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Abstract: Wireless sensors have many new applications where remote estimation is essential.
Considering that a remote estimator is located far away from the process and the wireless transmission
distance of sensor nodes is limited, sensor nodes always forward data packets to the remote estimator
through a series of relays over a multi-hop link. In this paper, we consider a network with sensor nodes
and relay nodes where the relay nodes can forward the estimated values to the remote estimator.
An event-triggered remote estimator of state and fault with the corresponding data-forwarding
scheme is investigated for stochastic systems subject to both randomly occurring nonlinearity and
randomly occurring packet dropouts governed by Bernoulli-distributed sequences to achieve a
trade-off between estimation accuracy and energy consumption. Recursive Riccati-like matrix
equations are established to calculate the estimator gain to minimize an upper bound of the estimator
error covariance. Subsequently, a sufficient condition and data-forwarding scheme are presented
under which the error covariance is mean-square bounded in the multi-hop links with random packet
dropouts. Furthermore, implementation issues of the theoretical results are discussed where a new
data-forwarding communication protocol is designed. Finally, the effectiveness of the proposed
algorithms and communication protocol are extensively evaluated using an experimental platform
that was established for performance evaluation with a sensor and two relay nodes.

Keywords: fault estimation; event-triggered data transmission; wireless sensors

1. Introduction

The increased use of battery-powered wireless sensors can improve productivity and reduce
installation costs in industrial processes. A variety of battery-powered wireless sensors span a wide
range of applications including area detection, environmental sensing, industrial monitoring and
control, etc. [1]. In these applications, data packet loss is often encountered in various practical
environments owing to bandwidth constraints; and then, wireless sensors are practically often made
under harsh environments including both uncontrollable elements and aggressive conditions [2]. In this
case, estimator or observer results [3,4] based on the linear sensor may not provide a reliable solution
and are not applicable. It should be pointed out that the size and costs of sensor nodes may result
in constraints on resources such as energy, memory and computation speeds [5–8]. Such constraints
may lead to development of new estimators and data transmission schemes against these constraints
we mentioned above. On the other hand, it is also recognized that the failures of components appear
always in many practical engineering systems. The occurrence of faults in sensors, actuator or process
(plant) failures may drastically modify the system behavior, resulting in performance degradation or
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even instability. For the purpose of increasing the safety and reliability of networked controlled systems,
fault diagnosis research and their applications to a wide range of industrial and commercial processes
have been the subjects of intensive investigations over the past two decades [9–12]. Many fruitful
results for a variety of systems have been reported [13–21].

In the past few years, a number of results related to state and/or fault estimation for a variety
of systems with packet dropouts and/or sensor nonlinearities have been established in terms of all
sorts of methods. Some examples are mentioned here. Linear and nonlinear estimation problems were
tackled for missing measurements in [22], where the nonlinear function of sensor was modeled as
a sector-bound condition. A robust filter was designed in [23] against the sensor saturation and the
packet losses such that the filtering error dynamics was mean-square stable and the performance index
was satisfied. The problem of asynchronous filtering was addressed in [24] for stochastic Markov
jump systems with probabilistic occurring sensor nonlinearities. Recently, reducing the redundant
data transmission operated by a wireless transmission module was referred to as an event-triggered
data transmission scheme which was first presented in [25] on the concept of send-on-delta. This kind
of transmission scheme taking system performance and energy conservation into account has been
an active area of research and some outstanding results are made [26–30]. For instance, a modified
Kalman filter using the send-on-delta method was designed in [26]. The study in [27] extended
this to a varying-condition threshold in send-on-delta transmission scheme for stochastic nonlinear
systems, where an easy-implemented recursive algorithm with consideration of linearization errors,
time delays, and packet losses was derived. The work in [28] proposed optimal and suboptimal
consensus filters with event-triggered communication protocols to achieve energy efficiency via
reducing unnecessary interactions among the neighboring sensors. More related studies can be found
in recent publications [31–41] and references therein.

As is mentioned above, most of the existing research is focused on single-hop networks where
sensor nodes collect measurements and then wireless transmission modules in these sensor nodes
transmit data directly to the remote estimator for estimating faults and states at each time. However,
the sensor nodes cannot work properly once it exceeds its transmission distances. It can be also
noted that the event-triggered sensor transmission scheme used in single-hop networks can simply be
utilized in multi-hop networks case; that is, the sensors run transmission decision and relay nodes
simply forward information to the remote estimator. Nevertheless, the relay nodes may not be able to
complete the data-forwarding duty in the case of network failures (e.g., packet dropouts and jamming
attacks). Furthermore, adding antennas may increase power consumption of the sensor nodes. Under
these circumstances, there is no doubt that it is of significance to study remote estimation over the
multi-hop relay networks.

