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Abstract: In this paper, a dual-branch topology driven by a Delta-Sigma Modulator (DSM) with a
complex quantizer, also known as the Complex Delta Sigma Modulator (CxDSM), with a 3-level
quantized output signal is proposed. By de-multiplexing the 3-level Delta-Sigma-quantized signal
into two bi-level streams, an efficiency enhancement over the operational frequency range is achieved.
The de-multiplexed signals drive a dual-branch amplification block composed of two switch-mode
back-to-back power amplifiers working at peak power. A signal processing technique known as
quantization noise reduction with In-band Filtering (QNRIF) is applied to each of the de-multiplexed
streams to boost the overall performances; particularly the Adjacent Channel Leakage Ratio (ACLR).
After amplification, the two branches are combined using a non-isolated combiner, preserving
the efficiency of the transmitter. A comprehensive study on the operation of this topology and
signal characteristics used to drive the dual-branch Switch-Mode Power Amplifiers (SMPAs) was
established. Moreover, this work proposes a highly efficient design of the amplification block
based on a back-to-back power topology performing a dynamic load modulation exploiting the
non-overlapping properties of the de-multiplexed Complex DSM signal. For experimental validation,
the proposed de-multiplexed 3-level Delta-Sigma topology was implemented on the BEEcube™
platform followed by the back-to-back Class-E switch-mode power amplification block. The full
transceiver is assessed using a 4th-Generation mobile communications standard LTE (Long Term
Evolution) standard 1.4 MHz signal with a peak to average power ratio (PAPR) of 8 dB. The
dual-branch topology exhibited a good linearity and a coding efficiency of the transmitter chain
higher than 72% across the band of frequency from 1.8 GHz to 2.7 GHz.

Keywords: highly-efficient transmitter; multi-level Complex Delta-Sigma Modulator; switch mode
power amplifier; dual branch amplification

1. Introduction

The increasing demand of the new telecommunication standards in terms of bandwidth, spectral
efficiency and power efficiency has led to the development of novel transceiver architectures and a
continuous improvement in their performance. In the case of broadband and multi-standard Software
Defined Radio (SDR) transmitters, Delta-Sigma Modulator (DSM)-based transmitters have shown
a good linearity [1] and a high efficiency [2]. Particularly for transmitters where the requirements
of high power efficiency, wide coverage range and autonomy are stringent. This is in addition to
the limitations of hardware processing resources, which prevent the implementation of complex
linearization techniques.

Previous works have focused on improving the performance of DSM-based transmitters in
terms of Coding Efficiency (CE) and improvement of the DSM quantization noise shaping, mainly by
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increasing the order of the DSM or increasing the number of quantization levels. In [3,4], multi-level
DSM was investigated, dual-band DSM transmitters were demonstrated in [5,6] focused on the
application of carrier aggregation on DSM signals.

In this work, a topology based on Complex Delta-Sigma Modulation (CxDSM) is implemented,
composed of a baseband signal-processing block, an up-conversion block and, finally, an amplification
block. The main feature of the CxDSM is that it takes into account the phase in the feedback loop
while the output modulated signal is kept at a discrete level. The baseband block performs a 3-level
DSM quantization and then de-multiplexes into two separate streams based on the magnitude of
the DSM signal. This topology aims to improve the overall efficiency of the transmitter using an
amplification block based on combined and non-isolated Switch-Mode Power Amplifiers (SMPAs)
while preserving the signal quality. The measurement results from the hardware implementation are
presented and discussed.

In Section 2, the main theory of the CxDSM, as well as the multi-bit quantization property, are
explained. In Section 3, the 3-level de-multiplexed DSM topology is proposed. The implementation
steps of the amplification block are presented in Section 4, and the performance evaluation of this
solution is presented in Section 5.

