, such as an environment with an overhead camera
network [5,11]. However, it is impractical to use external structures in many real environments since
they are expensive and available only in a laboratory setting.

Recently, Choi et al. [13] proposed to model complex motion patterns of dynamic obstacles based
on an autoregressive Gaussian process (AR-GP) and developed a motion controller for safe navigation
of a robot. AR-GP is cancapture dynamic human behavior by utilizing a nonlinear, nonparametric
regression technique, called Gaussian process regression [17]. The AR-GP based method does not
require external devices to collect location information due to its data-driven and egocentric properties.
In [13], the authors have shown that the presented method performs better than existing reactive control
methods for motion control problems, such as the reactive planner [9] and vector field histogram [18].
Note that the limitation of their work is to collect noise-free training set to perform well, which is a
nontrivial task ignoring natural noises in sensors.

To handle outliers in an estimation problem, l1-norm based approaches are widely used to robustly
solve problems in the presence of outliers [19–21]. These techniques are used to represent a robust
low-dimensional subspace of the original data in many fields [19,22]. Kim et al. [23] proposed a new
robust navigation system for a mobile robot by extending the work in [13], where they approximate
a target matrix containing noises and outliers as a low-rank kernel matrix associated with the robust
l1-norm to remove the undesirable effects derived from measurement noises in the training set.
While their system shows the robustness against outliers, it can lead to an infeasible solution due to
the lack of the positive semi-definiteness property of the target kernel matrix, making an unstable and
even a dangerous situation when a robot based on the system navigates under human–robot coexisting
environments. Hence, it is necessary to satisfy the underlying property of a kernel matrix for safe and
guaranteed situations.

In this paper, we propose a novel factorization-based Gaussian process regression method, called
FactGP, based on structured kernel subspace learning for motion prediction and motion control
problems. The proposed motion prediction algorithm, FactGPM, assumes that a kernel matrix with
noises can be approximated by a few representative factors while producing a robust solution.
By extracting orthonormal basis vectors from a nuclear-norm regularized l1-norm minimization
problem satisfying symmetric positive semi-definiteness of the solution matrix, we can also reduce the
computational complexity since the need for inverting a kernel matrix is no longer required. We also
propose a robust motion controller, FactGPC, using the low-rank optimization technique to reduce the
effects of unwanted or inconsistent control examples. The proposed structure kernel subspace learning
is applied to an extensive set of regression problems including motion prediction in simulation under
the existence of noises to demonstrate its robustness. Moreover, it is applied to various motion control
experiments to verify its performance. Finally, we conducted experiments in physical environments
using a Pioneer 3DX mobile robot with Microsoft Kinect cameras to demonstrate the excellence of
the proposed method with respect to safe navigation and robust regression under crowded and
dynamic scenarios.

A preliminary version of this work appeared in [24]. The current work extends [24] and introduces
an efficient motion controller using structured low-rank optimization. In addition, an extensive set
of simulations and experiments for controlling a robot in dynamic environments is included in the
current work.
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The remainder of this paper is organized as follows: In Sections 2 and 3, we propose a robust
kernel subspace learning algorithm using structured low-rank matrix approximation and describe
FactGPM, a motion prediction algorithm. The motion control problem is discussed and FactGPC is
proposed in Section 4. We present various experimental results including real-world experiments to
evaluate the proposed method in Section 5.

2. Kernel Subspace Learning

The kernel subspace learning refers to approximating a target kernel matrix efficiently using
a small number of dominant factors, and in this work we try to solve the next position or control of
a robot given recent positions of moving obstacles using autoregressive Gaussian process regression
where a kernel matrix leaning is involved. In this section, we present the basic concept of our
proposal based on low-rank kernel approximation by analyzing the kernel matrix in Gaussian process
regression (GPR).

For GPR, it is required to compute the inversion of a kernel matrix, which usually takes high
computational cost. To handle such issue, many approximation methods have been proposed to
reduce the heavy complexity of computing an inverse kernel matrix, such as incomplete Cholesky
factorization [25] and the Nyström approximation [26]. Following this, we consider a factorization
strategy of a kernel matrix with the concept of low-rank-ness, which involves the l2-norm function that
can address Gaussian noises. Exploiting factorized principal components giving a low-dimensional
structure is known as kernel principal component analysis (KPCA) [27]. More specifically, principal
components of a kernel matrix by KPCA are exploited by performing linear operations of standard
PCA in a high-dimensional feature space [27]. By the kernel approximation using KPCA, we can
reduce the computational cost in computing kernel matrix related tasks to speed up kernel machine.

Let Φ : Rnx → X be a nonlinear mapping from the original input space to a feature space. Then,
the covariance matrix is computed for centered data x1, . . . , xn as

C =
1
n

n

∑
i=1

Φ(xi)Φ(xi)
T

and an eigenvector v associated with a nonzero eigenvalue of C is v = ∑n
i=1 βiΦ(xi). The coefficients

β = [β1 · · · βn]T are computed using the following problem [27]:

Kβ = nλβ, (1)

where K is a kernel matrix such that [K]ij = 〈Φ(xi), Φ(xj)〉. Here, principal components in X can be
obtained using top r largest eigenvectors, vk for k = 1, . . . , r, over the entire eigenvectors of K using
their corresponding eigenvalues which are computed with a proper normalization based on coefficients
from Equation (1). Hence, a kernel matrix can be represented by a few dominant eigenvectors which
correspond to r largest eigenvalues.

