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Abstract: Compressive sensing (CS)-based data gathering is a promising method to reduce energy
consumption in wireless sensor networks (WSNs). Traditional CS-based data-gathering approaches
require a large number of sensor nodes to participate in each CS measurement task, resulting in high
energy consumption, and do not guarantee load balance. In this paper, we propose a sparser analysis
that depends on modified diffusion wavelets, which exploit sensor readings’ spatial correlation
in WSNs. In particular, a novel data-gathering scheme with joint routing and CS is presented.
A modified ant colony algorithm is adopted, where next hop node selection takes a node’s residual
energy and path length into consideration simultaneously. Moreover, in order to speed up the
coverage rate and avoid the local optimal of the algorithm, an improved pheromone impact factor
is put forward. More importantly, theoretical proof is given that the equivalent sensing matrix
generated can satisfy the restricted isometric property (RIP). The simulation results demonstrate
that the modified diffusion wavelets’ sparsity affects the sensor signal and has better reconstruction
performance than DFT. Furthermore, our data gathering with joint routing and CS can dramatically
reduce the energy consumption of WSNs, balance the load, and prolong the network lifetime in
comparison to state-of-the-art CS-based methods.

Keywords: compressive sensing; wireless sensor networks (WSNs); diffusion wavelets; ant colony
algorithm; data gathering

1. Introduction

Wireless Sensor Networks (WSNs) generally consist of a large number of sensor nodes and a
sink node deployed in the detected environment to monitor various physical characteristics of the
real world, such as temperature, voltage, wind direction, and so on. Furthermore, WSNs should
have a long enough lifetime to successfully fulfill the monitoring task. However, sensor nodes are
limited in terms of computational ability, communication bandwidth, and energy availability. In many
cases, such as where there is an inaccessible or hostile field, a battery is difficult to recharge [1].
Therefore, how to gather sensor network data in an energy-efficient way becomes the crucial problem
in practical applications. For instance, [2] indicates the importance of promoting the efficiency of
intra-car multihop WSNs.

A great many research works have addressed energy-efficient challenges for WSNs from the
point of view of sleep schedule [3], topology control [4], area coverage [5], mobile sink [6], and data
gathering [7]. However, the core of the study is to take advantage of data-gathering and routing
algorithms in WSNs to promote network performance and balanced load.
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We can leverage the spatial characteristics in sensor node readings from real deployments, which is
an essential technique to decrease data transmission costs while preserving relatively high recovery
accuracy in the sink node [1]. In other words, the spatial correlation property of a sensor node leads to
inherent data sparsity in some areas, such as wavelet domain and DCT domain. In order to solve the
sparsity of such signals, compressive sensing (CS) is exploited as a novel signal-processing paradigm
that provides an efficient compressive method and recovers sparse or compressible signals [8–11].

In recent years, a large number of CS-based techniques have been investigated to gather data
on WSNs [12–19]. However, most of the current CS-based methods neglect the topology structure
or property of sensor node readings, such as spatial characteristics. Therefore, the performance of
the algorithm is limited. In this paper, the spatial property of sensor node readings is exploited
to strengthen the performance of networks, considering the topology structure and sensor nodes’
distance. Thus, we take advantage of spatial correlations of sensor node readings to further promote
the efficiency of the data-gathering algorithm.

So far, various CS-based data-gathering schemes have been presented to promote the networks’
efficiency for data gathering in WSNs [12–15]. (See Section 2 for more details.) For instance, [12] proposes
a data-gathering scheme that diminishes the bottleneck of the sink in WSNs. In [13], the spatial
correlation of sensor node readings is leveraged to improve the performance of WSNs. Wu et al.
propose a sparsest representation basis, which makes full use of the spatial property of sensor node
readings [14]. Quer et al. introduce a framework for data gathering considering CS and principal
component analysis (PCA) simultaneously. In this scheme, the spatial characteristics of sensor node
readings are utilized to enhance the recovery accuracy [15].

The routing protocol in data-gathering schemes has also attracted much attention in the past few
years [16–19]. In [16], multi-chain CS-based data gathering is presented by considering the routing
protocol from the sensor nodes to the sink of WSNs. A special routing algorithm corresponding to the
topology structure is given in [17]. In [18], a random walk routing approach is introduced to reduce the
energy consumption of the whole network. In [19], Xie et al. propose a cluster-based routing algorithm
for data gathering in WSNs. However, these approaches do not consider the property of sensor node
readings. Additionally, the optimal routing algorithm is not considered.

In this paper, a sparser basis based on improved diffusion wavelets is provided, aiming to exploit
the sensor node’s spatial correlation features. Moreover, a novel data-gathering algorithm with joint
CS and modified ant colony routing is presented. More specifically, the contributions of this paper are
as follows.

• Improved diffusion wavelets are used as the basis for data gathering, which makes full use of
sensor nodes’ spatial correlations;

• A sparse measurement matrix is used, where the non-zero components of each row denote the
offspring nodes of one projection node, which only requires a fraction of nodes to participate in
each measurement task, leading to a dramatic decrease in the energy consumption.

• Modified ant colony routing compressively considering the next hop sensor node’s residual
energy and path length is proposed; to speed up the algorithm coverage ratio and avoid a local
optimal, the pheromone impact factor is improved. Furthermore, a novel data-gathering scheme
that integrates MST (Minimum Spanning Tree), modified ant colony routing, and compressive
sensing is provided;

• Theoretical proof is shown on the equivalent measurement matrix to satisfy the RIP.
• The superiority of our approach is demonstrated by numerical experiments with synthetic and

real sensor data. The simulations show that our sparse basis sparsity the signal. In addition,
our approach can accurately reconstruct the original signal, thereby reducing the energy
consumption of WSNs and balancing the network load.

The reminder of this paper is organized as follows. First, in Section 2, related work is introduced.
Section 3 discusses preliminaries on CS theory and the system model. Section 4 analyzes a lot of
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WSNs datasets and signal spatial correlation characteristics. Furthermore, the proper sparse basis is
designed using a modified diffusion wavelet. Moreover, it provides the modified ant colony routing
algorithm. In addition, we describe a novel compressive data-gathering algorithm with joint improved
ant colony algorithm and MST. Section 5 proves that the equivalent measurement matrix satisfies the
RIP. The numerical results of synthetic and real datasets are analyzed in Section 6. Conclusions and
future work are given in Section 7.

