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Abstract: In the paper, we propose a novel object-oriented hierarchy radiation consistency method for
dense matching of different temporal and different sensor data in the 3D reconstruction. For different
temporal images, our illumination consistency method is proposed to solve both the illumination
uniformity for a single image and the relative illumination normalization for image pairs. Especially
in the relative illumination normalization step, singular value equalization and linear relationship
of the invariant pixels is combined used for the initial global illumination normalization and the
object-oriented refined illumination normalization in detail, respectively. For different sensor images,
we propose the union group sparse method, which is based on improving the original group sparse
model. The different sensor images are set to a similar smoothness level by the same threshold
of singular value from the union group matrix. Our method comprehensively considered the
influence factors on the dense matching of the different temporal and different sensor stereoscopic
image pairs to simultaneously improve the illumination consistency and the smoothness consistency.
The radiation consistency experimental results verify the effectiveness and superiority of the proposed
method by comparing two other methods. Moreover, in the dense matching experiment of the mixed
stereoscopic image pairs, our method has more advantages for objects in the urban area.

Keywords: different temporal and different sensor images; illumination consistency; smoothness
consistency; dense matching in 3D reconstruction

1. Introduction

With the development of satellite imaging for Earth observation, it is feasible to obtain
high-resolution multi-angle, multi-temporal, and multi-sensor satellite data. A highly precise 3D
reconstruction by making full use of the multi-source data is one of the important research hotspots in
the remote sensing field [1]. Especially in urban areas, 3D information of building objects is recovered
accurately, which is very helpful for people’s lives, and includes 3D positioning, 3D navigation, land,
and resources monitoring. In the 3D reconstruction field, the traditional stereoscopic image pairs are
obtained by the same sensor at almost the same time. Unfortunately, the mixed stereoscopic image
pairs of different temporal and different sensors have different radiation characteristics, which strongly
affect dense matching precision in the 3D reconstruction. Different temporal images are obtained at
different illumination conditions, resulting in the difference in the grayscale level between the stereo
image pairs. Different sensor images have different noise levels. Moreover, the different illumination
and different noise levels are important factors in the performance of the dense matching method
based on area. However, to produce highly accurate 3D reconstruction of surfaces, there is a significant
lack of radiation consistency method for the mixed stereoscopic image pairs of different time and
different sensor. In the paper, we comprehensively analyze the influence factors for the dense matching
of different time and different sensor data, and firstly propose a novel hierarchy radiation consistency
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method to simultaneously obtain the illumination consistency and the smoothness consistency of the
mixed stereoscopic image pairs.

For the mixed stereoscopic image pairs of different temporal, there is no specific radiation
consistency method to solve the problem of different illumination for dense matching. However,
several methods have been developed for the radiation consistency of multi-temporal remote sensing
images in other applications, such as change detection and image mosaicking [2,3]. In general,
there are two types of radiation consistency method, namely, absolute normalization and relative
normalization [4]. The absolute radiometric normalization mainly depends on the parameters of the
environment and sensor. Therefore, the paper focuses more on the relative normalization method to
obtain a similar grayscale characteristic between the different temporal images. Zhang proposed to
improve contrast and brightness for the illumination normalization method, which is a multilevel
processing method for different illuminations [3]. Most relative radiometric normalization methods
are based on the assumption that the invariant pixels in the same area of the different temporal images
are spatially homogeneous and approximated by a linear relationship [5]. Canty et al. [6] proposed the
multivariate alteration detection method (MAD) to obtain the invariant pixels for building the linear
relationship. Nielsen [7,8] further proposed the iteratively reweighted MAD method (IRMAD) to
demonstrate a great performance for relative radiometric normalization. Zhang et al. [9] used iterative
slow feature analysis (ISFA) extract invariant features for radiation consistency. Zhong [10] proposed
hierarchical regression to build the more accurate linear relationship for suppressing the negative effect
of change pixels. For the application of change detection and image mosaicking, all the above relative
normalization methods only adjust the global grayscale consistency between different temporal images.
For the dense matching of 3D reconstruction, the grayscale consistency of details in object areas is more
important. Besides, the mentioned methods only notice the relative consistency between different
temporal images to ignore the radiation quality of each image, which has a significant impact on
dense matching.

For the traditional stereoscopic image pairs of the same sensor, several literatures pointed out
that noise has an important influence on dense matching. Crespi et al. used CARTOSAT-1 satellite
stereoscopic image pairs to analyze the influence of noise distribution on dense matching in 3D
reconstruction and proposed that image denoising is helpful [11,12]. Pateraki and Poli [13,14] both
introduced imaging principle of different TDI-CCD sensor stereoscopic image pairs leading to different
noise levels and also used the Wallis filter method for image denoising to improve dense matching.
The mentioned methods above all demonstrated image denoising being beneficial for dense matching
in 3D reconstruction. For the mixed stereoscopic image pairs of different sensors, Eisenbeiss [15]
indicated that different smoothness levels between different sensor images result in the low accuracy
of dense matching in DSM generation. In the recent research, Aguilar [16] analyzed the causes that
affect the dense matching in detail by multiple sets of mixed stereoscopic image pairs. The paper [16]
also arrived at a conclusion that different illumination and different smoothness seriously affected
the accuracy of dense matching. The above paper both analyzed the influence factors that different
noise levels were leading to the low accuracy of dense matching. However, no one gave a method
for the mixed stereoscopic image pairs of different sensors to simultaneously control two image noise
levels, which can obtain the smoothness consistency images. Therefore, the purpose of smoothness
consistency in our paper is to achieve a similar noise level for different sensor stereo image pairs.