Now, we can approximate the inverse of a kernel matrix K based on the eigenvalue decomposition:

K−1 = (RΣRT)−1 = RΣ−1RT ≈ R̃R̃T , (2)

where R̃ = RrΣ−
1
2

r . Here, Rr ∈ Rn×r represents the first r vectors from R and Σr = diag(λ1, · · · , λr) ∈
Rr×r is a diagonal matrix of r largest eigenvalues such that λ1 ≥ · · · ≥ λn. Let us define the
conditional distribution in Gaussian process regression [17] for a new output y∗ at a new input x∗
given D = {(xi, yi)|i = 1, ..., n}

y∗|D, x∗ ∼ N (y∗, σ2
y∗), (3)

where
y∗ = kT

∗ (K̆ + σ2
w I)−1y = kT

∗K−1y, (4)
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and K̆ is a kernel matrix such that [K̆]ij = k(xi, xj). We can combine Equation (2) with Equation (4) as

y∗ = kT
∗K−1y ≈ kT

∗ R̃R̃Ty = k̃T
∗ ỹ, (5)

where k̃T
∗ = kT

∗ R̃ is a projected kernel vector into the orthogonal feature space by the projection matrix
R̃ and ỹ = R̃Ty is a projected output by R̃. This means that k̃∗ and ỹ act as new representative
factors by the orthogonal projection for Gaussian process regression problems, with conversion of
the inverse of a kernel matrix into an identity matrix which reveals independence among basis
vectors. Hence, Equation (5) is a new representation over y∗ in the low-dimensional orthogonal feature
space. A conceptual representation of the kernel subspace learning with the low-rank property used
in Gaussian process regression is illustrated in Figure 1.

Figure 1. A conceptual illustration of the kernel subspace learning in Gaussian process regression
(GPR) [23] (reproduced with permission from Eunwoo Kim, Sungjoon Choi, Songhwai Oh, A Robust
Autoregressive Gaussian Process Motion Model Using l1-Norm Based Low-Rank Kernel Matrix
Approximation; published by IEEE 2014), where we perform GPR in the low-dimensional feature space.

In addition, K can be approximated by a conventional low-rank matrix factorization method
which transforms data into a low-dimensional subspace using the l2-norm. However, the l2-norm
based method is sensitive to outliers because the l2 loss function can amplify the negative effects of the
unwanted noises. Therefore, l2-norm based low-rank approximation methods may find projections
which are far from the desired solution due to the corruptions. As an alternative, various approaches
using the l1-norm have been proposed recently and it is known that l1-norm based methods find
a sparse solution, which are more robust against outliers [19–21]. Recently, Kim et al. [23] approximated
a kernel matrix based on the l1-norm for robust regression:

min
U,V

J(U, V) = ‖K−UV‖1, (6)

where K ∈ Rn×n, U ∈ Rn×r, and V ∈ Rr×n are the kernel, projection, and coefficient matrices,
respectively. Here, we want to find a low-rank representation UV of K with sparse approximation
errors, such that the effects of outliers can be reduced. However, the optimization technique in [23]
may not be proper when approximating a kernel matrix since the low-rank representation is a bilinear
multiplication and thus may not satisfy the positive semi-definiteness of a kernel matrix.
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3. Proposed Method: FactGPM

In this section, we first propose a structured kernel subspace learning guaranteed with the positive
semi-definiteness property of the approximated target matrix. Then, we describe the overall framework
using Gaussian process regression for modeling motion.

3.1. Formulation

For robust approximation of erroneous data, we formulate the approximation problem based on
the robust l1-norm. We also apply the recent advances in rank minimization for an automatic rank
search of an uncertain rank structure of a kernel matrix [22] (Note that [22] solves the nuclear-norm
based optimization problem by iterative thresholding over singular values obtained from singular
value decomposition of a measurement matrix, which leads to the automatic rank search. However,
the proposed framework fixes the rank of the target matrix PMPT . Nonetheless, it has an effect of
reducing the rank of the target matrix further from the pre-determined rank).

The nuclear-norm regularized kernel matrix approximation with the l1-norm can be formulated
as follows:

min
P,M
‖K− PMPT‖1 + λ‖PMPT‖∗, (7)

subject to positive semi-definite matrix M, where K ∈ Rn×n is an observed kernel matrix and P ∈ Rn×r

and M ∈ Rr×r are optimization variables. The nuclear-norm is denoted as ‖ · ‖∗ and λ > 0 is
a small scalar value. In the problem, the nuclear-norm regularizer is used to optimize the rank
of PMPT , an approximation of K since it is difficult to find the exact rank of a kernel matrix for
real-world problems. Since the problem is typically non-convex, its solution can be computed under
the augmented Lagrangian with guarantees [22].