In this paper, we consider the situation that a remote estimator is located far away from the process.
A wireless sensor node has to forward its data packets to the remote estimator through a series of relay
nodes over multi-hop links subject to random packet dropouts. This article will mainly focus on how to
derive an event-triggered estimator of state and fault to against both randomly occurring nonlinearities
and randomly occurring packet dropouts, and then how to design a data-forwarding scheme to realize
a trade-off between estimation performance and energy consumption. In particular, we will design
a new data-forwarding protocol that is verified on an experimental platform to ensure that sensors
and a series of relay nodes can establish the multi-hop network perfectly when a “sleep” command is
activated in the transmission module. The main contributions of this paper are summarized as follows:

(1) A co-design algorithm of event-triggered state and fault estimator is presented for a class of
linear stochastic system, for the first time, to deal with the phenomena of simultaneous randomly
occurring nonlinearity and randomly occurring packet dropouts, which reflects the reality closely.
An upper bound of state and fault error covariances is minimized by appropriately designing the
desired estimator gain.

(2) A Sufficient condition and a data-forwarding scheme are given such that the error covariance
is mean-square bounded in the multi-hop relay links with random packet dropouts.
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Such data-forwarding scheme enables each relay node to forward the estimated values to the
remote estimator.

(3) Implementation issues of the theoretical results are discussed. A new data-forwarding
communication protocol that could be applied to our addressed topology is designed;
this involves hardware design and the corresponding procedure implementation. The proposed
communication protocol and theoretical results are verified in a classical industry-like process.

Nomenclature: Prob(x) means the occurrence probability of the event x. N and R denote the
sets of natural and real numbers, respectively; Rm×n denotes the sets of m by n real-valued matrices,
whereas Rn is short for Rn×1; Rn×n

+ and Rn×n
++ are the sets of n× n positive semi-definite and positive

definite matrices, respectively. When X ∈ Rn×n
+ , we simply write X ≥ 0 ( or X > 0 if X ∈ Rn×n

++ ).
For X ∈ Rm×n, XT denotes the transpose of X. For x ∈ Rm×n, (x)2 represents x by x. I is an identity
matrix with appropriate dimensions. Furthermore, E(·), Var(·) and trace(·) denote the mathematical
expectation, variance and the trace of a matrix, respectively.

2. Problem Statement

A block diagram of a multi-hop relay network is given in Figure 1. The process is a discrete-time
linear system defined on k ∈ [0, L] that can be described by

x̄k+1 = Āx̄k + f̄k + wk (1)

where a discrete time index k ∈ L and L = {0, 1, . . .}. The variables x̄k ∈ Rn and f̄k ∈ Rn are state
vector and fault signal to be estimated, respectively. The noise signal wk ∈ Rn and is independent
identically distributed (i.i.d) , satisfying Gaussian with zero-mean and known variance as follows

E
(

wkwT
k

)
= Q̄w ≥ 0 (2)

The sensor measurement model with both randomly occurring nonlinearity and randomly
occurring packet dropouts is described by

ȳk = βi
k (αkC̄x̄k + (1− αk) φ̄ (x̄k)) + vk (3)

where measurement output ȳk ∈ Rm and measurement noise vk ∈ Rm. It is another i.i.d noise signal
satisfying Gaussian with zero-mean and known variance:

E
(

vkvT
k

)
= Rv > 0 (4)

where system matrix Ā and output matrix C̄ are known with appropriate dimensions. Figure 1
illustrates that the data packets are transmitted to the remote estimator via wireless medium with
successive N relay nodes. The current relay node will receive data packets only from its last node
then forward data packets to next relay node. The sensor node is treated as relay 0 and other relay
nodes are denoted as relay i (i = 1, 2, . . . , N). Additionally, let γi

k be the decision variable: if γi
k = 1,

the data packets in the relay node i will be sent to the next relay node, and if γi
k = 0, they will not be

sent. The random variables αk ∈ R and βi
k ∈ R are Bernoulli-distributed white sequences with the

following probabilities.{
Prob {αk = 1} = α

Prob {αk = 0} = 1− α
and

{
Prob

{
βi

k = 1
}
= βi

Prob
{

βi
k = 0

}
= 1− βi (5)

where α, βi ∈ [0, 1] are know constants. All random variables αk and βi
k are assumed to be independent

in k and uncorrelated with noise signals wk and vk. The nonlinear function φ̄ (xk) is further assumed to
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be known and analytic everywhere. The dynamic model of the fault vector f̄k borrowed from [42,43]
can be established as follows:

f̄k+1 = M̄ f̄k (6)

where M̄ is a known matrix with appropriate dimensions.