2. Complex Multi-Bit Delta-Sigma Modulator

The fundamental building blocks of a DSM are a subtractor, an integrator, a quantizer and a
feedback loop, as shown in Figure 1a.
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The proposed architecture mainly comprises a baseband processing block, a frequency  
up-conversion block, and an amplification block followed by an RF combining network. 

All operations, such as oversampling and interpolation, three-level DSM signal  
generation—shown in Figure 2—and signal shaping are performed within the baseband processing 
block. The three-level output signal is de-multiplexed into two bi-level signals at the same 
oversampled frequency, which are output in two separate transmission streams.  

The Moderate stream and the Crest stream are generated by two separate transmitters. In order 
to perform the de-multiplexing process, the three-level DSM circuit is decomposed into two separate 
quantization circuits, as shown in Figure 3; the Moderate quantizer outputs a signal with a level of a 
0.5 whenever the signal lies in between the thresholds 0.25 and 0.75; otherwise, the output is zero. 
Similarly, the Crest quantizer generates the ones signal every time the signal exceeds the threshold 
of 0.75; and otherwise, zeros. 

Figure 1. (a) Delta Sigma modulator blocks; (b) CxDSM block diagram.

The integrator presents a first-order low-pass transfer function to the input signal. The 1-bit
quantizer has an output bit-stream of 0 s (zeros) and 1 s (ones), hence the conversion of a continuous
signal into a bi-level modulated signal. This output bi-level signal is suitable for driving a Switching
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Mode Power Amplifier (SMPA) [6]. The quantizer should operate at a high oversampling frequency.
The quantizer compares the module of the signal to the two thresholds and outputs the 3-level signal
at the main output. We denote the oversampling ratio (OSR), calculated as the sampling frequency
divided by twice the bandwidth; the ratio should be ten times or higher. The OSR is increased to reduce
the quantization error. Thus, a better noise shaping is obtained. This out-of-band noise represents the
main part of the signal. Hence, a major part of the SMPA power will be dissipated by the amplification
of this quantization noise [7].

In this work, we used the CxDSM, as it presents a higher coding efficiency and reduces the power
of the quantization noise [3]. The CxDSM in Figure 1b was first presented in [8,9], and is based on
simultaneous quantization of the in-phase component (I) and the quadrature-phase component (Q) of
a complex signal. This technique exhibits more accurate quantization of the signal, resulting in higher
coding efficiency and linearity than its Cartesian DSM (CDSM) counterpart [3].

The coding efficiency is a typical figure of merit that affects the overall power efficiency of DSM
transmitters. It is defined as the ratio of the desired signal power to the total signal power:

CE% =
SignalPower

SignalPower + Out o f band quantization noise
× 100 (1)

Typical values for coding efficiency reported in two-level LP-CDSMs can be as low as 9% [5].
Such poor performance of the amplifier drastically impacts the overall efficiency of the transmitter [1].

The three-level de-multiplexed Low-Pass Complex Delta-Sigma Modulator (LP-CxDSM)
architecture proposed in [3] offers a higher coding efficiency and lower overall power consumption
compared to the single branch one-bit DSM. It also prevents the SMPA from being prematurely
saturated by the high amount of quantization noise.

Compared with the Low-Pass Cartesian Delta-Sigma Modulator (LP-CDSM), which needs to
decompose the signal symmetrically into five levels (−1, −0.5, 0, 0.5 and 1), the LP-CxDSM equivalent
needs only three quantization levels (0, 0.5 and 1) for both the I and Q streams. Furthermore, an
additional phase quantization of the combined signal is required to further decrease the quantization
noise of the CxDSM.

Therefore, demultiplexing the three-level complex quantizer into two bi-level quantizers using
two thresholds is adopted.

In fact, increasing the quantization levels in DSM improves the spectral efficiency [7] at the
expense of increasing the complexity of the hardware implementation and processing resources; using
three levels is an effective trade-off between efficiency and complexity. Moreover, the multi-level DSM
output signal is not a constant envelope signal, and this degrades the efficiency of the SMPA.