Moreover, we constrain an orthogonality property to the basis matrix P to reduce the
computational cost with faster convergence since the property shrinks the solution space of P, which we
reformulate the above problem as follows:

min
P,M
‖K− PMPT‖1 + λ‖M‖∗

s.t. PT P = Ir, M � 0,
(8)

where Ir and M are an identity matrix of r× r size and a matrix of positive semi-definite, respectively.
Due to the orthogonality constraint on P, a small-size matrix M is involved in the nuclear-norm
function instead of PMPT , which expedites solving the problem in Equation (8). The graphical
illustration of the structured kernel matrix approximation is described in Figure 2. Since it is difficult
to solve the problem in Equation (8) directly, two auxiliary variables, D and M̂, are introduced to relax
the problem as

min
P,M,D,M̂

‖K− D‖1 + λ‖M‖∗

s.t. D = PM̂PT , M̂ = M, PT P = Ir, M � 0.
(9)

To solve for Equation (9), we construct an augmented Lagrangian which handles the constrained
optimization using the unconstrained counterpart:

L(K, P, M, D, M̂) = ‖K− D‖1 + λ‖M‖∗ + tr
(

ΛT
1 (D− PM̂PT)

)
+ tr

(
ΛT

2 (M̂−M)
)

+
β

2

(
‖D− PM̂PT‖2

F + ‖M̂−M‖2
F

)
,

(10)

subject to the constraints PT P = Ir and M � 0, where Λ1, Λ2 ∈ Rn×n are Lagrange multipliers and
β > 0 is a parameter to adjust penalty in the optimization problem. We solve Equation (10) using the
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alternating direction method, which computes one variable while fixing other optimization variables.
In the following section, we describe details of each step of the proposed method.

Figure 2. Graphical representation of the kernel matrix factorization [24] (reproduced with permission
from Eunwoo Kim, Sungjoon Choi, Songhwai Oh, Structured Low-Rank Matrix Approximation in
Gaussian Process Regression for Autonomous Robot Navigation; published by IEEE, 2015), where a
kernel matrix K is decomposed into three factors. Based on the decomposition, we can learn AR-GP
with the low-rank kernel matrix.

3.2. Algorithm

To solve for M, we solve the following problem:

M+ = arg min
M

λ

β
‖M‖∗ +

1
2

∥∥∥∥M̂−M +
Λ2

β

∥∥∥∥2

F
,

= arg min
M

λ

β
‖M‖∗ +

1
2
‖M− A‖2

F, s.t. M � 0,
(11)

where A = M̂ − Λ2
β . In the case that A is asymmetric, we first convert it to a symmetric matrix

by A ← A+AT

2 and find M+. The solution can be obtained by performing eigenvalue thresholding
(EVT) [28]:

M+ = Q diag
[

max
(

γ− λ

β
, 0
)]

QT , (12)

where Q and Γ = diag(γ) are eigenvectors and eigenvalues with compatible size, respectively.
For D, we solve the following optimization problem:

D+ = arg min
D
‖K− D‖1 + tr

(
ΛT

1 (D− PM̂PT)
)
+

β

2
‖D− PM̂PT‖2

F,

= arg min
D
‖K− D‖1 +

β

2

∥∥∥∥D− PM̂PT +
Λ1

β

∥∥∥∥2

F
,

(13)

and the shrinkage (soft-thresholding) operator [22] is used to derive the solution:

D+ ← K− S
(

K− PM̂PT +
Λ1

β
,

1
β

)
, (14)

where S(x, τ) = sign(x) ·max(|x| − τ, 0) for a variable x.
To update P, the optimization problem is reduced as follows:

P+ = arg min
P

tr
(

ΛT
1 (D− PM̂PT)

)
+

β

2
‖D− PM̂PT‖2

F,

= arg min
P

β

2

∥∥∥∥D +
Λ1

β
− PM̂PT

∥∥∥∥2

F
,

(15)
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subject to PT P = Ir. The problem in Equation (15) is an orthogonality constrained least square problem.
Let R = D + Λ1

β and L = PM̂, then L is obtained by L = R(PT)+ = R(PT)T = RP, where (PT)+

denotes the pseudo-inverse of PT . Therefore, from [29], the orthogonal matrix P is computed by the
QR factorization over L.

The optimization variable M̂ is updated by solving the following equation:

M̂+ = arg min
M̂

tr
(

ΛT
1 (D− PM̂PT)

)
+ tr

(
ΛT

2 (M̂−M)
)
+

β

2

(
‖D− PM̂PT‖2

F + ‖M̂−M‖2
F

)
, (16)

and its closed-form solution is

M̂+ =
1
2

(
PT DP +

1
β

PTΛ1P + M− 1
β

Λ2

)
. (17)

Lastly, the Lagrange multipliers Λ1 and Λ2 are updated as follows:

Λ1 ← Λ1 + β(D− PM̂PT),

Λ2 ← Λ2 + β(M̂−M).
(18)

The proposed structured kernel subspace learning method is summarized in Algorithm 1,
which we call FactSPSD. In the algorithm, we compute the outputs by the scaling factor because
a normalized observation is assumed in the proposed method. All optimization variables are set to
have a value of zero for all experiments because initial values little change the final performance.
The parameters of the algorithm are set to λ = 10−3, β = 10−5, and ρ = 2. We set the number of
inner iterations in lines 5–10 to 10 due to the empirical observation of convergence to a local solution.
The convergence criterion described in line 13 in Algorithm 1 is chosen as

‖D− PM̂PT‖1 < ε or ‖M̂−M‖1 < ε, (19)

and ε is set to 10−5 for all our experiments. Note that it is difficult to specify the convergence to a local
optimal solution rigorously due to the nonconvex and complicated problem. However, we empirically
found that our algorithm converges to a stationary point within 30 iterations of the outer loop.