2. Related Work

Recently, numerous CS-based data-gathering approaches have been provided to increase the
network’s lifetime by decreasing the amount of transmission data and balancing load of the whole
WSNs [12,13,20,21]. Luo et al. first analyzed the CS-based data-gathering scheme (plain CS) in
large-scale WSNs, namely, compressive data gathering (CDG) [12]. In [12], Luo et al. prove that the
network capacity is proportional to the sparsity level of sensor node readings. However, this method
also demonstrates that an increase in the number of measured samples leads to growth of transmission
costs compared to the non-CS approach. CStorage [13] exploits the spatial correlation of sensor node
readings along with CS to reduce the number of transmission data points, aiming at prolonging
the WSNs’ lifetime. Bajwa et al. introduce compressive wireless sensing, whereby a distributed,
matched-source channel communication architecture was proposed for energy-efficient estimation of
sensor node readings [20]. However, sensor node readings’ spatial correlation features in [20] are not
considered. The authors of [21] show that hybrid CS can achieve high network throughput, while plain
CS may not yield a significant improvement in throughput because of the dense measurement matrix.

Up to now, the interaction between routing and compression data gathering has seriously
hindered the progress of CS in WSNs [12,22]. These data-gathering methods jointly use routing
and CS to mitigate the data throughput. The authors of [22] address the data collection problem in
WSNs, with routing used in combination with CS to transmit random data projections. However,
this technique demonstrates that a sparse measurement matrix not only deviates from RIP property,
but does not minimize transport energy consumption for each CS measurement. Nevertheless, in [12],
Luo et al. claim that measurement matrix [I R] has good RIP; in addition, CDG can further reduce
communication costs for both chain-type and tree-type routing. Alternatively, this method requires a
large number of sensor nodes involved in each projection gathering, bringing about high transmission
costs. To significantly reduce data traffic and save power, distributed multi-chain compressive sensing
based on a routing algorithm in WSNs is presented. However, the measurement matrix is still a
dense measurement matrix [16]. In [23], a distributed sparse random measurement is proposed,
where the sparse or compressible signal can be recovered. Wang et al. consider that some sensor
nodes instead of all of them are required in each measurement. Furthermore, the authors of [23]
show that sparse random projection significantly enhances network performance. The communication
costs can be reduced to O(log N) packets per sensor, but this strategy utilizes random routing in the
networks, which mitigates the energy efficiency of WSNs. In [14] a sparest random scheduling for
compressive data gathering in WSNs is provided to satisfy RIP property; a sparse basis is designed
based on the measurement matrix and sensor node readings. The scheme claims that it can achieve
good results in real datasets, but the routing is not considered. Routing and CS are also incorporated
into [17], which considers special random routing of a given network topology. However, sensor nodes’
compressible ration and routing schemes considerably affect the transport costs. In fact, this method
is impractical since sensor nodes are randomly deployed in the field of WSNs applications. In [18],
Zheng et al. introduces an algorithm based on a random walk that is independent of network
topology. Nevertheless, those techniques in [14,17,18,23] suffer from the fact that the routing of the
projection to the sink node is not optimal, which leads to an extra transmission bottleneck for the
sensor nodes near the sink node in WSNs. [19] follows the dense matrix used in [12] and hybrid CS
in [21]; a cluster-based data-gathering scheme is proposed. This method indicates that it reduces the
transport cost and balances the traffic load of the network, but the same issue of a dense matrix exists
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in [19]. Furthermore, there is no theoretical proof that the equivalent measurement matrix satisfies the
RIP in [19].

Existing CS-based data-gathering algorithms adopt random, chain-type and tree-type routing
in which numerous sensor nodes participate in each measurement. However, few studies take into
account optimal routing in CS-based data gathering. Moreover, design the sparse basis does not make
full use of the spatial correlation of the sensor nodes and network topology. In addition, there is no
theoretical guarantee that the equivalent sensing matrix obeys RIP in most research works.

3. Preliminaries

3.1. CS Theory

CS is a novel technique that is used to compress and recover an original signal when it has sparse
representation in some domains. As above, we consider the sparse signal X ∈ RN , describing the
sensor node readings in WSNs with N nodes. is represented as follows:

X = ΨS =
N

∑
i=1

ψisi, (1)

where Ψ = [ψ1, ψ2, . . . , ψN ] ∈ RN×N is some basis matrix, and S ∈ RN is coefficient vector. When can
be represented as a linear combination of K column vectors of Ψ with K � N, it means that the signal is
K-sparse, which demonstrates that it has only K nonzero components or (N − K) smallest components
can be ignored. In this case, Ψ is referred to as the sparse basis. Thus, the information can be
compressed by simple linear projection. This projection matrix Φ ∈ RM×N is an M× N measurement
matrix, Y ∈ RN is the measurement vector, and K < M < N. The compressed measurements can be
described as

Y = Φx = ΦΨS = AS, (2)

where A denotes the equivalent sensing matrix.
The measurement matrix needs to satisfy the RIP conditions [24].

Definition 1. (RIP [10,11]): A matrix Φ satisfies the restricted isometric property of order K if there exists a
δK ∈ (0, 1) such that

(1− δK)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δK)‖x‖2
2 (3)

for all K-sparse vectors S ∈ RN .

However, the reconstruction of the original signal x from y is a problem. Candès and Tao [9] and
Donoho [10] have shown that signal X can be reconstructed via `1 as

∧
x = argmin

x
‖x‖1 s.t. Y = ΦX, (4)

where Φ satisfies RIP and M ≥ O(K· log(N/K)), X can be recovered successfully with high
probability. In addition, there are a large number of reconstruction algorithms such as the basis pursuit
(BP) algorithm [24], orthogonal matching pursuit (OMP) algorithm [25], CosaMP [26], Stage-wise
Orthogonal Matching Pursuit (StOMP) [27], gOMP [28], and so on.

3.2. System Model

We describe WSNs where N sensor nodes are randomly deployed in a square area. The system
model is represented by a connected graph G(V, E), where the vertex set V denotes the nodes in
the networks, and the edge set E denotes the wireless links between the different nodes. Node i
can communicate with node j if they are involved in the communication range. We assume that
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the single hop distance di j between node i and node j can be represented as a Euclidean distance.
At a sampling instant, each sensor node i takes a measurement xi; the goal of the data gathering in
WSNs is to collect sufficient information to reconstruct the N-dimensional signal X = [x1, . . . , xN ]

T .
In this paper, the energy consumption model is similar to that in [29], namely, Equation (5) and
Equation (6). When the distance between transmission node i and receive node j is greater than
d0, the multi-path fading model is utilized. When the distance is less than d0, the free-space model
is adopted.