3. Dual-Branch DSM Topology

The proposed architecture mainly comprises a baseband processing block, a frequency
up-conversion block, and an amplification block followed by an RF combining network.

All operations, such as oversampling and interpolation, three-level DSM signal generation—
shown in Figure 2—and signal shaping are performed within the baseband processing block. The
three-level output signal is de-multiplexed into two bi-level signals at the same oversampled frequency,
which are output in two separate transmission streams.

The Moderate stream and the Crest stream are generated by two separate transmitters. In order
to perform the de-multiplexing process, the three-level DSM circuit is decomposed into two separate
quantization circuits, as shown in Figure 3; the Moderate quantizer outputs a signal with a level of
a 0.5 whenever the signal lies in between the thresholds 0.25 and 0.75; otherwise, the output is zero.
Similarly, the Crest quantizer generates the ones signal every time the signal exceeds the threshold of
0.75; and otherwise, zeros.
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In multi-level DSMs, the quantized signal is no longer a constant-envelope signal. Consequently,
the SMPA is not driven at its saturation power most of the time, when the quantized signal is not
at its maximum value. This will impact the overall efficiency. By generating the two bi-level signals
out of the three-level signal, this architecture aims to overcome the efficiency loss and enhance the
coding efficiency.

Increasing the number of quantization levels for this topology requires an increase in the number
of the quantization thresholds; hence, we end up with a more complex quantizer architecture. This
will also require an increase in the number of branches and numbers of the SMPAs, and this would
drastically degrade the overall efficiency and linearity of the DSM, and would require higher processing
speed and a more sophisticated quantizer design.

The output signal of the DSM circuit is split into two bi-level streams, Crest and Moderate streams.
Hence, two constant envelope RF signals are generated, the two baseband streams are frequency
up-converted by mixing them with the desired RF carrier frequency.

After up-conversion around the carrier frequency, each constant envelope RF signal is fed to the
respective SMPA working at saturation mode.

Figure 4 shows the time-domain representation of the output signal of the dual-branch
de-multiplexing quantizer. In one scenario, the Crest SMPA is driven at saturation, while the Moderate
SMPA is biased and has no RF input signal. In this case, the Crest SMPA is ON and the Moderate
SMPA is OFF. In the second scenario, the Moderate SMPA is driven at saturation while the Crest SMPA
is biased and has no RF input signal. In this case, the Moderate SMPA is ON and the Crest SMPA is
OFF. Otherwise, both SMPAs are OFF and the output is zero.
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The de-multiplexed signal properties were taken into consideration while designing the
amplification block.

4. The Amplification Block Design

A class-E SMPA is used for each branch to build the amplification block. The implemented class-E
SMPAs are matched to operate simultaneously in a high-efficiency mode using a solution based on a
T-junction combiner.

Instead of using an isolated power combiner such as a Wilkinson power combiner, which has a
3 dB loss, the proposed combiner is designed to maximize the performance of the SMPAs. The 50 Ohm
T-junction combines the RFCrest and moderate output signals of the two branches.

Unlike the solution using the H-Bridge to drive the DSM signals in [10], the proposed amplification
block doesn’t require an isolated power combiner based on transmission lines and a balun. The
non-overlapping time-domain property between RFCrest and RFModerate was taken into consideration
while designing the T-junction combiner and the matching networks for each SMPA, such that the
SMPA that is off will show a high output reflection coefficient—namely, an open circuit on the Smith
chart—to allow the operating SMPA to output its maximum power. The equivalent circuit to the SMPA
when the input signal is zero is a quasi-open switch. This could be achieved by tuning the length of
the transmission lines to tune the phase of the reflection coefficient at the operating frequency. The RF
T-junction combining network is designed in such a way as not to introduce a loss, while preserving
the overall efficiency. Each of the T-junction 50 Ohm line lengths is designed to compensate for the
phase rotation. The phase rotation moves the impedance away from the open circuit point on the
smith chart.