Algorithm 1 FactSPSD (K, r, λ, β, ρ)

1: Input: K ∈ Rn×n, rank r, λ, β, and ρ

2: Output: P ∈ Rn×r and M ∈ Rr×r

3: Initialization: M = P = D = M̂ = 0 and βmax = 1010

4: while not converged do

5: while not converged do

6: Update M by Equation (12)
7: Update P← QR(RP) where R = D + Λ1

β
8: Update M̂ by Equation (17)
9: Update D by Equation (14)

10: end while
11: Update the Lagrange multipliers Λ1 and Λ2 by Equation (18)
12: Update β = min(ρβ, βmax)
13: Check the convergence condition
14: end while

Based on the structured low-rank approximation of a kernel matrix, we can derive a robust motion
model using Gaussian process regression, as shown in Algorithm 2. The algorithm is named FactGPM
since it is based on factorization-based approach for Gaussian process regression. In Algorithm 2,
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standard PCA is performed to L in line 8 to remove the inverse operation, as in Equation (5), reducing
the computational complexity from O(n3) to O(rn2). After training with the computed kernel matrix,
we compute a new output using the trained components in the test phase.

Algorithm 2 FactGPM

1: Input: X, y, rank r, and x∗
2: Output: y∗
3: // Training
4: Compute Λ = K + σ2

w I
5: Perform kernel subspace learning:
6: [P, M] = FactSPSD(Λ, r, λ, β, ρ)
7: L← PMPT

8: Compute R and Σ by performing PCA to L
9: // Testing

10: Compute k∗ = k(x∗, X)
11: Compute y∗ by Equation (5)

4. Proposed Method: FactGPC

In this section, we propose an efficient and robust motion controller based on structured kernel
subspace learning to avoid dynamic obstacles by assuming that there can be natural noises and
inconsistent controls in the training set. The proposed motion controller utilizes both low-rank
approximation for a set of controls and the proposed motion model.

4.1. Gaussian Process Motion Controller

It is usually required for a navigation algorithm to know trajectories of moving obstacles in the
global frame of reference, whereas humans have an ability to navigate through a complex and crowded
environment using local information collected from the egocentric view. The idea how a human
reacts to a crowded environment is realized by Choi et al. [13] where they implemented a human-like
navigation algorithm using the egocentric view of a robot which captures moving humans under a
dynamic environment.

A mapping function F : T → U assigns a trajectory in T ⊂ R2m, where m is the length of
a trajectory in 2D, to a control input in U ⊂ R2. In [13], a Gaussian process motion controller (GP-MC)
is developed to find this mapping by assuming that a small variation in the trajectory space makes
a small change in the control space, which can be seen as a continuous function. The covariance
function for a GP-MC can be computed as follows:

cov(τi, τj) = ku(τi, τj) + σ2
wδij, (20)

where τi ∈ R2m is the ith trajectory in the training set, which has m positions, and θ = {σ2
f , σ2

x1
, · · · , σ2

xm , σ2
w}

are hyperparameters of a Gaussian process. When a new trajectory τ∗ comes in, a motion control u∗
for a robot can be computed using the GP-MC as follows:

u∗ = ku(τ∗, τtr)
TΛuyu, (21)

where τtr = {τ1, τ2, · · · , τNt}, Nt is the number of trajectories in the training set, Λu = (k(τtr, τtr) +

σ2
w I)−1, and yu is a vector of control outputs (directional and angular velocities) in the training set.

The GP-MC based motion control system does not assume external tracking systems. Instead,
it uses the relative position information of pedestrians, which is coming from its egocentric sensor,
as an input to the motion controller. To detect positions of pedestrians, a nearest-neighbor filter is used
to assign a detection to known trajectories but a more sophisticated algorithm, such as multi-target
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tracking with data association [30], can be applied. When nearby trajectory is not detected in the field
of view for an observed position, a new trajectory is formed.

4.2. FactGPC

A GP-MC is learned using a collected training set of pedestrian trajectories and corresponding
control inputs to a robot. The training set usually contains a large amount of controls to represent
a variety of controls like humans. To generate an effective training set for a GP-MC, a simulator,
whose objective is to find an optimal shortest path to the goal point without collision, can be used to
collect a diverse set of pedestrian trajectories and control inputs by densely sampling different initial
positions, velocities, and accelerations of moving obstacles. Note that we assume that the dynamics
of moving obstacles in a simulation follow the data of pedestrian behavior collected in a laboratory
setting equipped with a Vicon motion capture system, and the behavior can be modeled by a Gaussian
process. Thus, the proposed motion model can learn the behavior of pedestrians better than standard
AR-GP. However, it is difficult to use a large amount of training data when we execute the GP-MC in
the test phase because a larger training set requires more memory and computation time, making the
algorithm unsuitable for real-time operations.

One can use random sampling to collect a subset of training data, but it does not preserve the
diversity. To reduce the number of training samples while maintaining the diversity of training
examples, a determinantal point process (DPP) [31] can be used to select an effective and diverse
subset of training data. A DPP has been recently proposed to solve subset selection problems [31].
However, there can exist natural noises and inconsistent controls when trajectory-control pairs are
collected from experiments or simulations. In addition, collected trajectories are also vulnerable to
noises and outliers due to errors in sensors and detectors. These noises make the collected examples
inconsistent and it can lead to unwanted situation when we execute a robot in a real environment.