The purpose of our paper is to improve dense matching for different time and different sensor
stereoscopic image pairs. Moreover, dense matching is a crucial step in 3D reconstruction. In other
words, better results of dense matching can result in better 3D reconstruction. In this paper, there
are three main contributions. Firstly, we have comprehensively analyzed various influencing factors
of different temporal and different sensor images for dense matching. Additionally, the hierarchy
radiation consistency method is proposed to solve illumination consistency for different temporal
images and smoothness consistency for different sensor images. Secondly, the object-oriented algorithm
idea is proposed to obtain the radiation consistency in more detail, which is especially helpful for
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dense matching of urban areas. Finally, the smoothness consistency method using union group sparse
is first proposed to obtain similar smoothness levels between different sensor stereoscopic image pairs.
Therefore, our hierarchy radiation consistency method is beneficial for 3D reconstruction.

The remainder of this paper is organized as follows. Section 2 shows the whole flow of the
proposed method. In Section 3, object region association method is described. We introduce the
proposed illumination consistency method and smoothness method in detail in Sections 4 and 5,
respectively. Our experiment results are showed by comparing two other methods in Section 6, and the
conclusion in Section 7.

2. Proposed Methods

The purpose of the proposed object-oriented hierarchy radiation consistency method is to obtain
radiation consistency of different time and different sensor images for improving area-based dense
matching. As shown in Figure 1, each level of our method is marked by different colors. In the
paper, radiation consistency is the top level concept. We think that the influence factors of radiation
consistency are mainly composed of two points, which are the illumination consistency and the
smoothness consistency. Different temporal images are acquired by different illumination conditions
to cause images’ different brightnesses, while different sensor images are obtained by different design
TDI-CCD sensors to cause images’ different smoothnesses. This is the first level in the yellow boxes of
Figure 1.
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For smoothness consistency, we propose union group matrix to simultaneously control the
smoothness levels to be similar for the mixed stereoscopic image pairs. For illumination consistency,
we propose a two-layer method to solve illumination uniformity for a single image and illumination
normalization for image pairs, respectively. In the illumination uniformity step, the relative gradient
method is employed to improve the radiation quality of single image. This is the second level in the
blue boxes of Figure 1.

For illumination normalization, coarse-to-fine relative normalization method is proposed. In the
coarse step, the improved singular value equalization is employed for the initial global normalization.
In the fine step, an object-oriented illumination normalization method based on piecewise linear
correction is proposed to adjust the details for each object. This is the third level in green boxes of
Figure 1.

In addition, object region association is the premise of the whole object-oriented method.
For object region association, the remote sensing image segmentation method based on occlusion
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random texture model (ORT) is employed to extract the object areas of each image [17]. Then, sparse
matching method based on SIFT feature is used to build the relationship between the same object
areas of the mixed stereoscopic image pairs [18]. It can recover the radiation consistency of different
temporal and different sensor images in more detail. In the following sections, the detail of the
algorithm is provided.

3. Object Region Association

For high-precision 3D reconstruction, the accuracy of dense matching in object areas is extremely
critical factor. In the urban areas, it is difficult to obtain successful matching due to the uncontinuous
elevation information of building objects. Moreover, the mixed stereoscopic image pairs of different
time and different sensors have different radiation properties, which are almost impossible to dense
match, especially in the object areas. Therefore, the paper proposed a novel grayscale consistency
method, which not only considered the whole image but also mainly focused on object-oriented
uniformity. It is very helpful for the accuracy of dense matching in particular with object areas.

Object extraction is a significant part in our object-oriented method. McCann et al. [17] proposed
the segmentation algorithm based on occlusion random texture model, which has an excellent
performance in the unsupervised segmentation. Moreover, there are corresponding improved methods
for extracting objects in remote sensing image processing. Yuan [19] proposed to use the local histogram
and linear regression. Shu [20] presented non-negative, low-rank sparse correlation mapping to use
in the remote sensing image segmentation. In the paper, the method proposed by [20] is employed,
which obtained high precision for the build object segmentation results. Based on object segmentation
results, feature matching is used to build relationships between corresponding object areas in the
mixed stereoscopic image pairs. The SIFT (Scale Invariant Feature Transform) feature matching
method [18] can be overcome by the influence of some illumination and noise to achieve accurate
sparse matching results robustly. Therefore, when the number of matching points by SIFT are more
than the threshold (threshold is 2 in the paper) in every extracted object area, the two object areas in the
stereo image pairs are considered to be matched in the paper. If no matching points exist in extracted
object areas, the entire region of the extracted building object in the reference image is treated as a
template matching window to be associated. In a word, the extracted object areas in the stereo image
pairs are all established the corresponding relationship.