ETi(L, d) =

{
Eelec × L + Eamp × L× d4, d ≥ d0

Eelec × L + E f s × L× d2, d < d0
(5)

ER j(L) = Eelec × L, (6)

where ETi(L, d) and ER j(L) describe the energy consumption of transporting and receiving the L bit
data packet. Eelec denotes the power expended to run the transmitter or receiver circuitry of the sensor
node. Eamp and E f s represent energy consumption for a multi-path fading amplifier and free-space
amplifier, respectively.

4. Our Proposed Algorithm

4.1. Datasets

The spatial correlation features among the different sensor nodes, which can be exploited to
considerably reduce transmission costs in WSNs in [15] by analyzing the signal features utilizing PCA
technique. However, in this paper, we follow the information theory as in [30] to evaluate spatial
correlation characteristics of real sensor nodes’ data in WSNs. The entropy concept in information
theory denotes the information involved in datasets. We investigate the properties of the signal in
view of the spatial marginal and conditional entropy because the gap between marginal entropy
and conditional entropy demonstrates data compressibility. We extract five different matrixes from
DEI [31], IntelLab [32], LUCE-EPFL [33], CitySense [34], and OrangeLab [35], which are deployed in
campus, indoor, and urban city environments. These data features are summarized in Table 1.

Table 1. Details of datasets in WSNs.

Name Time Period Physical Signal Matrix Size Frame Length

LUCE-EPFL 12–15 January 2007 Temperature, Humidity, Solar Radiation,
Wind, Water 81 nodes × 856 5 min

IntelLab 28 February 2004–5 April 2004 Temperature, Humidity, Light, Voltage 54 nodes × 500 30 s
CitySense 14 October 2009–21 November 2009 Temperature, Wind 8 nodes × 887 60 min

DEI 19–22 March 2009 Temperature, Humidity, Light 29 nodes × 781 5 min
OrangeLab 26–27 August 2008 Temperature, Light, Voltage 75 nodes × 65 15 min

Let xi,t represents the i sensor node readings at slot t. The signal can also be expressed using
matrix-type Equation (7), where the rows are the ith sensor node readings and the columns are sensor
node readings at t slot.

X =


x0,0 . . . x0,t . . . x0,T−1

x1,0 . . . x1,t . . . x1,T−1

. . . . . . . . . . . . . . .
xN−1 . . . xN−1,t . . . xN−1,T−1

 (7)

4.1.1. Spatial Marginal and Conditional Entropy

Sensor node readings are different from the signals of a 2D image, which has a discrete sequence
range from 0 to 255, while the signal collected from WSNs is continuous. Therefore, we need to
preprocess the signals before calculating spatial marginal and conditional entropy. Take temperature
sequence [24.23 24.66 24.75 23.65 23.70 24.12 22.78 22.23 22.16 22.96 21.29 21.11] for example: the data
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can be divided into Q equal sections (select proper equal sections depending on the real data; here, Q is
4); we calculate the occurrence probability per section so that the marginal entropy yield is 1.9591 bits.

The spatial marginal entropy is defined as the entropy of different nodes sensing the state
at slot t. Suppose αk is the occurrence frequency of state zk in the t column Zt. The probability
of P(zk), spatial marginal entropy H(Zt), and conditional entropy H(Zi,t

∣∣Zj,t) are expressed by
Equations (8)–(10) respectively:

P(zk) = lim
N→∞

αk
N

(8)

H(Zt) = −
Q−1

∑
t=0

P(zt)· log2 P(zt) (9)

H(Zi,t
∣∣Zj,t) = H(Zi,t, Zj,t)− H(Zj,t). (10)

4.1.2. Spatial Compressibility

In this section, we pick up two temperature subsets from LUCE-EPFL and CitySense that are
representative of the other datasets to approximately estimate spatial marginal and conditional entropy.
The cumulative distribution functions (CDF) are provided in Figures 1 and 2. In Figure 1, the red
star curve represents CDF of marginal entropy, while the blue triangle curve is CDF of conditional
entropy on LUCE-EPFL datasets. As can be seen in Figure 1, the values of marginal and conditional
entropy are less than 3 bits. It is worth noting that conditional entropy is only about 0.7 bit. There is
a big gap between the CDF curve of conditional entropy and the CDF curve of marginal entropy,
which demonstrates that data storage space can be compressed considerably. Similarly, in Figure 2,
the CDF of conditional entropy from CitySense is much smaller than that of marginal entropy. The same
phenomenon with CitySense indicates the spatial compressibility of the sensor nodes’ readings in
WSNs. We especially study five different datasets divided into classes based on the physical conditions
and calculate the marginal entropy per signal. The results are recorded in Table 2. In Table 2, the first
column indicates the marginal temperature entropy of different datasets. The entropy range is 2.5 bit to
3.1 bit. The other columns are humidity, solar radiation, wind, water, light, and voltage. The minimum
marginal entropy is 0.592 bit of DEI light, while the maximum is 3.256 bit of CitySense wind in general.
Therefore, it is inadvisable to store sensor node readings with 32 bit or 64 bit, that is to say, sensor node
readings are compressible to some extent.Sensors 2018, 18, x  7 of 26 
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Table 2. Analysis of the marginal entropy (in bits) of different datasets in WSNs.

Name Temperature Humidity Solar Radiation Wind Water Light Voltage

LUCE-EPFL 2.971 2.810 2.450 2.484 2.991 — —
IntelLab 2.543 1.629 — — — 2.151 1.015

CitySense 3.034 — — 3.256 — — —
DEI 2.589 2.510 — — — 0.592 —

OrangeLab 2.832 — — — — 1.193 1.836

4.2. Modified Diffusion Wavelets

Conventional CS-based data-gathering approaches generally assume that sensor node readings
have perfect sparse features under FFT, DWT, DCT, etc. To make full use of the spatial correlation
property, which is demonstrated by experiments in Section 4.1, we take diffusion wavelets [36] as the
sparse basis considering the spatial correlation of sensor node readings in WSNs. One is the nodes
degree, and the other is the distance between the different sensor nodes. In addition, an improved
QR decomposition of Givens transform is introduced to set up the sparse basis. Then, we describe
how to construct the modified diffusion wavelets in detail. However, diffusion wavelets are affected
significantly by the diffusion operator, which is equivalent to the wavelet function of a discrete wavelet
transform. Diffusion is utilized as a smoothing and scaling technique to enable multi-scale and
coarse-grained application. The detailed steps are shown in Algorithm 1.