Remark 1. For the co-design problem of state and fault estimator using stochastic system model, a robust
fault estimation filter design was proposed in terms of Riccati-like difference equations in [44,45]. Using the
assumption that the sampling interval was sufficiently small, it was supposed that the fault difference item was
too small to be neglected. However, in practice, faults always generate a great amplitude change of a certain
time, especially when time-varying faults occur. Compared with the assumption in [44,45], it is clear that
time-varying fault model described in Equation (6) covers the results of constant faults as a special case, which is
less restrictive.

Remark 2. The measurement model proposed in Equation (3) provides a unified framework to account for the
phenomenon of both randomly occurring sensor nonlinearities and random packet dropouts. The stochastic
variable αk is indicated as the phenomenon of the probabilistic sensor nonlinearities, while the random variable
βi

k is used to represent the nature of random packet dropouts. Specifically, if αk = 1 and βi
k = 1, it means that

the sensor work normally; if αk = 0 and βi
k = 1, it can be seen that the sensor is subject to nonlinearity only;

and if βi
k = 0, the measurement output contains the noise signal vk only, implying that the random packet

dropouts occur.

By introducing a new vector xk =

[
x̄k
f̄k

]
, we can rewrite Equations (1) and (3) as

xk+1 = Axk + Wwk

yk = βi
k (αkCxk + (1− αk) φ (xk)) + vk

(7)

where

A =

[
Ā 0
0 M̄

]
, W =

[
I
0

]
, C =

[
C̄
0

]
, φ (xk) =

[
φ̄ (x̄k)

0

]
(8)

Figure 1. A block diagram of the system model.

Before giving the main results, the following lemma, which will be useful in this paper, needs to
be introduced.

Lemma 1. (Lemma 1 [46]) Let A, D, E and F be real matrices of appropriate dimensions with FFT ≤ I.
For any matrix P = PT > 0 and scalar ε > 0 such that ε−1 I − EPET > 0, then we have

(A + DFE) P(A + DFE)T ≤ A
(

P−1 − εETE
)−1

AT + ε−1DDT (9)
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3. Main Results

3.1. A Co-Design Algorithm of Event-Triggered State and Fault Estimator

Based on the measurement yk mentioned before, the estimated variable x̂0
k of the sensor node

(or the relay node 0) can be recursively computed as follows.

x̂0
k+1 = Ax̂0

k + Kk

(
yk − αβ0Cx̂0

k − (1− α) β0φ
(

x̂0
k

))
(10)

where Kk is the estimator gain to be designed. Further, the estimation on the relay node i is suggested
as follows:

x̂i
k = γi−1

k x̂i−1
k +

(
1− γi−1

k

)
Ax̂i

k−1 (11)

while the corresponding estimation error covariance is given by

Pi
k = γi−1

k Pi−1
k +

(
1− γi−1

k

) (
APi

k−1 AT + Qw

)
(12)

where estimation error ei
k = xk − x̂i

k, error covariance Pi
k = E

[
ei

k
(
ei

k
)T
]

and Qw = WQ̄wWT .

Remark 3. Traditionally, the remote estimator needs to know measurements collected by sensors at each time
instant k. However, reduction of the number of relay-to-relay transmission actions has been adopted to make the
relay nodes extend lifetime and save energy as much as possible. Under this circumstance, multi-hop links may
create a problem: the measurements could not be obtained at each time instant and the estimated values could
not be calculated by the remote estimator. Because the ultimate goal for remote estimation is to obtain estimated
values at each time instant, it follows from Equation (11) that the relay nodes can forward “the estimated” values
to the remote estimator.

The purpose of this section is to design an estimator of form Equation (10) for the stochastic
system in Equation (1) and the sensor in Equation (3) with incomplete information (randomly occurring
sensor nonlinearities and randomly occurring packet dropouts). More specifically, we are interested in
looking for the filter parameter Kk such that the following requirements are met simultaneously:

(a) For the phenomenon of packet loss and randomly occurring sensor nonlinearities, an upper
bound of the error covariance P0

k is derived, i.e., there exists a sequence of positive-definite
matrices P̄0

k (0 ≤ k ≤ L) that satisfies

E
[(

xk − x̂0
k

) (
xk − x̂0

k

)T
]
≤ P̄0

k (13)

(b) The sequence of upper bound P̄0
k is minimized by the designed estimator gain Kk through a

recursive scheme.

Now we are in a position to obtain an upper bound of the error covariance P0
k in the

following theorem.