4. Illumination Consistency for Different Temporal Images

The multi-temporal data is obtained by different illumination conditions and is the most
characteristic. Moreover, different illuminations must lead to the difference in grayscale characteristics
between the multi-temporal stereoscopic image pairs. It will increase the difficulty of stereo matching,
which will have a significant influence on the accuracy of 3D reconstruction, especially in the
object areas. In the paper, we proposed to adjust the illumination difference in two ways. On the one
hand, the relative gradient method is employed to obtain illumination uniformity for a single image.
On the other hand, illumination normalization method from global to objects is proposed to eliminate
the grayscale difference between the multi-temporal mixed stereoscopic image pairs.

4.1. Illumination Uniformity for Single Image

The purpose of this paper is to improve the radiation quality of remote sensing image for dense
matching and 3D reconstruction. In fact, different illumination is only one of the factors influencing
different radiation characteristics of multi-temporal images. The overexposure or overshadow of the
image local areas also has a great impact on the matching. Therefore, the relative gradient is used to
improve the contrast and texture details of the object areas for illumination uniformity images, which
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are very helpful for dense matching. The original gradient of the image is adjusted to make the larger
gradient suppressed and the smaller gradient stretched. The adjusted gradient can be expressed as

G(x, y) = ∇I(x, y)Θ(x, y) (1)

in which ∇I(x, y) represents the original gradient of the image. G(x, y) is the improved gradient.
Θ(x, y) is an adjustment function, and the value depends on the local relative gradient. The relative
gradient is shown as

‖∇I′(x, y)‖ = ‖∇I(x, y)‖
f (I(x, y) ∗ g(x, y))

(2)

in which g(x, y) is gaussian kernel, and * represents convolution operation. The convolution operation
using the original image and gaussian kernel is to inhibit edge gradient mutation, which results in
enhanced image edges to be unnatural, especially in the object edge areas. Therefore, the adjustment
function Θ(x, y) is computed by the relative gradient based on the following formulation.

Θ(x, y) =

(
µ · ‖∇I′(x, y)‖
‖∇I′(x, y)‖

)1−ξ

(3)

in which µ is a constant, it is set to 0.1, and ‖∇I′(x, y)‖ is the average of the relative gradient. In other
words, µ‖∇I′(x, y)‖ is the gradient threshold. The gradient being less than the threshold is stretched,
and the gradient being larger than the threshold is suppressed. For example, the overexposure
object areas apply to smaller value, while the overshadow areas apply to larger value. ξ controls the
amplitude of gradient adjustment (it is set 0.8 in the paper). The illumination uniformity images can
be reconstructed by the improved gradient G(x, y).

4.2. Illumination Normalization for Stereoscopic Image Pairs

Illumination normalization to eliminate the difference of grayscale characteristics between the
multi-temporal stereoscopic image pairs is an important part in the paper. This part is equal to relative
radiation normalization in many types of research, which only focus on relative grayscale consistency
of multi-temporal data. In early studies, many researchers used histogram matching and gamma
collection method to obtain similar gray statistics of images. In recent years, for change detection
and images mosaic, many people proposed that objects in the same area of different temporal images
constitute spatial homogeneity, which is assumed to be the linear relationship. Based on these studies,
this paper proposed two stages of illumination normalization algorithm from global to objects. Firstly,
the global illumination consistency is corrected based on grayscale statistics information. Secondly, the
gray values of object areas are further refined by the linear transformation relationship using object
region association results.

4.2.1. The Initial Global Illumination Normalization

The improved singular value equalization is employed to obtain the global illumination
normalization results. The singular value equalization is used based on SVD (Sigular Value
Decomposition, SVD) [21]. For any image I, its singular value decomposition can be expressed as

I = DIΣIVT
I (4)

in which D, V, and Σ are SVD decomposition matrix of I. D and V are both Orthogonal Matrix.
The column of D and V are left-singular vectors and right-singular vectors of I, respectively. ΣI is
the diagonal matrix including the singular value order, which is the main information of the images.
Additionally, the larger value of the singular value in the main diagonal is in the front, which is the
greater contribution to the image. It is the basic of image reconstruction by SVD. The original singular
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value equalization method make the grayscale mean of different temporal images closer to max/2,
which can obtain grayscale consistency and enhancement. However, the illumination uniformity
method has been used to produce better enhanced images. The max/2 is replaced with the grayscale
mean of multi temporal images by the illumination uniformity method in the paper. Assuming that A
is the grayscale mean of multi-temporal mixed stereoscopic images. The new image IA with single
grayscale value A is singular value decomposed. Using the max singular value max(ΣIA), the image
transform coefficient of global illumination normalization λ is computed as

λ =
max(ΣIA)

max(ΣI)
(5)

in which the mean of Ii is less than A, and λ is larger than 1. Otherwise, λ is smaller than 1. Moreover,
the new singular value matrix is constructed by using this transformation coefficient Σ̂I = λΣI .
The improved image Î by global illumination normalization can be reconstructed by the new singular
value matrix, as shown in (6)

Î = DI Σ̂IVT
I (6)