Step 1: Suppose that G(V, E) denotes a graph with N sensor nodes deployed in the monitoring
environment, as indicated in Section 3.2. Diffusion wavelets are introduced to set up an orthonormal
basis for functions supported by the topology graph of WSNs. In this section, we take a random
deployment of WSNs to explain this process. WSNs’ topology of 640 sensor nodes is shown in
Figure 3. In Figure 3, the hexagram vertex represents the sensor node, while the blue edge denotes the
wireless link.
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Step 2: Calculate the weight adjacency matrix of G(V, E), which is denoted as Ω =
[
wi,j
]
.

wi,j is the weight of the edge in the graph. In this section, we consider two different cases of weight.
The sensor node degree is chosen as the weight in the first scheme, while the distance between sensor
nodes is taken into consideration to exploit the spatial correlation features, aiming to mitigate the load
of WSNs in another scheme. In the former case, we show an example of a graph and corresponding
weight adjacency matrix in Figure 4. In the latter case, the weight function is given below in Equation
(11), which follows a similar method to [37].

wij =

{
dγ

ij , i 6= j, dij ≤ r
χ , otherwise

, (11)

where r is the maximum distance among the sensor nodes that can directly communicate by a single
hop. dij is the Euclidean distance between node i and node j. γ is a negative number, while χ is a small
positive number.
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Step 3: Generate a normalized Laplacian matrix of G(V, E): Λ = [λij]. In [38], Chung et al.
indicates that Λ is the degree of correlations among different function values provided at the vertices
of the graph G(V, E). In the first schedule, we denote λij using Equation (12), while the other schedule
considering spatial correlation implements Equation (13). Generally speaking, an eigenvalue or
eigenvector shows the special correlations at some scale. We need to split the space of Λ if we
decompose the signal sampled of the G(V, E) in a multi-scale.

λij =

{
1, i = j
− wij√

∑u wiu∑u wuj
, otherwise (12)
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λij =


1− χ

∑u dγ
iu

, i = j

−
dγ

ij√
∑u dγ

iu∑u dγ
uj

, otherwise
(13)

Step 4: However, the diffusion operator O stems from Λ, where O shares the same eigenvalues
as Λ (less than 1). The diffusion operator is O = I − Λ or O = Λ/2; in this paper, we choose the
first expression.

Step 5: Consequently, recursively raise O to power 2, and delete the diminishing eigenvalues
with a threshold. Step by step, this approach splits the space spanned by the eigenvectors. Let the
initial space of O be x0 = RN , which is represented by scale space {xj

}
j∈N and wavelet space

{
Vj
}

j∈N .
Wavelet space Vj is different between xj and xj+1. Then, we derive Equation (14):

xj+1 = x0 ⊕V0 ⊕V1 ⊕ · · · ⊕Vj. (14)

Here, steps 5.1–5.5 accomplish the modified QR decomposition, where [O]xb
xa

indicates the column
space of matrix O denoted by basis xb at scale b, and row space is denoted by basis at scale a,
[xb]xa

represents basis xb denoted on the basis xa.
Step 6: In the end, the diffusion wavelet basis Ψ is the concatenation of the scale functions and

wavelet functions.

Alogithm 1 Modified diffusion wavelets.

Input: the number of sensor nodes N, communication radius r, decomposition level η, precision ε and
MQR function.
Output: sparse basis Ψ.
1 generate a graph G(V, E)
2 compute weight adjacency matrix Ω = [wi j] according to the vertex degree/Equation (11)
3 calculate normalized Laplacian matrix Λ relying on Equation (12)/Equation (13)
4 generate diffusion operator O = I −Λ
5 recursively raising O to power 2

5.1 for η= 0 to η − 1
5.2 [xj+1]xj

, [O]x1
x0
← MQR([O2η

]
xj
xj

, ε)

5.3 Oj+1 := [O2η+1
]
xj+1

xj+1
← [xj+1]xj

[O2η+1
]
xj

xj
[xj+1]

∗
xj

5.4 [Ψη ]xj
← MQR(I〈xj〉 − [xj+1]xj

[xj+1]
∗
xj

, ε)

5.5 end for
6 concatenation of the scale functions and wavelet functions is regarded as the sparse basis Ψ.
MQR Function:
Q, R← MQR(B, ε)

Input: B: N × N sparse matrix, ε

Output: Q, R matrix, possibly sparse, such that B =ε QR
(1) Q is orthogonal
(2) R is upper triangular up to a permutation
(3) The columns of Q ε-span the space spanned by the columns of B

Figure 3 denotes the topology of 640 nodes of WSNs, and also represents some scale functions.
To visualize the wavelets’ function, we plot Figures 5 and 6 using the first scheme (Equation (12))
and the second scheme (Equation (13)), respectively. Figure 5a introduces the second-level wavelet
function, while Figure 5b is the 10th-level wavelet function for the former schedule. Figure 6 represents
the second schedule considering the spatial correlation of sensor node readings in WSNs. Figure 6a,b
indicate first- and 10th-level wavelet functions, respectively. Obviously, the second scheme is set up on
a sparser basis, for it can capture the sensor node’s relationship and network topology properties and
thus gain valuable information from the real world.
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4.3. Modified Ant Colony Routing Algorithm

In this paper, in order to decrease the whole network transmission load and prolong the network
lifetime, we provide a modified ant colony routing algorithm, where to speed up the convergence rate
and avoid local optimal of the algorithm, pheromone impact factor is improved. Here, we select the
energy consumption model described in Section 3.2. The traditional ant colony optimization algorithm
selects the next hop depending on Equation (15) [39]:

pϑ
ij =


[τij(t)]

ς [ρij(t)]
ξ

∑
υ⊂allowedϑ

[τiκ(t)]
ς [ρij(t)]

ξ , j ⊂ allowedϑ

0, others
, (15)

where τij(t) denotes the pheromone information on edge (i, j), while ρij(t) is the heuristic information
on edge (i, j). ς and ξ are impact factors demonstrating the importance degree of the pheromone
information and heuristic information. In order to speed up the convergence rate and avoid local
optimal, impact factor ς is modified as in Equation (16):

ς = µ(1 + e−10×(iter/totiter)10
), (16)

where µ is a small positive constant ∈ (0, 1]; iter and totiter refer to current iterations and total iterations,
respectively. In Equation (16), ς gradually becomes smaller as the number of iterations increases.
In other words, the proportion of pheromones will diminish when the number of iterations rises.
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Figure 6. Wavelet functions of the second scheme: (a) First-level wavelet function; (b) 10th-level
wavelet function.
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Furthermore, to yield optimal routing by the ant colony algorithm, in this subsection, a sensor
node’s residual energy and path length are taken into consideration simultaneously. So, the fitness
value of each routing is presented as follows:

Fitness = β(Eave × Emin) + σLen−iter
ϑ , (17)

where Eave indicates the average residual energy, while Emin represents the node minimal energy of
ants passing through the path. Len−iter

ϑ denotes the reciprocal of path length for given ϑth ant and
iterth iterations. β and σ are ∈ [0, 1] constants, and β + σ = 1. Consequently, the path with the largest
fitness function value is chosen as the optimal routing, thus balancing the network load and prolonging
the network lifetime. Specifically, the modified ant colony algorithm is shown in Algorithm 2.