The SMPAs are designed with relatively high output reflection coefficients (S22). This reflection
coefficient is represented by S22 by the S-parameters on the Smith chart. The length of the T-junction
branch is selected to bring the output impedance to the open circuit on the Smith chart. The designed
25 W crest SMPA presented in Figure 5 covers the wideband design frequency from 1.8 GHz to 2.7 GHz
and shows a high magnitude for different values throughout the operating frequency band [11].

A degradation in the overall performance takes place due to the power leakage in the OFF SMPA
as the value of the reflection coefficient is limited to values (ΓOUT_OFF < 1) throughout the entire
operational frequency band. This is in addition to the imbalance between the reflection coefficients of
the two branches.

Similarly, the reflection coefficient S22 of each SMPA, noted as ΓOUT_OFF in Table 1, of the 6 W
moderate SPMA and the 25 W SMPA are presented in Table 1, along with the characteristics of
each SMPA.
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Table 1. SMPA specifications.

Moderate SMPA Crest SMPA

Device 6 W CGH40006 from Cree Inc. 25 W CGH40025 from Cree Inc.
POutMax (dBm) 36.7 42.2

ηDrain (%) 67 52
ΓOUTOFF 0.82 0.88

We note that the difference of maximum powers between the Crest and Moderate SMPAs is
roughly 6 dB, which is also equal to the double of the magnitude of the factor between the Crest and
Moderate signal output voltages.

An amount of output power leaks from the Crest SMPA to the Moderate SMPA. Moreover,
when the Crest SMPA is ON, a large amount of power appears at the output terminal of the OFF
Moderate SMPA. Hence, more current is more likely to be drawn at the drain terminal of the OFF
Moderate SMPA.

The calculated output power and the drain efficiency of the two standalone SMPAs connected
with an isolated combiner is higher than the combined SMPAs. However, the efficiency of the combined
SMPAs is degraded due to the power leakage to the OFF-SMPA. This limitation cannot be totally
avoided, due to the imperfect value of the ΓOUT when of the SMPAs are Off as the matching point
could be away from the open-circuit condition.

The total efficiency of the three-level de-multiplexed DSM-based transmitter (ηT) is given by:

ηT = CE × (Pcrest × ηSATCrest + PModerate × ηSATModurate) (2)

where CE denotes the coding efficiency of the three-level DSM, Pcrest is the relative probability of
occurrence of the Crest level in the three-level quantized signal before de-multiplexing, and Pmoderate
is the relative probability of occurrence of the Moderate level in the three-level quantized signal
before de-multiplexing. ηSATCrest and ηSATModerate are, respectively, the efficiencies of Crest SMPA and
Moderate SMPA at saturation.

The measured difference between the output powers of the Crest SMPA and the Moderate SMPA
is equal to 5.3 dB lower than 6 dB. Thus, the linearity of the transmitter is degraded when driven with
a three-level quantized signals with 1, 0.5, and 0 levels.

To remedy these impairments and preserve the linearity of the transmitter, the three-level
LP-CxDSM had to be tuned to output a signal that compensates the difference between the output
powers of the two SMPAs to reach exactly 6 dB.
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5. Dual-Branch DSM Implementation

The baseband processing block was implemented on the BEECube™ platform. A BEECube™
platform is composed of a Virtex 6 FPGA and computer mother board. The platform is equipped with
an FMC board, a 2-channel transmitter and 2-channel receiver front-end.

The platform was used to generate the dual-branch DSM signal. The building blocks of the DSM
were implemented on the Xilinx™ SysGen™ and MATLAB® running on the BEECube™.

The BEEcube™ front-end board showed an imbalance between the two paths. Hence, a correction
was applied to overcome this imbalance. Furthermore, magnitude and phase correction factors were
included in the baseband processing block to compensate for non-linearity and hardware impairments
such as I/Q imbalance and DC offset.