4.2.2. The Refined Object-Oriented Illumination Normalization

In the field of study on the relative radiation-normalization of different temporal data, many
researchers like Zhang [9] and Zhong [10] have proposed the assumption that the invariant pixels
are linear relationship under different illumination conditions. Under the assumption, they focus on
the study of the invariant pixels extraction. The more accurate linear relationship is established by
extracting a large number of invariant pixels and removing the varying pixels in the changed areas.
In the paper, the corresponding object areas have been associated. The feature matching points in the
matching object areas are just the invariant pixels. Therefore, we proposed the object-oriented refined
illumination normalization to establish a piecewise linear relationship for every object, which only
needs few invariant pixels in the same object and avoid changing pixels. Based on the matching points
of a single object, the linear relationship can be expressed as

ym
k = λmxm

k + ξm (7)

in which m represents the number of object areas, k is the position of the pixel, y is the gray value of
the reference image, and x is the gray value of different temporal image in the corresponding position.
λ and ξ represent linear coefficients, which are the purpose of solving linear function. The predicted
gray value of the transformed image is shown as (8)

ŷm
k = λ̂mxm

k + ξ̂ (8)

in which λ̂m and ξ̂m are the linear coefficients predicted value, which are computed by the matching
points in the same object xm

k and ym
k .

Because each matching object area has multiple matching feature points to calculate the
linear coefficients, λ̂m and ξ̂m are obtained by weight least squares method. For every matching
object area, the linear coefficients are computed by minimizing the energy function based on the
following formulation.

(λ̂m, ξ̂m) = argmin
λ,ξ

N

∑
k

τk · |yk − λxk − ξ|2 (9)
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in which N is the number of matching points in every matching object area, and τk is the weight of the
kth pixel. To the weight τk, the reference image and the transform image need to be normalized, which
can avoid the loss of radiation resolution. It is shown as (10).

x′k =
(xk−µx)

σx

y′k =
(yk−µy)

σy

(10)

in which µy σy µx σx represent the mean and the standard deviation of the reference image and the
transform image, respectively. After the normalization, the weight of each pair feature matching points
mainly depends on the difference of gray values |yk

′ − xk
′|. Let T represent the difference |yk

′ − xk
′|,

and the weight τk can be computed as

τk = 1− Tk −min{T0, T1 . . . TN}
max{T0, T1 . . . TN} −min{T0, T1 . . . TN}

(11)

From the formulation (11), τk is between 0 and 1. Moreover, the difference |yk
′ − xk

′| is larger, and
the weight τk is smaller, although SIFT feature matching owns the high accuracy. To obtain the accurate
linear relationship, some mismatched feature points should be avoided to participate in computation
of linear coefficients as the invariant pixels. Because the linear relationship of each object is calculated
independently, the disparity in the same object has the same value. The highest frequency disparity
is considered as the truth. Matching points that are too different from the truth will be removed.
Satisfying the formula (12), the matching points are considered to be the invariant pixels.∣∣Dm

k − Dm
∣∣ < l (12)

in which Dm
k represent the disparity of kth pixel in mth matching object area, and Dm represent the

highest frequency disparity in mth matching object area. The value of the highest frequency disparity
(Dm) depends on the height of each building object. The value of Dm is the most normal value, which is
equal to the “truth” for the disparity of each building object. The purpose of Dm is to remain the correct
matching points and to eliminate the error matching points. l is the threshold. It is 2 in the paper.

5. Smoothness Consistency for Different Sensor Images

Satellite panchromatic images are almost obtained by TDI-CCD. The different satellite sensors
used TDI-CCD with different storage units designed by different companies, which can lead to the
different smoothness levels of images. Almost any reference shave mentioned that the noise levels
affect dense matching results. The purpose of smoothness consistency in the paper is to achieve similar
noise level for different sensor stereo image pairs. We propose a method based on simultaneously
controlling two image noises on group sparse representation for the different sensor stereoscopic
image pairs.

5.1. Group Sparse Model

The sparse model performed excellently in the image restoration, which can suppress noise
and protect image structure features. However, in the traditional sparse representation, the patches
are independent and cannot build a relationship between similar patches belonging to the same
objects [22,23]. Moreover, the sparse model based on patches cannot establish a connection between
the different sensor images. In group sparse method, the basic unit of sparse representation for the
single image is the group. Each patch extracted is matched a set of nonlocal patches with similar
structure. All the similar patches are stacked to construct a group. This group matrix contains all the
similar structure patches to establish their connection spatial adaptively [24].

For each patch iks, with size
√

ps ∗
√

ps, we search its t best matched patches in the nonlocal space
of the single image. iGk is named as a group with size ps ∗ t containing all the matched patches with
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similar structures. Figure 2 shows that each patch iks is represented as a vector, and the group iGk is
integrated to a matrix. Analogous to the sparse coding in the patch space, the group iGk is expressed
as iGk = DGk αGk by a dictionary DGk and sparse vectors αGk . According to this concept of group,
the whole image can be expressed by structured sparsely code as (13).