To eliminate the effects of noisy or outlying training examples, we apply the proposed structured
kernel subspace learning method to the GP-MC and propose a robust motion controller based on
the approximated kernel matrix using the Gaussian process regression framework. The basic idea
is similar to the proposed motion model in Section 3 in that it reduces the bad effects of unwanted
measurements or noises. The motion controller is computed by approximating a kernel matrix Λu

as follows:
u∗ = ku(τ∗, τtr)

TΛuyu ≈ ku(τ∗, τtr)
TΛ̂uyu, (22)

where Λ̂u is computed by the structured kernel subspace learning algorithm described in Algorithm 1.
The proposed motion controller based on structured kernel subspace learning is summarized in
Algorithm 3. In the algorithm, the training phase is similar to the training phase of Algorithm 2.
However, it is still a difficult task for a robot to react itself using a controller when a dynamic obstacle
approaches to the robot rapidly. Hence, we predict the future position of a dynamic obstacle using
the proposed motion model and the predicted position is combined with the recent positions of the
obstacle which are fed into the motion controller to reduce collisions. In addition, the predicted
positions are also used by the motion controller when dynamic obstacles disappear from the field of
view of a robot for safer navigation.
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Algorithm 3 FactGPC

1: Input: θu, τ1:Nobs , τtr, y, yu, rank r, and xrobot
2: Output: urobot
3: // Training
4: Compute Λu = ku(τtr, τtr) + σ2

w I
5: [Pu, Mu] = FactSPSD(Λu, r, λ, β, ρ)
6: Lu ← Pu MuPT

u
7: Compute Ru and Σu by performing PCA to Lu
8: Λ̂u = R̃uR̃T

u using Equation (2)
9: Γu = Λ̂uyu

10: // Testing
11: Compute k∗u = ku(τnew, τtr)
12: Compute urobot = k∗uΛ̂uyu

5. Experimental Results

We evaluate the performance of the proposed methods (FactGPM and FactGPC) in multiple tasks
with various datasets and compare with other popular algorithms for Gaussian process regression
(SPGP (available at http://www.gatsby.ucl.ac.uk/~snelson/) [32], PITC [33], GPLasso (available at
https://www.cs.purdue.edu/homes/alanqi/softwares/softwares.htm) [25], and PCGP-l1 [23]) along
with the standard GP. For the motion control problem, we used the k-DPP [31] algorithm to select
diverse trajectory-control pairs as a training set from collected examples. In our experiments, we used
the radial basis kernel function for all AR-GP approaches and hyperparameters used in AR-GP
are learned by a conjugate gradient method [17]. The root mean squared error (RMSE) is used as
an accuracy measure for prediction and regression problems. We conducted all simulations using an
MATLAB environment on a computer with 16 GB RAM and a 3.4 GHz quad-core CPU.

5.1. Regression Problems

First, we tested the proposed structured low-rank matrix approximation method on a synthetic
regression problem. We compared FactGPM to a sparse GP (PITC [33]) and the full GP [17] to observe
how different methods perform in the presence of corruptions.

Figure 3 shows the regression results in the case where no outliers and 20% outliers exist. We also
compared the low-rank approximation methods, FactGPM and PITC, at two different ranks (while PITC
is a sparse GPR method, we treat it as a low-rank approximation method since the rank can be
considered as a generalization of sparsity for two-dimensional data) (20% and 40% of the size of the
kernel matrix). When there are no outliers, the full GP exactly fits the reference field but FactGPM and
PITC show smooth lines with 20% low-rank components as shown in Figure 3a. However, the low-rank
approximation methods try to fit the reference field with the larger rank (40%), as shown in Figure 3b.
However, PITC still does not fit the reference very wellm as it misses some samples. Our method gives
competitive results compared to other methods in the regression problem. When we add outliers to
randomly selected 20% of data mas shown in Figure 3c,d, the full GP and PITC are significantly affected
by outliers, showing large fluctuations. However, FactGPM is less affected by outliers, showing its
robustness against outliers.

We also tested the proposed method using real-world datasets, Pumadyn-8nm (Pumadyn) and
Kin-8nm (Kin) (available at http://www.cs.toronto.edu/~delve/methods/mars3.6-bag-1/mars3.6-
bag-1.html— both datasets are frequently used to measure the performance of different Gaussian
process regression methods) [25] and randomly collected 1000 train and 800 test samples for each
dataset. We modified the datasets by adding 30% outliers randomly selected from [−25, 25] to verify
the robustness of the proposed algorithm, whereas original data values are in the range of [−2, 2].
Figure 4 shows the simulation results of our proposal with other sparse Gaussain process regression
(GRP) methods, SPGP [32], PITC [33], and GPLasso [25], for various basis ratios from 10% to 50%.

http://www.gatsby.ucl.ac.uk/~snelson/
https://www.cs.purdue.edu/homes/alanqi/softwares/softwares.htm
http://www.cs.toronto.edu/~delve/methods/mars3.6-bag-1/mars3.6-bag-1.html
http://www.cs.toronto.edu/~delve/methods/mars3.6-bag-1/mars3.6-bag-1.html
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The proposed method performs better than other compared methods regardless of the basis ratios
as shown in the figure. Moreover, it performs better than the full GP which gives lower error than
sparse GPR methods for cases when the basis ratio is small. Figure 4b also shows the excellence of the
proposed method compared to other sparse GPR methods.