Better linearity of the transmitter chain is achieved by adjusting the levels of the de-multiplexed
output signals at the output of the baseband processing according to the output power of the SMPAs
throughout the frequency band. The measured levels of the output signal for the Crest signal vary
from 0.86 to 1.

The setup of the de-multiplexed DSM shown in Figure 6 is composed of the BEEcube™, the driver
PAs, the amplification block, and the spectrum analyzer. A triggering signal is needed between the
BEEcube™ and the PSA spectrum analyzer.
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6. Dual-Branch DSM Performance

The oversampled signal bandwidth processed by the platform must be relatively narrow
compared to the speed of the processing clock. This is due to the required high oversampling ratio being
limited by the sampling speed of the Digital to Analog Converters (DAC) on the SDR platform. The
processing speed on the FPGA presents another limitation for the bandwidth. Unbalanced branches
can cause the samples to overlap in the time domain. Similar-length cables were used to ensure that
the effective length of the two branches was equal, in addition to a static compensation block for
time offset and phase rotation, which was implemented in the baseband processing unit of one of the
branches. Increasing the bandwidth of the signal will make the alignment between the two branches
more critical in preventing the two-branch inter-symbol overlapping. Thus, a high oversampling ratio
should be considered to avoid the time mismatch when combining the two branches.
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A high sampling speed is required by the CxDSM to reach the high OSR necessary for good noise
shaping. This constraint presents the main limitation to the signal bandwidth at the input of DSM.
On the BEECube, the TX sampling speed is 245.76 MS/s. To overcome this limitation, in-band noise
filtering of the Quantization Noise Reduction QNR with In-band Filtering (QNRIF) [3] is applied at the
output of the DSM. The baseband processing block will split the 3-level signal into two 2-level streams,
then the QNRIF is applied to each stream separately. This proposed technique, besides removing a
part of the in-band quantization noise, also filters out the out-of-band quantization noise. Therefore,
the QNRIF technique will also alleviate the stringent requirement on the bandwidth and its effect on
the adjacent channels. Consequently, the improved ACPR at the output of the amplification block can
help to ease the constraints on the band-pass filter, leading to a lower insertion loss for the filter and a
better overall efficiency for the transmitter. Consequently, an enhanced efficiency and signal-to-noise
ratio can be achieved simultaneously for wideband signals. Although this technique improves the
ACPR significantly, the bi-level signals are disturbed and will introduce some ripples in the constant
levels of the bi-level signals.

The application of the QNRIF to the output signal of the DSMs attenuates the power in the
adjacent channel. The QNRIF technique effect on the adjacent channel is depicted in Figures 7 and 8.

The use of the QNRIF technique significantly improves the Adjacent Channel Power Ratio (ACPR)
measured at 1.4 MHz offset. The spectrum of the QNRIF output signal is shown in Figure 8.

The designed amplification block with two inputs and one output to amplify and combine the two
signals was tested according to the setup in Figure 9, we used a driver power amplifier for each branch,
and we tested the block under different conditions. Both the SMPAs were biased and tested separately;
one SMPA was under test, while the other SMPA was matched. Ideally, the combined amplifiers have
an output reflection coefficient magnitude equal to 1, the measured reflection coefficient for the OFF
SMPAs were 0.82 and 0.88 for the 6 W SMPA and 25 W SMPA, respectively. Afterwards, both SMPAs
were tested simultaneously. A 32.6 dB attenuator was used after the amplification block.
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Starting with a continuous-wave (CW) test, the biasing voltages are: Vgs = −4 V, Vgs = −5 V for
the 25 W and 6 W SMPA respectively at a carrier frequency of fc = 2.1 GHz with PDO1 and PDO2
denoting respectively the output power of the driver 1 and 2. The CW test results are illustrated in
Table 2.

Table 2. Continuous wave tests.