I = DG ◦ΛG = (
n

∑
k=1

RT
Gk

RGk )
−1 n

∑
k=1

RT
Gk
(DGk αGk ) (13)

in which DG and ΛG denote the concatenation of all DGk and αGk , respectively. RGk is actually an
operator that extracts the group iGk from the single image I, which means iGk = RGk (I). Additionally,
its transpose is denoted by RT

Gk
. n is the number of groups, and it is obvious that each patch corresponds

to a group. Like traditional sparse algorithm, group sparse model can be formulated into the following
minimization problem [25,26]:

(DGk , αGk ) = argmin
αGk

‖iGk − DGk αGk‖
2
2 + τ‖αGk‖1,2

‖αGk‖1,2 =
K
∑

i=1

√
α2

i,1 + α2
i,2 + . . . + α2

i,m

(14)

in which the group sparsity defined by a pseudo-matrix norm ‖αGk‖p,q is considered, and in the paper
set p = 1, q = 2. The group sparsity regularizer ‖αGk‖1,2 is the sum of standard deviations associated
with sparse coefficient vector. αGk = [α1, α2, . . . , αn] is the sparse vector, the sparse coefficients
αi = [αi,1, αi,2, . . . , αi,m] are the ith row of matrix αGk , and m = t + 1 denote t matched patches iks.
In this paper, we apply SVD to obtain the self-adaptive learning dictionary for each group to form
a standard low-rank approximation problem as [27], rather than a given dictionary D for the entire
image in the traditional sparse algorithm.

(DGk , ΣGk , VGk ) = argmin
DGk

ΣV
‖iGk − DGk ΣGk VT

Gk
‖2

2
+ τ

K
Σ

k=1
λi (15)

{
(DGk , ΣGk , VGk ) = SVD(iGk )

Σ̂Gk = Sτ(ΣGk )
(16)

in which Σ = diag{λ1, λ2, . . . , λK} K = min(m, n) is a diagonal matrix, and Sτ represents the soft
thresholding operation. The predicted denoised image is obtained by ÎG = DGΣ̂GVG.
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5.2. Union Group Sparse Method for the Smoothness Consistency of Different Sensor Images

Many researchers refer to the effect of noise on dense matching. Moreover, the mixed stereoscopic
image pairs are obtained by different TDI-CCD sensors with different designs (such as different storage
units, different sensor calibration) leading to different smoothness levels, which have more of an effect
on dense matching. We propose union group matrix to simultaneously suppress the noise of different
sensor stereoscopic image pairs for the same smoothness level, which makes use of extracting similar
patches in the group sparse model to build the relationship between two different sensor images.
The proposed method is as shown in Figure 2. The red * are sparse matching points by SIFT method.
The red square is the reference central image patch, and the green squares are the matched image
patches. Each patch is denoted by the vector. All the matched patches are stacked in the form of matrix
to construct the group. The two group matrices are obtained from the same objects of different sensor
images at the same time. The union group matrix is constructed by the two matrices with the similar
structure patches in the same objects, because the two different sensor images have similar grayscale
information after our illumination consistency method. In other words, the two diagonal matrices
have similar values. The sparse model is solved by the SVD, while the union group matrix can make
the sparse model use the same threshold union τ. The same threshold τ and the similar diagonal
matrices can make two different sensor reconstructed images keep the similar information, which can
obtain the same smoothness level images as much as possible.

In order to construct a union group matrix, the corresponding group matrices of two different
sensor images with similar patches are obtained at the same time. Assuming that, the two different
sensor images are s1 and s2. Any patch of the reference image s1 in the matching object areas are
considered as central patch. The rules that construct the union matrix mainly include the following
two points. (a) The central patches of s2 are obtained on the corresponding position with the distance
Dm apart from the central patch of s1 in the s2 image. The Dm is the highest frequency disparity in the
matching object areas. (b) The similar patches of the central patch are searched only in the matching
object areas. Therefore, the union group matrix is obtained by the two central patches and its own
similar patches from two different sensor images, which all belongto the same objects that have similar
structure information. The size of the patches is 64 and the number of the similar patches is 30 in
our paper.

The group sparse model as standard low-rank approximation problem is solved by SVD, whose
core problem is to determine the threshold τ of the singular value matrix. Following the paper [25],
for the given noisy image, the threshold τ can be τi = 2

√
2σ2

ω/σi. σi denotes the local estimation
changes, and σω is a given initial value denoting the global changes of the given image. The update
formula of σi and σω are shown as (17) and (18), respectively.

σ̂
(k+1)
i =

√
max((λ(k)

i )
2
/m− (σ

(k)
ω )

2
, 0) (17)

σ̂
(k)
ω = γ

√
σ2

ω − ‖Y−Y(k+1)‖l2 (18)

in which λi is the singular value of union group matrix, m is the number of columns in the union
group matrix, and Y is the original union image. Y(k+1) represents the estimated union denoised
image after (k + 1) iteration. The σi and σω of union group matrix are updated by the union image
updated. The same union threshold τ is used to threshold the singular value matrix of two original
group matrices, which can control the smoothness level of two different sensor images at the same
time. The final denoised images are obtained based on iterate regularized, which makes the filtered
noise of each iteration feedback to the image. It can be expressed as

y(k+1) = ŷ(k) + δ(y− ŷ(k)) (19)

in which y is the original image, and y(k+1) is the k + 1 iteration result.
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6. Experimental Results