Algorithm 2. Modified ant colony algorithm.

Input: the number of sensor nodes N, the power expended to run the transmitter or receiver circuitry of
sensor node Eelec, energy consumption of multi-path fading amplifier Eamp, energy consumption of free-space
amplifier E f s, distance threshold d0, impact factors of pheromone information ς, impact factors of heuristic
information ξ, µ is a small positive constant ∈ (0, 1], pheromone information on edge (i, j)τ, heuristic
information on edge (i, j) ρ, β and σ are ∈ [0, 1] constants.
Output: optimal routing Routing.
1 Initialization routing R(Path, iter, ϑ), energy for each node and tabu
2 calculate distance dij of different nodes, ρij = 1/dij
3 while maximum iterations has not be reached
4 for ϑ=1: Θ′

5 compute allowedϑ according to the node communication radius.
6 generate transition probability pϑ

ij based on Equations (15) and (16)

7 choose the next hop node, relying on pϑ
ij, modify routing and tabu

8 the destination node or not? If not, go back to step 2, or proceed to step 9
9 update the node residual energy based on Equations (5) and (6), routing depending on Equation (17)
10 end for
11 end while
12 return the optimal routing Routing.

4.4. Compressive Data Gathering

WSNs are utilized for gathering physical signal from the real world in practical applications.
Without using CS theory, which is the simplest method, a data-gathering scheme with the help of
the tree topology is shown in Figure 7a. In order to dramatically decrease communication costs and
prolong the network lifetime, the authors of [12] consider that the sink node receives only M packets
instead of N packets of original data from the whole network. In the end, at the sink, CS theory is used
to reconstruct the original data. For the CDG algorithm, each node in the WSN multiplies its readings
xj using the corresponding j column vector of basis matrix Φ. Next, the sensor node adds them to its
own readings after receiving all same-size vectors from descendent nodes and transmitting the final
results to its parent node with M packets. Let us illustrate the product of CDG in Figure 8, where Φ
is M× N matrix, and each column corresponds to one weight sum. In the plain CS [11], all nodes in
WSNs transmit M packets and each has equal transmission costs; therefore, each CS measurement cost
remains relatively high. An example of the plain CS mechanism is given in Figure 7b. It is obvious
that for these approaches (non-CS and plain CS), the former transmits fewer packets compared with
plain CS from the point of view of child nodes. In [14], Wu et al. provides the hybrid CS method,
where non-CS is chosen when the number of packets is less than or equal to M; alternatively, plain CS
is used. Figure 7c illustrates the idea of hybrid CS. In Figure 7c, thin circles indicate a forward node
using non-CS, while thick circles denote the gathering node using plain CS.
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4.5. Data Gathering with Sparse Random Projections

The aforementioned methods (plain CS and hybrid CS) still experience great challenges for all
nodes involved in each measurement; in other words, the two mechanisms follow the dense matrix.
Therefore, Wang et al. [23] propose a distributed data-gathering algorithm according to sparse random
projections. In this algorithm, M nodes are randomly chosen to collect M weight sums in WSNs.
Each projection sensor node collects one weight sum. Now, we explain how to accomplish data
gathering in detail by means of Figure 9. Suppose that node 5 is a projection node, and φij 6= 0 of
nodes 10, 15, 20, and 26. Then, node 5 initializes the projection by querying nodes 10, 15, 20, and 26.
These nodes reply to node 5’s query with their readings xj in one packet. Finally, node 5 gathers all the

data with its own data:
N
∑

j=1
φijxj and transmits them to the sink node via the shortest path. Meanwhile,

the transmission costs for each measurement reduce dramatically from O(N) in a dense matrix to
O(log N) in a sparse random matrix.
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4.6. A Novel Data-Gathering Scheme with Joint Routing and CS

Obviously, according to the analysis, the network load in hybrid CS is unbalanced. Specifically,
sensor nodes near the sink node will consume more energy than those far from the sink node
because of forwarding data more times. This results in sensor nodes near the sink dying earlier.
However, [23] does not consider the total network costs for each random projection. To avoid the
drawbacks, one can leverage the advantages of the algorithms; in this section, we present our
data-gathering strategy combining joint routing and CS.

Firstly, randomly choose M projection nodes in the network with probability M
N ,

which follows [23]. In the CS theory, the sink node needs M measurements to reconstruct the
original data. Therefore, these M projection nodes will be selected as the gathering node, defined as
g1, g2, . . . , gm, to collect one random measurement yi, and transmit yi to the sink node. Then, distribute
non-zero elements in each row of measurement matrix Φ as uniformly as possible to guarantee the
sparse features of the measurement matrix; the number of non-zero elements in each row should equal
to
⌈

N
M

⌉
, which is related to Algorithm 3’s step 1. Additionally, each column of measurement matrix

represents a sensor node, so if a column of the matrix has full zero elements, the data from its special
sensor node should be thrown away. φi, the column vector of measurement matrix Φ is required to
store each sensor node memory in advance. Now, an example of measurement matrix is given in
Equation (18), where M = 5, and N = 10.

Secondly, each row φg1 of measurement matrix Φ corresponds to one projection node. However,
the number of each row coefficient is N, which is assigned to the size of network. φi j 6= 0 indicates
that jth candidate nodes belong to the ith projection node’s. Here, this subsection corresponds to step
3 in Algorithm 3.

Φ =


0 0 0 φ1,4 0 φ1,6 0 0 0 0

φ2,1 0 φ2,3 0 0 0 0 0 0 0
0 0 0 0 φ3,5 0 0 φ3,8 0 0
0 0 0 0 0 0 φ4,7 0 0 φ4,10

0 φ5,2 0 0 0 0 0 0 φ5,9 0

 (18)

Subsequently, we set up the routing, which is from the offspring sensor nodes to the projection
nodes and the projection nodes to the sink node, respectively. Based on the MST algorithm, access all
candidate sensor nodes of a given projection node. In the first stage, the projection node is considered
one root node tree. In the step 4 initialization stage in Algorithm 3, Treei is assigned by i, and the
temporary variable temp also yields i. Then steps 5–12 use the MST algorithm to construct the tree,
adding the candidate nodes step by step. If temp is not empty, step 6 deletes the top node of the temp
queue and puts its neighbor node in the Tree and temp. The next step is to delete them from Cani if
they belong to Cani. Note that these candidate nodes must be directly connected to the parent node by
a single hop. If there are still some candidate nodes not involved in the tree, the Dijkstra algorithm [40]
is proposed, aiming to find the shortest path from the residual nodes to the tree (steps 14–19), and we
add the residual candidate nodes (steps 20–22).