x
0 2 4 6 8 10

y

-1

0

1

2

3

4

5

6
Rank 20%

Refence field
GP train data
Full-GP
FactGP

M

PITC

(a)
x

0 2 4 6 8 10

y

-2

0

2

4

6
Rank 40%

Refence field
GP train data
Full-GP
FactGP

M

PITC

(b)

x
0 2 4 6 8 10

y

-4

-2

0

2

4

6

8
Rank 20%

Refence field
GP train data
Full-GP
FactGP

M

PITC

(c)
x

0 2 4 6 8 10

y

-4

-2

0

2

4

6

8
Rank 40%

Refence field
GP train data
Full-GP
FactGP

M

PITC

(d)

Figure 3. Simulation results on a synthetic example with and without outliers. FactGPM and PITC
use kernel matrices whose ranks are either 20% or 40% of the size of the original kernel matrix:
(a) No outliers with 20% low-rank; (b) no outliers with 40% low-rank; (c) 20% outliers with 20%
low-rank; and (c) 20% outliers with 40% low-rank.
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Figure 4. Errors of the proposed FactGPM and compared methods under various basis ratios for two
regression problems: (a) Pumadyn; and (b) Kin. Note that the figure are borrowed from our preliminary
work [24] (reproduced with permission from Eunwoo Kim, Sungjoon Choi, Songhwai Oh, Structured
Low-Rank Matrix Approximation in Gaussian Process Regression for Autonomous Robot Navigation;
published by IEEE, 2015).
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5.2. Motion Prediction of Human Trajectories

For motion prediction, we collected human trajectories, where we use three past positions
in absolute coordinates, using the Pioneer 3 DX robot platform equipped with a Microsoft Kinect
camera (For the motion prediction experiment, we collected human trajectories using one Microsoft
Kinect camera and the experimental results are shown in Figure 5. However, for other experiments,
we used two Kinect cameras to increase the field of view of the robot), as shown in Figure 6a.
All performed algorithms in this problem were written in MATLAB with the mex-compiled ARIA
package (available at http://robots.mobilerobots.com/wiki/ARIA) and conducted on a computer
with a 2.5 GHz quad-core CPU and 8 GB RAM. The position of a moving object is detected by the
human skeleton tracking API in Kinect.
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Figure 5. Motion prediction results based on human trajectories with respect to: (a) various basis ratios
in the existence of 20% outliers; and (b) various outliers while 30% basis ratio is fixed.

(a) (b) (c)

Figure 6. (a) A mobile robot equipped with two Kinect cameras; (b) snapshots from an experiment
in a human–robot environment, where the first column is a third-person view, while second column
is the egocentric view of a robot; and (c) collected trajectories [23] (reproduced with permission from
Eunwoo Kim, Sungjoon Choi, Songhwai Oh, A Robust Autoregressive Gaussian Process Motion Model
Using l1-Norm Based Low-Rank Kernel Matrix Approximation; published by IEEE 2014). For better
visualization, we represent some trajectories in color.

Experiments to estimate the future position of an individual moving person were conducted in
our laboratory, where the future trajectories are modeled by AR-GP [13]. Let Dt ∈ R2 be the position
of a pedestrian at time t. The current velocity, ∆Dt = Dt − Dt−1, is modeled in AR-GP as follows [13],
with an appropriate time scaling:

http://robots.mobilerobots.com/wiki/ARIA
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∆Dt = f (Dt−1, Dt−2, · · · , Dt−p) ∼ GPf (Dt−1, Dt−2, · · · , Dt−p). (23)

Hence, the AR-GP motion model can find the position of a pedestrian at time t based on p recent
positions of the pedestrian with the nonlinear autoregressive model.

Figure 6b shows snapshots from the third-person (left) view and the egocentric view (right) from
a robot. Some of the collected trajectories of pedestrians from the filed of view of a robot are illustrated
in Figure 6c. We made a training set from the trajectories, where the number of positions in a trajectory
was set to ten. When a trajectory has many detected positions, we uniformly collected ten positions.
From a trajectory which has n positions, we obtain n− p + 1 input samples where p is the order of
an autoregressive motion model, i.e., the number of past positions. One can model it as a Hankel
matrix by shifting one point in a trajectory.

The proposed method was compared with existing approaches including PCGP-l1 [23],
GPLasso [25], and PITC [33]. We set the order of autoregressive to p = 3 to divide the collected
trajectories into train and test sets. We conducted experiments for two scenarios: (1) under various
basis (rank) conditions while fixing an outlier ratio; and (2) under various outlier ratios while
fixing the number of bases (rank). Outliers were randomly added from [−10, 10] to the trajectories,
whereas the original trajectories are in the range of [−5, 5]. Computed prediction errors by tested
algorithms are shown in Figure 5, where our approach FactGPM gives the best performance in all
cases. Another l1-norm based approach, PCGP-l1 shows the second best results. Here, we can interpret
that satisfying the positive semi-definite (PSD) property gives stable solutions whose results perform
better than the method without the PSD guarantee (such as PCGP-l1). Figure 5b shows the results
using RMSE for a fixed rank (r/n× 100 = 30%) with outliers. Similar to the previous experiments,
the proposed approach shows the excellence performance under various outlier conditions. We also
conducted a motion prediction experiment in a real environment with moving humans. Here, a robot
with a proper sensing range observes moving objects when the objects are detected from the camera
sensors and predicts the next positions of them. Then, given the past and future positions the robot
determines its control to avoid collision with the moving obstacles while pursuing the shortest path to
the goal. Collected snapshots from the experiment in our laboratory is shown in Figure 7, where we
used two Microsoft Kinect cameras whose field of view is around 110◦. The robot performed the nearly
exact prediction of the future positions of pedestrians in real-time (around 10 ms for a prediction in
our experimental environment).