6.1. Dataset Description

To evaluate the performance of the proposed method, we conducted three groups of experiments
on the mixed stereoscopic image pairs of different time and different sensor. The first and second
groups of data are both WorldView-2 and QuickBird images. The mixed stereoscopic image pairs are
from different time and different sensors. The study scene is different areas over San Francisco in the
USA. The WorldView-2 images were acquired on the 9 October 2011 with 0.5 m resolution, and the
QuickBird images were the 11 November 2007 with 0.6 m resolution. In our experiments, the images
were resampled to 0.5 m resolution. The last data is different temporal BJ-2 satellite images with 1 m
resolution over Beijing in China. The images were taken on different months in 2016 from 21st-century
space Technology Application Co., Ltd. (New Taipei City, Taiwan). All the experimental stereoscopic
image pairs have different illumination properties and some have different noise levels. The mixed
stereoscopic image pairs are processed to obtain radiation consistency for dense matching, which
demonstrates the efficiency and robustness of the proposed algorithm.

6.2. Comparative Experiment of Radiation Consistency for Multiple Mixed Stereoscopic Image Pairs

Figure 3 shows comparative experimental results of radiation consistency for three groups of
mixed stereoscopic image pairs consisting of different temporal and different sensors images. (1) in
Figure 3 shows the original mixed stereoscopic image pairs, and (2), (3) in Figure 3 show the results by
Zhang’s method [3] and by Zhong’s method [10], respectively. The results of our hierarchy radiation
consistency based on objects are shown as (4) in Figure 3. Figure 4 shows corresponding object
number mentioned in the experiments. Overall, the experimental results by three methods all obtain
better radiation consistency than the original mixed stereoscopic image pairs. In order to prove the
superiority of the proposed method for radiation consistency, we compare the experimental results
by our method with the other two methods. The two compared methods both belong to radiometric
normalization method. Zhang’s method proposed a two-layer illumination normalization method
for contrast and brightness, respectively. Zhang’s contribution is multilevel processing for different
illumination. Zhong’s method proposed hierarchical regression to build the linear relationship for
suppressing the negative effect of change pixels. The main contribution is to build more accurate
linear relationship for different temporal images. However, there are three obvious shortcomings
in the radiation consistency results of the two other methods. (1) The compared two methods only
focused on the radiometric normalization between the two images, and ignore the improvement of
the quality for every single image. As shown in Figure 3a, Object 1 obviously has a phenomenon
of overexposure, which leads to the reduction of the texture details itself and poor contrast in other
objects. Our method includes the processing of illumination uniformity to improve the details of
Object 1. (2) The two other methods have no processing for noise. From the Figure 3a,b, the similar
smooth level is obtained by our method for the mixed stereoscopic image pairs of different sensors.
Additionally, from Figure 3c, the quality is improved for the images of different times after our method.
(3) The application aims of the two methods are change detection and mosaicking. The two compared
methods mainly obtain grayscale consistency for the entire image. The aim of our method takes into
account the grayscale consistency of every object for dense matching in detail. As shown in Figure 3a,b,
Objects 2 and 3 obviously obtain the more similar radiometric properties using our method than the
other two methods, which will be very helpful for dense matching. The proposed method in the paper
comprehensively considered multiple radiation causes, which include illumination uniformity for
every single image, illumination normalization, and similar smooth level between stereoscopic image
pairs. It leads to our method having obvious advantages for radiation consistency recovery, especially
in object areas.
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Figure 3. The comparative experiment results of radiation consistency on the mixed stereoscopic image
pairs. (a) The different temporal QuickBird&WorldView-2 image pairs. (b) The different temporal
QuickBird&WorldView-2 image pairs. (c) The different temporal BJ-2 image pairs. (Note: (1) The original
images, (2) images by Zhang’s method, (3) images by Zhong’s method, (4) images by our method.)
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6.3. The Analysis of Radiation Consistency Based on Objects

From the subjective analysis above, the two compared methods can adjust the overall illumination
characteristics of stereoscopic image pairs to almost the similar level, while our method can recover
not only the entire images but also object areas to similar level for illumination consistency and
smoothness consistency. For the highly accurate 3D reconstruction, the grayscale consistency of object
areas is important for dense matching. This group of experiments used improved histogram similarity
for quantitative evaluation of the object radiation consistency. The formula of improved histogram
similarity is shown as (20).

C = 1−
[max(j)−min(j)] ·∑255

j=0|O1(j)−O2(j)|ξ j

2 · 255 ·M · ξmax
(20)

in which j is the value of grayscale, O1(j) and O2(j) denote the number of pixels whose grayscale
value are j, ξ(j) = |A− j|+ 1, A is the average value, ξmax = max(|A− j|+ 1), and M is the size of
the image. When the C value is closer to 1, the two object images own the higher the consistency of the
gray value distribution.