Finally, this loop of 13–26 lines will repeat until Cani is empty. The modified ant colony routing
technique is utilized to transmit packets of projection nodes to the sink node, namely step 27 of
Algorithm 3. Consequently, Algorithm 3 terminates by generating the optimal routing between the
projection nodes and the sink node, and an M routing tree from the projection nodes to their own
candidate nodes. Our novel algorithm (Algorithm 3) is shown in more detail. The modified ant colony
algorithm jointly considers the sensor node’s residual energy and the path length, which will not only
balance the whole network load, avoiding nodes near the sink node dying earlier, but will prolong
the network lifetime. In this way, the transmission costs should be greatly decreased compared to
hybrid CS.
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Figure 10 is taken as an example to describe the details of Algorithm 3. It can be seen from
Figure 10 that the thick circle indicates a projection node, the thin circle is a sensor node, the arc
with an arrow represents the routing from the projection node to the sink node, and the dashed line,
solid line, dotted and dashed line, and thick line describe four different projection routings. Sensor
nodes 6, 12, 26, and 39 are chosen as projection nodes in the networks. Suppose that node 39 is the
projection node in projection 4 routing, which has non-zero coefficients 9, 11, 20, 28, 31, 32, 33, 34,
35, 38, 39 of row vector φ4 in the measurement matrix. Here, projection node 39 wants to establish
a tree using Algorithm 3. Above all, node 39 considers itself a tree with only one node. Select its
neighbor nodes 33 and 34, which can be directly coupled with node 39 by a single hop in the following
step. Next, node 33 retrieves candidate node 32 as its neighbor node, so node 32 is added to the
tree, while node 34 finds node 28 is also its neighbor node; similarly, node 28 is involved in the tree.
However, in the coming stage, there are no candidate nodes directly connected with the tree. Therefore,
the Dijkstra algorithm is utilized to find the shortest path from the residual candidate nodes to the
generated tree. Then nodes 31 and 38 are all joined to the tree, and nodes 35 and 36 are linked to
node 28 by the shortest path. Again, nodes 20, 9, and 11 are involved in the tree using the MST
algorithm. Finally, node 39 queries an optimal routing to the sink node for the projection node 39,
which is 39→ 33→ 25→ 18→ 8→ Sink , rather than 39→ 19→ 26→ 11→ 2→ Sink using the
Dijkstra algorithm. The reason is that the modified ant colony chooses the next hop considering not
only residual energy but also path length. So, node 33 chooses node 25, which has more residual energy
compared with node 19. The same reasoning is applied to node 25 and node 18. Node 1 near the
sink node forwards data many times from the other nodes, leading to considerable energy reduction.
Therefore, in order to ease the burden on the network, node 8 chooses a direct path to the sink node,
instead of node 1, although node 1 is actually the shortest path. Similarly, the routing constructed
in projections 1, 2, and 3 is shown in Figure 10. At the sink node, sensor signal reconstruction is
implemented by Algorithm 4. In the process of the sensor signal, the gOMP [28] recovery algorithm
is utilized, where rit denotes residual error, it is iteration. ∅ represents the null set, a′j is jth of A.
Λit denotes the sets of indexes of it iteration.

Algorithm 3. Our proposed algorithm.

Input: G(V, E)
Output: Tree{1, 2, . . . M}, Optr
1 randomly select M sensor nodes g1, g2, . . . , gM in the network probability M

N , generate Φ
2 for i = 1 : M
3 query candidate nodes Cani(φi j 6= 0) of projection nodes i
4 initialization Treei ← i , tempi ← i
5 while !empty(temp) do
6 CanNode← Del(temp)
7 if CanNode is i’s candidate node
8 Tree← CanNode
9 temp← CanNode
10 Del(Inti, CanNode)
11 end if
12 end while
13 while !empty(Cani) do
14 for all residual candidate nodes r ∈ Cani
15 Path(r)← find a shortest path to Treei using the Dijkstra algorithm
16 if shortestpath > Path(r)
17 shortestpath←Path(r)
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18 end if
19 end for
20 Tree← shortestpath
21 temp← shortestpath
22 Del(Cani, shortestpath)
23 while !empty(temp) do
24 go back to steps 7–11
25 end while
26 end while
27 Optr ← Optimal routing from i to the sink node using Algorithm 2
28 return Tree{1, 2, . . . M}
29 end for

Algorithm 4. Sensor signal reconstruction.

1 Input: received data X, measurement matrix Φ, the number of atom is natom

2 Output: reconstruct data
∧
x

3 generate sparse basis Ψ using Algorithm 1
4 collect data Y in the network using Algorithm 3
5 A← Ψ ∗Φ
6 initialization residual error r0 = y, Λ0 = ∅, A0 = ∅, it = 1

7 compute
〈

ri−1, a′j
〉

, select the largest la values from
〈

ri−1, a′j
〉

; these values correspond to A’s column
indexes j, constructing set J0

8 set Λit = Λit−1 ∪ J0, Ait = Ait−1 ∪ aj (for all j ∈ J0)

9
∧
xit = (AT

it Ait)
−1 AT

ity

10 update rit = y− Ait
∧
xit

11 it = it + 1, if it ≤ K go back to step 7, or proceed to step 12

12 reconstruct
∧
x, which is the generation value of the last iteration

∧
xit.
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5. Theoretical Analysis

In this section, we prove that the equivalent sensing matrix A follows the RIP property. We first
propose some definitions and corollaries.

Definition 2. (Sub-Gaussian [41]) A random variable ℘ is called sub-Gaussian if there exists a constant c > 0
such that

E(exp(℘ t′)) ≤ exp(c2t′2/2) (19)

holds for all t′ ∈ R. We use the notation ℘ ∼ Sub(c2) to denote that℘ satisfies Equation (19).

Theorem 1. ([41]) Suppose ℘∂ = [℘∂1,℘∂2, . . . ,℘∂M]′, where each ℘∂i is i.i.d. ℘∂i ∼ Sub(c2) and
E(℘2

∂i) = σ2. Then
E(‖℘∂i‖2

2) = Mσ2 (20)

Furthermore, for any α′ ∈ (0, 1), β′ ∈ [c2/σ2, βmax], there exists a constant c∗ such that

P(‖℘‖2
2 ≤ α′Mσ2) ≤ exp(−M(1− α′)

2/c∗) (21)

and
P(‖℘‖2

2 ≤ β′Mσ2) ≤ exp(−M(β′ − 1)2/c∗) (22)

Lemma 1. Fix δ ∈ (0, 1), A = ΨΦ satisfies (1− δK)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δK)‖x‖2
2 for all N-dimensional

K-sparse signal x.