Figure 7. Motion prediction experiments using the proposed motion model, FactGPM [24] (reproduced
with permission from Eunwoo Kim, Sungjoon Choi, Songhwai Oh, Structured Low-Rank Matrix
Approximation in Gaussian Process Regression for Autonomous Robot Navigation; published by IEEE,
2015). A pink circle is the prediction made by FactGPM given past pedestrian positions (purple or
yellow-green circles). The violet fan-shaped region is the field of view of two Kinect sensors and the
pink fan-shaped region shows sensing responses from sonar sensors of the Pioneer robot. Each column
consists of a photo taken by a camera and the internal state of the robot. Best viewed in color.



Sensors 2018, 18, 582 14 of 19

5.3. Motion Control

To collect an enough number of training samples for FactGPC, we collected training samples,
i.e., trajectory-control pairs, using a computer simulator, as done in [13]. A total of 8845 trajectory-control
pairs are collected from simulation. From the collected samples, we selected 3000 samples using
DPP [31] and another 3000 samples were selected randomly. We compared the proposed motion
controller with the Gaussian process motion controller (GP-MC) [13], which is based on the standard
full GP, vector field histogram (VFH) [18], and reactive planner (Reactive) [9]. In addition, we compared
with AR-VFH, which is based on VFH but using future positions predicted by AR-GP, to verify whether
the motion prediction is helpful to VFH for autonomous navigation. The proposed method is applied
at three different rank levels: 10%, 20%, and 40% of the full rank. Since there can be more than one
obstacle, a robot first predicts future positions of multiple obstacles and then uses the closest future
point with its corresponding recent positions for a motion control.

In simulation, the number of dynamic obstacles is varied from one to six. Considering the fact
that the sensing range of the robot is about 5 m, we are considering crowded situations. When the
distance between the center of a robot and the center of an obstacle is less than 500 mm, a collision is
declared. The collision rate is computed as follows:

Collision rate(%) =
number of collided objects

total number of objects
× 100. (24)

Table 1 shows the average collision rate (ACR) and the minimum distance (MinD) (MinD is the
most minimal distance among distances to moving objects for all time steps until a robot reaches
the goal from the starting point) to obstacles of different motion control algorithms (note that MinD
and navigation time are computed using cases with no collisions for a fair comparison). The average
collision rate for each case is computed from 30 independent trials. Inthe table, FactGPC with 20% basis
vectors gives the best performance, whereas GP-MC shows a higher collision rate than the proposed
method on average. Note that a 20% compression rate can perform better than 40% under noisy
scenarios since the impact of unwanted noises can be weaker at a higher compression rate. In the
experiment, GP-MC sometimes makes an excessive detour when an obstacle approaches or makes
a brief stop when obstacles disappear from the field of view of a robot, which can lead to a collision
with an obstacle. AR-VFH reduces the collision rate by predicting future positions of moving obstacles
compared to VFH, showing the benefit of predicting future positions of moving obstacles in dynamic
environments. In terms of the minimum distance to obstacles, all methods except VFH show similar
distances. Reactive shows performance better than VFH-based methods, but Reactive is still poor
when compared with GP-MC or FactGPC. VFH gives the worst performance with respect to both
collision rates and MinD in all cases.

We also compared the proposed motion controller with GP-MC using 3000 training samples
selected by DPP. We used FactGPC with 20% rank in this experiment because its performance is
better than the others, as shown in the previous experiment. The experimental results of all methods
with respect to the collision rate, minimum distance, and navigation time over 30 independent trials
are shown in Figure 8. In Figure 8a, FactGPC shows the lowest collision rates in all cases. GP-MC
shows the second best performance among the methods. When it comes to the minimum distance to
obstacles, all methods show the similar trend as the case using the entire dataset, as shown in Figure 8b.
VFH shows the lowest minimum distance to obstacles on average while Reactive gives the highest
minimum distance on average. Average navigation times are shown in Figure 8c. FactGPC requires the
longest navigation time because it reacts quickly to incoming obstacles and actively avoids collisions.
(for example, see Figure 9). VFH and AR-VFH require less navigation times than other methods
but they give higher collision rates. Figure 9 shows some snapshots for a scenario with five moving
obstacles using the proposed FactGPC with 20% low-rank basis and GP-MC. In the scenario, a robot
with green circle starts at (0, 0) and should arrive at the goal (5000, 0), while moving obstacles with
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different circles of different color move from around the goal toward left side with different velocity.
When a moving object comes inside the field of view of the robot, the robot detects the trajectory of the
moving object and predicts the next position. Then, the robot controls to avoid the nearest position
among the predicted positions of multiple obstacles while pursuing the shortest route the to goal.
Here, a robot controlled by FactGPC avoids collisions with obstacles by reacting rapidly when moving
obstacles disappear from the field of view of the robot, whereas a robot controlled by GP-MC collides
with obstacles by making a brief stop (simulation times 5.3 s and 6.7 s). We can see that the proposed
controller does not use redundant controls from the collected training set, which leads to make quick
and safe controls.