In order to reduce the influence of background information around the object areas, the minimum
external rectangle of every object is cut to be used. Additionally, the background regions are set to 0.
Table 1 shows the quantitative analysis of object radiation consistency, which is almost identical to the
subjective evaluation above. From the table, the grayscale consistency of object 1 has a larger increase
by our method than that by the two other algorithms. The main reason is that object 1 caused the
phenomenon of overexposure in the original stereo image pairs, which leads to all pixels maintaining
high gray level values and being in a small grayscale range interval. The results of the two methods
are still in a very narrow gray range, which constitutes lack of texture details and poor uniformity.
The improved histogram similarity increases penalties for image illumination uniformity, leading to
the obtaining of better objective evaluation using our method. Objects 2 and 3 have a large difference of
grayscale in the original image pairs. The compared methods mainly focus on the whole image, while
our method proposed an object-oriented idea. As a result, the two objects obviously obtained higher
radiation, consistent, experimental results using our method. Another point worth noting is that in
Objects 5, 6, and 7, the similarity radiation of some results by the two methods are even lower than
the original image pairs. This is due to the fact that global grayscale processing does not necessarily
achieve better radiation consistency in the object areas. It is proved that the proposed algorithm in this
paper has a great advantage and robustness in the recovery of radiation consistency in the object areas,
which is very helpful for dense matching of objects in the urban areas.
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Table 1. The quantitative analysis of radiation consistency based on objects.

The Original Images Zhang’s Method Zhong’s Method Our Method

Object 1
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6.4. Comparative Experiments of Dense Matching for the Mixed Stereoscopic Image Pairs 

Figure 5 shows dense matching results of the mixed stereoscopic image pairs, which are 
recovered by three radiation consistency methods. In Figure 5, green areas represent successful 
matching pixels, and blue areas are failed matching pixels and no matching pixels. The ground truth 
images of disparity map are shown as Figure 6. In the paper, when the difference between the 
matching results and the ground truth of disparity map is less than 1 pixel, the corresponding pixels 
are correct matching pixels that are labeled green. When the error is more than 1 pixel or the pixel is 
failed matching, that is labeled blue. From Figure 5, they are the matching results by the original 
mixed stereoscopic image pairs, after Zhang’s method, after Zhong’s method, and after our method. 

(1) (2) (3) (4) 
(a) The different temporal QuickBird&WorldView-2 image pairs. 
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6.4. Comparative Experiments of Dense Matching for the Mixed Stereoscopic Image Pairs

Figure 5 shows dense matching results of the mixed stereoscopic image pairs, which are recovered
by three radiation consistency methods. In Figure 5, green areas represent successful matching pixels,
and blue areas are failed matching pixels and no matching pixels. The ground truth images of disparity
map are shown as Figure 6. In the paper, when the difference between the matching results and the
ground truth of disparity map is less than 1 pixel, the corresponding pixels are correct matching pixels
that are labeled green. When the error is more than 1 pixel or the pixel is failed matching, that is
labeled blue. From Figure 5, they are the matching results by the original mixed stereoscopic image
pairs, after Zhang’s method, after Zhong’s method, and after our method.
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Figure 5. Comparative experiments of dense matching for the mixed stereoscopic image pairs.
(a) The different temporal QuickBird&WorldView-2 image pairs. (b) The different temporal
QuickBird&WorldView-2 image pairs. (c) The different temporal BJ-2 image pairs. (Note: (1) Dense
matching results by the original images; (2), (3), and (4) correspond to dense matching results by
Zhang’s method, Zhong’s method, and by our method, respectively.)



Sensors 2018, 18, 682 15 of 18

Sensors 2018, 18, x FOR PEER REVIEW  15 of 18 

 

    
(1) (2) (3) (4) 

(b) The different temporal QuickBird&WorldView-2 image pairs. 

(1) (2) (3) (4) 
(c) The different temporal BJ-2 image pairs. 

Figure 5. Comparative experiments of dense matching for the mixed stereoscopic image pairs. (a) 
The different temporal QuickBird&WorldView-2 image pairs. (b) The different temporal 
QuickBird&WorldView-2 image pairs. (c) The different temporal BJ-2 image pairs. (Note: (1) Dense 
matching results by the original images; (2), (3), and (4) correspond to dense matching results by 
Zhang’s method, Zhong’s method, and by our method, respectively.) 

 

Figure 6. The truth image of disparity in object areas by manual. 

From the subjective analysis, the correct matching rates of dense matching experiments are all 
relatively low. On the one hand, radiation quality between the two stereo image pairs still exists 
differences. On the other hand, it is the main reason that all the stereoscopic image pairs are different 
temporal images. Except for larger building objects, the background, roads, and some traffic have 
substantial changes, which lead to the changes in image content. In fact, the different contents cannot 
be matched, and the overall matching rates are all very low. Firstly, comparing (1) with  
(2)–(4) in Figure 5, the matching results after radiation consistency method are almost all better than 
the original generalized stereo pairs. As for the overall matching rate improved, it fully shows that 
the different radiation characteristics of the images have great influence on area-based dense 
matching. Secondly, comparing our method with the two other methods, the matching rates are 
obviously increased after our method, especially in the object areas. In the previous analysis, Objects 
2 and 3 obtain far higher grayscale consistency by our method than by the two other methods. From 
Figure 5, the corresponding results are also obtained in the dense matching experiments. The two 
compared methods are both global radiation correction methods and ignore the specificity of the 
objects. Correspondingly, hardly any pixels are matched successfully in Objects 2 and 3. However, 
the proposed method in the paper greatly improved the radiation consistency of objects to obtain a 
high correct matching rate for object areas. In conclusion, the experimental results show that our 

1 
2 

5 

6

7

8 
9 

3

4

Figure 6. The truth image of disparity in object areas by manual.