Proof. As mentioned above, diffusion operator O generated by Λ, while O has the same eigenvalues
as Λ (less than 1). The modified diffusion wavelets are the concatenation of the scale functions and
wavelet functions. Hence, we believe that the entries of the representative basis Ψ are randomly
sequenced, which is denoted by ℘1,℘2,℘3, . . .℘N . Moreover, since the non-zero entries for each row of
measurement matrix Φ are mutually independent, the same probability is chosen for the projection
nodes. Therefore, each row of A independently selects elements at random from Ψ. Alternatively,
we suppose that A is generated by independent and identically distributed (i.i.d.)random variables
℘∂1,℘∂2,℘∂3, . . .℘∂M.

The next step is normalization, A =
√

N
M [Θ1, Θ2, . . . , ΘM]T ; in addition, we obtain Equations (23)

and (24), which follow a similar idea as [18]:

E(ΘT(i, j)2) = (

√
N
M

)

2

E(Θ(j, i)2) =
1
M

(23)

E(Θ(i, j)T) =

√
N
M

E(Θ(j, i)) = 0. (24)

Accordingly, we yield

E(‖Y‖2
2)

= E(
M
∑

i=1
(<
√

N
M Θi, x >)

2
)

=
M
∑

i=1
E(

N
∑

j=1
(ΘT(i, j)xj))

2

=
M
∑

i=1
(E(ΘT(i, j)2))‖x‖2

2 + 2
N
∑

j=1
∑

κ 6=j
E(ΘT(i, j))E(ΘT(i, j)xjxκ)

. (25)
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Here, we bring Equations (23) and (24) into Equation (25), and Equation (25) can be expressed as
Equation (26):

E(‖Y‖2
2) = ‖x‖

2
2. (26)

Alternatively, we set α′ = 1− δ and β′ = 1 + δ. Hence, Equations (21) and (22) can be expressed
as follows:

P(‖Y‖2
2 ≤ (1− δ)E(‖Y‖2

2)) ≤ exp(−Mδ2/c∗) (27)

P(‖Φx‖2
2 ≤ (1− δ)‖x‖2

2) ≤ exp(−Mδ2/c∗) (28)

and
P(‖Φx‖2

2 ≥ (1 + δ)‖x‖2
2) ≤ exp(−Mδ2/c∗). (29)

However, there are (N, K) possible K-dimensional subspaces of A relying on Sterling’s
approximation. So, the inequality is given as (N, K) ≤ (eN/K)K. Thus, the probability of signal
x needs to obey the conditions of Equation (30):

(eN/K)K·2e(−Mδ2/c∗) = 2e(−Mδ2/c∗+K log(N/K)+1), (30)

such that
(1− δK)‖x‖2

2 ≤ ‖Φx‖2
2 ≤ (1 + δK)‖x‖2

2. (31)

Finally, M = O(K log(N/K)) is selected to follow the RIP property with the probability
approximation to 1, which completes the proof.

6. Simulation Results

In the following section, we evaluate the performance of our scheme by experiments. We choose
the dataset from DEI [30], described in Section 4.1 and synthetic data. We evaluate our scheme mainly
in terms of the sparse basis comparison; the reconstruction performance of the novel mechanism;
the reconstruction error for different schemes; the energy consumption based on non-CS, plain CS,
hybrid CS and our proposed algorithm (sparse basis is based on distance); and network lifetime
performance between the different schemes and our algorithms. In our simulations, all programs
have been run in the Matlab platform. Moreover, Eelec = 50 nJ/bit, Eamp = 60 pJ/bit/m4,
E f s = 100 pJ/bit/m2, L = 1024 bits, initial energy E0 = 5 J. Figure 11 indicates the temperature
signal from sensor nodes 1, 2, 3, and 4 in the detected area, and the frame length is 781. It is obvious
that the signals have high spatial correlations, which is also demonstrated in Section 3.1.Sensors 2018, 18, x  19 of 26 
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6.1. Sparse Comparison

We compare the DFT sparse basis, diffusion wavelets based on degree (the first scheme),
and diffusion wavelets based on distance (the second scheme) presented in Section 4.2. However,
since there are not enough real data, we choose synthetic datasets [42] to accomplish the following
simulations. Thus, Figure 12 is plotted in Matlab software. In Figure 12a denotes DFT coefficients,
Figure 12b is the diffusion wavelet coefficients based on degree, and Figure 12c represents diffusion
wavelet coefficients based on distance. Here, we select 650 frame length data. As can be seen
from Figure 12, DFT does not sparisty the sensor signal, and the value of most of the coefficients is
approximately 0.1 instead of 0. However, Figure 12b,c can all sparsity the sensory data, while the
energy of the latter is more concentrated withoutinterference signal compared with the former. On the
whole, diffusion wavelets based on distance represent better performance because they exploit the
spatial correlation features among sensor nodes of the networks.
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6.2. Performance of Reconstruction Signal

We implement our experiment using reconstruction algorithm gOMP. In our experiment,
we choose modified diffusion wavelets based on distance and sparse matrix as our represent basis and
measurement matrix, respectively. In order to show the recovery quality of the proposed algorithm,
we plot Figure 13, which illustrates the error of the reconstruction signal decoding at the sink node.
In our experiment, we define the reconstruction error as in Equation (32):

ε1 = ‖x− ∧x‖2·‖x‖
−1
2 . (32)

We select 750 humidity readings, which are described in Figure 13a. Then, Figure 13b shows the
recovery performance of sensor node readings with 256 CS measurements. This also demonstrates that
256 CS measurements can reconstruct the original signal with a relative recovery error of ε1 = 0.0306.
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6.3. Reconstruction Error for Different Schemes

Figure 14 compares the reconstruction error for DFT, diffusion wavelets based on degree, and
diffusion wavelets based on distance. Here, we again extract the sensory data [42]. In Figure 14,
the reconstruction error is high under DFT sparse basis, where the error is up to 0.34 when the number
of CS measurements is 20. However, the recovery error is less than 0.1 when the number of CS
measurements is 220. In other words, the method does not accurately recover the signal. The blue
curve with triangles in Figure 14 indicates the reconstruction performance of diffusion wavelets based
on degree. It is noted that the scheme can sparsity the signal, and can recover the original signal with
smaller reconstruction error than the DFT at the sink node. The reconstruction error changes steadily
along with the increase of the number of CS measurements. The reason is that the approach only
considers some featured such as the network topology, namely the number of neighbor nodes for a
given node, without capturing the geographical position features of the neighbor nodes. Accordingly,
the diffusion wavelets based on distance take advantage of the favorable conditions to promote
recovery, as is shown in the red star curve in Figure 14.Sensors 2018, 18, x  21 of 26 
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6.4. Energy Consumption Evaluation