Scenario:1
6 W Under Test, 25 W Terminated

Scenario 2:
6 W Terminated, 25 W Under Test

PDO1 (dBm) 26 PDO2 (dBm) 34
Pout (dBm) 36.2 Pout (dBm) 41.8
Efficiency % 69.9 Efficiency % 36.8

The performance of the proposed transmitter is evaluated using a LTE signal having a bandwidth
of 1.25 MHz and 8dB PAPR. Vgs(25 W) = −4 V, Vgs(6 W) = −5 V, Freq = 2.1 GHz, PAPR(0.5’s) = 3.6 dB,
PAPR(1’s) = 12.4 dB. The obtained results are presented in Table 3 below.
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Table 3. LTE modulated signal tests.

Scenario 1:
6 W Under Test, 25 W Terminated

Scenario 2:
6 W Terminated, 25 W Under Test

PDO1 (dBm)
peak 25.8

PDO2 (dBm)
peak 35.4

average 22.2 average 23

Pout (dBm)
peak 35.9

Pout (dBm)
peak 41.7

average 32.3 average 29.3
Efficiency % 55.5 Efficiency % 30.5

Using the 1.25 MHz LTE signal with both SMPAs excited. We evaluate the in-band and the
total band specification of the signal at a frequency of 2.1 GHz. The measured results are specified
in the Table 4, for the same configuration: Vgs(25 W) = −4 V, Vgs(6 W) = −5 V, Freq = 2.1 GHz,
PAPR(0.5’s) = 3.6 dB, PAPR(1’s) = 12.4 dB.

Table 4. Performances for 2.1 GHz frequency.

Whole Band In Band

Peak Power (dBm) 41 39.3
Average Power (dBm) 34.9 33

Efficiency % 43.9 30.7
Coding Efficiency % 76.8

A frequency sweep across the total bandwidth from 1.8 GHZ to 2.7 GHz covered by the transmitter
shows the flatness of frequency response and the inherent linearity of the transmitter as shown in
Table 5.

Table 5. Transmitter performances over the covered bandwidth.

Carrier Frequency (GHz) Measured CE% Pout Average (dB) Transmitter Efficiency % Output SNDR (dB)

1.8 74.6 34.1 34 40
1.9 75 34.7 35.5 41
2 76 35.1 38.4 42

2.1 76.8 34.9 43.9 43
2.2 75.1 34.8 42.9 44
2.3 75 34.4 39.1 45
2.4 73.4 33.2 38.9 42
2.5 74.3 32.2 35.9 43
2.6 72.4 32.6 42.3 44
2.7 72.6 33.1 42.5 43

The quantization levels were tuned to further improve the linearity. The Normalized Mean Square
Error (NMSE) after linearization of the BEEcube™ dual-channel transmitter reached the value of
−43.35 dB.

The transmitter has a maximum measured power efficiency of 43.9 %, an output SNDR above
40 dB and a measured ACPR of −45 dB for a signal with PAPR= 12.2 dB.

The peak output power of the amplification block at each carrier frequency of the three-level
first-order de-multiplexed LP-CxDSM is tuned to preserve a flat response across the whole band.
A considerable improvement was achieved by the dual-branch topology in terms of performance
compared with the single-branch 3-level First-Order DSM, with an oversampling ratio of 16 with
performances in SNDR = 20 dB and a Coding Efficiency of 28.8%.

7. Conclusions

In this work, we proposed a novel two-branch transmitter topology using a three-level complex
DS modulation signal encoding scheme and two switching mode amplifiers connected using a
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non-isolated power combiner. A prototype was designed, implemented using SDR platform and tested
to assess its performance. An SNDR of 46 dB was achieved by splitting the three-level signal into
two bi-level constant-envelope signals. We used a non-isolated T-junction combiner to improve the
transmitter efficiency. The proposed architecture is inherently linear and does not require a further
linearization processing.

By integrating a quantization noise reduction technique in the baseband processing block, we
enhanced the ACPR considerably and reached a coding efficiency higher than 75%. This topology,
along with the proposed signal processing techniques, showed a good overall performance.
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