From the subjective analysis, the correct matching rates of dense matching experiments are all
relatively low. On the one hand, radiation quality between the two stereo image pairs still exists
differences. On the other hand, it is the main reason that all the stereoscopic image pairs are different
temporal images. Except for larger building objects, the background, roads, and some traffic have
substantial changes, which lead to the changes in image content. In fact, the different contents cannot
be matched, and the overall matching rates are all very low. Firstly, comparing (1) with (2)–(4) in
Figure 5, the matching results after radiation consistency method are almost all better than the original
generalized stereo pairs. As for the overall matching rate improved, it fully shows that the different
radiation characteristics of the images have great influence on area-based dense matching. Secondly,
comparing our method with the two other methods, the matching rates are obviously increased after
our method, especially in the object areas. In the previous analysis, Objects 2 and 3 obtain far higher
grayscale consistency by our method than by the two other methods. From Figure 5, the corresponding
results are also obtained in the dense matching experiments. The two compared methods are both
global radiation correction methods and ignore the specificity of the objects. Correspondingly, hardly
any pixels are matched successfully in Objects 2 and 3. However, the proposed method in the paper
greatly improved the radiation consistency of objects to obtain a high correct matching rate for object
areas. In conclusion, the experimental results show that our hierarchy radiation consistency method
is proposed to improve the dense matching ability of the mixed stereo image pairs, especially in the
object areas.

In order to further demonstrate the advantages of the proposed object-oriented hierarchy radiation
consistency algorithm on the dense matching of object areas, the quantitative analysis of correct
matching rate in each object area is presented. As shown in Figure 6, the truth image of disparity
in object areas is manually extracted. Additionally, the quantitative analysis of objects is shown
in Table 2. From Table 2, the quantitative analysis results are similar to the analysis of radiation
consistency based on objects. The correct matching rate of objects after radiation processing is almost
increased. The correct matching rate of Objects 1 and 2 by our method is more greatly improved
than the two compared methods. This is because Object 1 is overexposed to reduce texture details of
both Objects 1 and 2, which leads to the low correct matching rate. The advantages of our hierarchy
radiation consistency method include illumination uniformity to improve the radiation quality of
Objects 1 and 2 in detail. The correct matching rate of Object 3 is not much improved by the two
compared methods. The radiation consistency is failed to be recovered on Object 3 by the two
methods, because they mainly focus on the global radiation consistency for change detection and
image mosaicking. Our method is an object-oriented idea to recover more details for dense matching.
The lower correct matching rate of Objects 5 and 6 is obtained by all the three methods. This is because
the texture details of the original objects are relatively low, although the radiation consistency recovery
of the two objects is great. There is no obvious texture feature on the top surface of objects that results
in serious matching errors.
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Table 2. The correct matching rate in object areas.

Object Number Origial Images Zhang’s Method Zhong’s Method Our Method

1 0.074 0.111 0.062 0.449
2 0.000 0.064 0.063 0.737
3 0.060 0.176 0.240 0.821
4 0.597 0.577 0.602 0.619
5 0.271 0.033 0.293 0.376
6 0.124 0.013 0.131 0.327
7 0.345 0.126 0.345 0.505
8 0.602 0.607 0.612 0.613
9 0.510 0.473 0.682 0.699

7. Conclusions

In this paper, we have put forward a novel hierarchy radiation consistency method for the mixed
stereoscopic image pairs of different time and different sensor. Our work more fully considered
multiple influence factors of different temporal and different sensor data on dense matching, which
can control both the illumination consistency and the smoothness consistency. From the experiment
results, our method obtained better consistency than the other two methods, especially in the object
areas. Moreover, the dense matching experiment results proved once again that our method has a
great advantage at acquiring the better correct matching rate of the mixed stereoscopic image pairs in
object areas. The main contributions in the paper are summarized as follows:

1. A novel hierarchy radiation consistency method is proposed based on the comprehensive analysis
of different temporal and different sensor data. For the different temporal stereoscopic image
pairs, the illumination uniformity for single image and relative illumination normalization for two
images are both considered to obtain the illumination consistency images. For the different sensor
stereoscopic image pairs, different smoothness levels are solved by the proposed union group
sparse method. Our hierarchy method simultaneously controls the illumination consistency and
the smoothness consistency, which can be very helpful for dense matching.

2. The object-oriented method idea is proposed. The object extraction method and feature-based
sparse matching method are employed to build a relationship between the same object areas
in the mixed stereoscopic image pairs. Additionally, our radiation method can be carried out
in the corresponding object areas, which can obtain the radiation consistency images in more
detail. The object-oriented method idea is beneficial for the dense matching of building objects in
urban areas.

3. In the smoothness consistency step, a union group sparse method is proposed based on the
original group sparse model. The two different sensor images are improved to similar smoothness
levels by the same threshold of singular value.

In conclusion, we proposed the object-oriented hierarchy radiation consistency method first,
specifically for dense matching in the 3D reconstruction. The illumination consistency and the
smoothness consistency images are obtained using our method, which can improve the application
potential of different temporal and different sensor data in the 3D reconstruction field.
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