To illustrate the efficiency of our proposed data-gathering technique, we compare the results
obtained from the non-CS, plain CS, and hybrid CS data-gathering schemes for data to the sink node
using Dijkstra algorithm and our proposed algorithm, where measurement M ∈ [30 220] and the
frame length of data is 750. The number of sensor nodes is 80. From Figure 15, it can be seen that
non-CS consumes the most energy, about 3.91 × 103 J, and the value is unchanged as the number of
CS measurements steadily increases because the scheme does not adopt the CS technique. In addition,
hybrid CS consumes about 1.22 × 103 J compared with 1.51× 103 J for plain CS when the number of
CS measurements is 50. Both display an upward trend with the rise in the number of CS measurements,
but the energy consumption of hybrid CS is always less than that of plain CS. The difference is about
0.46 × 103 J when the number of CS measurements is at its maximum, 220. The reason is that
the hybrid CS scheme uses the CS mechanism or not based on the number of transmission packets.
Therefore, hybrid CS takes advantage of non-CS and plain CS to reduce the energy consumption of
the network. However, the data-gathering scheme using the Dijkstra algorithm consumes less energy
than hybrid CS because the former makes full use of our modified diffusion wavelets and sparse
random matrix. When the number of measurements is about 110, the gap between hybrid CS and
Dijkstra reaches a maximum; when the number of CS measurements is 220, the difference is minimal.
Our proposed data-gathering scheme using diffusion wavelets based on distance and a modified
ant colony algorithm shows better performance compared with other methods. It is obvious that it
considers a sensor node’s distance to exploit spatial correlation and sensor nodes’ residual energy and
path length are jointly taken into consideration. Thus, the scheme consumes less energy. When the
number of CS measurements achieves the maximum (220), the advantage of this approach is more
prominent: the transmission cost is about 2.18× 103 J. This is far less than for the other four schemes in
terms of energy consumption. From Figures 14 and 15, we can observe that although the recovery error
has become smaller, the transmission cost has increased a lot. Therefore, there is a trade-off between
energy consumption and recovery error.

Moreover, to further evaluate the performance of the proposed algorithm, Figure 16 is plotted,
where energy consumption comparisons are shown among different data-gathering schemes with
a change in the number of sensor nodes. It can be seen from Figure 16 that the non-CS technique
always consumes the most energy as the number of sensor nodes increases from 100 to 800 because it
does not use any compressive methods. However, plain CS dramatically reduces the network energy
consumption compared with the non-CS. The reason is that it takes advantage of compressive sensing.
Obviously, the energy consumption of hybrid CS decreases compared with plain CS. The number of
sensor nodes is fewer than 400 and the difference between plain CS and hybrid CS is small; when the
number of sensor nodes is 800, the gap between plain CS and hybrid CS is largest. That is to say,
the energy efficiency of hybrid CS is more significant with an increase in the number of sensor nodes.
Additionally, the transmission costs of the Dijkstra algorithm are lowered because of the sparse
measurement matrix, as is shown in Figure 16. The performance of our proposed algorithm is better
than all of the abovementioned schemes. Especially when the number of sensor nodes is greater than
500, the performance of our algorithm is more significant. This is why sparse represent basis is used
and our improved ant colony algorithm is presented in the process of data gathering.
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6.5. Network Lifetime Performance

To complete the evaluation of the network lifetime performance, in this subsection we suppose that
the time of the first dead node corresponds to the network lifetime. Figure 17 represents the relationship
between the network lifetime and the number of CS measurements among non-CS, plain CS, hybrid
CS, Dijkstra, and our proposed algorithm, while Figure 18 demonstrates the relationship between
the network lifetime and the number of sensor nodes based on the different CS schemes and our
algorithm. In Figure 17, we see that the network lifetime of the three data-gathering schemes non-CS,
plain CS, and hybrid CS is short, and the number of CS measurements varies from 30 to 220. However,
the network lifetime of Dijkstra and our algorithm is longer than in the above three schemes. The main
reason is that the two methods also utilize a sparse measurement matrix. However, the advantage of
our proposed algorithm is that the projection sensor nodes select the optimal routing to the sink node,
aiming to lessen the transport load of the nodes nearest the sink node. Furthermore, the improved ant
colony algorithm considers the residual energy of the sensor nodes, guaranteeing the load balance of
the whole network, as is observed in Figure 17. We plot Figure 18 comparing the network lifetime of
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the different schemes with a change in the number of sensor nodes. It is obvious that our proposed
algorithm is better than the other techniques. In Figure 18, we see that the red bar denotes the network
lifetime of our algorithm, which is greater than that found with the other algorithms. When the number
of sensor nodes is 800, in terms of the network lifetime, non-CS is about 200, plain CS is about 500,
hybrid CS is about 620, Dijkstra is about 850 and our proposed algorithm is about 2600, respectively.
Even though the number of sensor nodes is small, ~100–200, the network lifetime of the other schemes
is far shorter than that of our proposed algorithm.
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7. Conclusions and Future Work

Conventional CS data-gathering schemes design the sparse represent basis such as DCT, DFT,
and wavelets transform do not consider the network topology and sensor nodes’ spatial information.
Therefore, in our mechanism, diffusion wavelets based on sensor nodes’ degree and different nodes’
distance considering the above factors are proposed. Additionally, to further reduce the transport
costs in WSNs, a sparse measurement matrix is utilized and MST and modified ant colony routing
are jointly applied to mitigate energy consumption and balance the network load, especially lowering
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the transmission costs for those nodes nearest the sink node. Experimental results have shown that
our sparse basis can sparsity the signal well. Our methods can also accurately reconstruct the original
signal. Moreover, the reconstruction error of our scheme is less than DFT. Compared with existing
data-gathering approaches, our proposed algorithm not only minimizes the energy consumption of the
network, but prolongs the network lifetime. Furthermore, our algorithm has a theoretical guarantee of
recovering the original signal, and the sink node needs to gather M = O(K log(M/K)) measurements
so as to recover the original signal.

Future work should consider the following aspects: On the one hand, sensor node readings
have not only spatial correlation, but temporal correlation, so our future work will extend the
spatial–temporal filed. On the other hand, [43] demonstrates that optimization projection will generate
better recovery performance than random projection, so a possible extension to this work will consider
how to design the optimization projection so as to reduce the energy consumption.
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