Table 1. Average collision rate (%) and minimum distance (mm) of our FactGPC at three different rank
ratios (10%, 20%, and 40%) as well as GP-MC, VFH, AR-VFH, and Reactive when there are different
numbers of moving obstacles.

Ours (10) Ours (20) Ours (40) GP-MC VFH AR-VFH Reactive

1 object ACR 0 0 0 3.33 6.67 3.33 0
MinD 1969 1839 1708 1761 1539 1824 1988

2 object ACR 6.67 3.33 3.33 5.0 15.0 13.33 10.0
MinD 1422 1400 1300 1344 1165 1523 1506

3 object ACR 6.67 6.67 8.89 8.89 14.44 13.33 8.89
MinD 1062 1228 1254 1218 930.2 1087 1116

4 object ACR 6.67 8.83 8.83 8.83 17.5 11.67 10.0
MinD 839.4 951.7 1083 1144 804 855 1100

5 object ACR 11.33 8.67 12.0 8.0 18.67 12.0 15.33
MinD 836.2 785.9 1022 861 684.9 721.4 809.4

5 object ACR 16.67 12.78 9.44 12.78 22.22 13.33 15.0
MinD 928.9 757.7 1008 783.8 602 749.9 784.5

Average ACR 8.01 6.63 7.00 7.72 15.75 11.16 9.87
MinD 1126.3 1160.4 1229.2 1185.3 954.2 1126.7 1217.3
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Figure 8. A comparison of motion controllers at different numbers of obstacles with respect to:
(a) collision rate (%); (b) minimum distance (mm); and (c) navigation time (s). FactGPC (20) and GP-MC
are trained using 3000 samples selected by DPP.

We applied the proposed motion controller in the same experimental setting to the motion
prediction experiments with two Kinect cameras. The number of moving objects varies from one to
four in the experiments to demonstrate the performance of the proposed algorithm under crowded
environments. The proposed method is compared with GP-MC [13]. Figure 10 shows snapshots from
the experiment with four pedestrians. The goal was to navigate to the pre-assigned goal region without
collision. From the figure, a robot using the proposed controller navigated safely by actively avoiding
incoming pedestrians, while the robot using GP-MC was not successful at avoiding the incoming
pedestrian (at 11 s). The average collision rate with trials (%) is computed as

Collision rate with trials (%) =
no. trials with a collision

total number of trials
× 100. (25)
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(a)

(b)

Figure 9. Snapshots from a motion control simulation with five dynamic obstacles using: (a) FactGPC;
and (b) GP-MC.

Figure 10. Snapshots from a motion control experiment in a laboratory with four moving pedestrians
using: FactGPC (top); and GP-MC (bottom) .
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Table 2 shows the average collision rates of two methods at different numbers of obstacles from
10 independent trials in our laboratory. On average, GP-MC shows a collision rate of 25% while the
proposed FactGPC shows a collision rate of 10% for this experiment (Note that the collision rates
shown in Table 2 are higher than the numbers reported in Table 1. This is due to the fact that the
collision rate is computed differently, as shown in Equation (25). The collision rate in Equation (25)
is computed in terms of the number of trials while the collision rate in Equation (24) is computed in
terms of the number of objects. In addition, the moving speed of pedestrians and invalid detections of
Kinect sensors are also contributing factors).

Table 2. Average collision rate with trials (%) of FactGPC with 20% basis vectors and GP-MC.

Algorithm #obs 1 #obs 2 #obs 3 #obs 4 Average

FactGPC 0% 0% 20% 20% 10%
GP-MC 0% 20% 30% 50% 25%

The proposed motion model and motion controller are applied in other environments, including
an L-shape lobby and a school cafeteria. The goal was to reach the goal region under a dynamic
environment with many moving pedestrians. Figures 11 and 12 show some snapshots from the
experiments in an L-shape lobby and a crowded school cafeteria, respectively. In all experiments,
the robot with the proposed motion model and controller successfully navigated without collisions by
avoiding pedestrians and arrived at the goal region.

Figure 11. Snapshots from a real autonomous robot navigation experiment using the proposed motion
model and motion controller in an L-shape lobby.

Figure 12. Snapshots from a real autonomous robot navigation experiment using the proposed motion
model and motion controller in a school cafeteria.
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6. Conclusions

In this paper, we have proposed FactGPM and FactGPC for motion prediction and motion control
problems, respectively, based on the proposed robust kernel matrix approximation method, FactSPSD.
We have proposed a novel formulation by considering the limitations of existing approximation
methods and solved it under the augmented Lagrangian framework. The approximation finds
low-rank kernel subspace by minimizing a nuclear-norm regularized l1-norm objective function.
The proposed method has been applied to an extensive set of experiments including well-known
regression problems and motion prediction and control problems under real-world environments using
a mobile robot with Kinect cameras. In experiments, we have shown the efficiency and robustness of
the proposal against unwanted outliers, measurement errors, and inconsistent controls in the training
set compared to existing methods.
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