Theorem 1. Consider the stochastic system described by Equation (1) with measurements in Equation (3)
suffering from both packet loss and randomly occurring sensor nonlinearities. For a arbitrary positive constant
γ and the given initial condition P̄0

0 = P0
0 > 0, if there exists γ−1 I − LkP̄0

k LT
k > 0, then the error covariance

P0
k+1 (0 ≤ k ≤ L) satisfies

P0
k+1 ≤ P̄0

k+1 (14)
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where
P̄0

k+1 = (1 + ε4)
(

A− Kkαβ0C
)

P̄0
k

(
A− Kkαβ0C

)T
+ Qw

+ Kk

(
(ε1 + ε6)C

(
P̄0

k + x̂0
k

(
x̂0

k

)T
)

CT + Rv + (ε3 + ε5 + ε6) ϕ
(

x̂0
k

)
+

(ε2 + ε4 + ε5)

(
Gk

((
P̄0

k

)−1
− γLT

k Lk

)−1
GT

k + γ−1Hk HT
k

))
KT

k

(15)

with ε1 = αβ0 −
(
αβ0)2, ε2 = β0 − αβ0, ε3 = (2− α) β0 +

(
2α− 2− α2) (β0)2, ε4 = (1− α) β0,

ε5 = (1− α) β0 − (1− α)2(β0)2, ε6 = (α− 1) α
(

β0)2, Qw = WQ̄wWT and ϕ
(

x̂0
k
)
= φ

(
x̂0

k
)

φT (x̂0
k
)
.

Proof. First, the error dynamics of the addressed system are calculated by subtracting Equation (1)
from Equation (10):

e0
k+1 = xk+1 − x̂0

k

= Axk + Wwk − Ax̂0
k − Kk

(
yk − αβ0Cx̂0

k − (1− α) β0φ
(

x̂0
k

))
= Ae0

k + Wwk − Kk

(
βi

k (αkCxk + (1− αk) φ (xk)) + vk − αβ0Cx̂0
k − (1− α) β0φ

(
x̂0

k

))
= Ae0

k + Wwk − Kk

(
αβ0Ce0

k +
(

αkβi
k − αβ0

)
Cxk

+βi
k (1− αk) φ (xk)− β0 (1− α) φ

(
x̂0

k

)
+ vk

)
= Ae0

k + Wwk − Kkαβ0Ce0
k −

(
αkβi

k − αβ0
)

KkCxk − Kkvk

− Kk

(
βi

k (1− αk) φ (xk)− β0 (1− α) φ
(

x̂0
k

))
.

(16)

With the help of results in [47] and Taylor series expansion to φ (xk) around x̂0
k , we have

φ (xk) = φ
(

x̂0
k

)
+ Gke0

k + o
(∣∣∣e0

k

∣∣∣) , (17)

where Gk = ∂φ(xk)
∂xk

∣∣∣∣∣ xk = x̂0
k

and o
(∣∣e0

k

∣∣) represented the first-order term of the Taylor series

expansion. Moreover, the high-order term can be changed into the following form:

o
(∣∣∣e0

k

∣∣∣) = Hk NkLke0
k (18)

where Hk is a matrix with appropriate dimension that depends on the problem, Lk is used to
accommodate the estimator with a further extent of freedom, and Nk is an unknown discrete-time
matrix that stands for the error of linearization of model that requires Nk NT

k ≤ I. Inserting Equations
(17) and (18) into Equation (16), the expression of estimation error can be expanded as

e0
k+1 =

(
A− Kkαβ0C

)
e0

k + Wwk −
(

αkβi
k − αβ0

)
KkCxk − Kkvk

− Kk

(
βi

k (1− αk)
(

φ
(

x̂0
k

)
+ Gke0

k + Hk NkLke0
k

)
− β0 (1− α) φ

(
x̂0

k

))
=
(

A− Kkαβ0C
)

e0
k + Wwk −

(
αkβi

k − αβ0
)

KkCxk − Kkvk

− βi
k (1− αk)Kk (Gk + Hk NkLk) e0

k − Kk

(
βi

k (1− αk) φ
(

x̂0
k

)
− β0 (1− α) φ

(
x̂0

k

))
=
(

A− Kkαβ0C
)

e0
k + Wwk −

(
αkβi

k − αβ0
)

KkCxk − Kkvk

− βi
k (1− αk)Kk (Gk + Hk NkLk) e0

k −
(

βi
k (1− αk)− β0 (1− α)

)
Kkφ

(
x̂0

k

)
.

(19)
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By the definition of error covariance P0
k , it follows from Equation (16) that

P0
k+1 = E

[
e0

k+1

(
e0

k+1

)T
]
=
(

A− Kkαβ0C
)

P0
k

(
A− Kkαβ0C

)T
+ Qw + ε1KkCE

[
xkxT

k

]
CTKT

k

+ KkRvKT
k + ε2Kk (Gk + Hk NkLk) P0

k (Gk + Hk NkLk)
TKT

k + ε3Kkφ
(

x̂0
k

)
φT
(

x̂0
k

)
KT

k

− ε4

(
A− Kkαβ0C

)
E
[

e0
k

(
e0

k

)T
]
(Gk + Hk NkLk)

TKT
k

− ε4Kk (Gk + Hk NkLk)E
[

e0
k

(
e0

k

)T
] (

A− Kkαβ0C
)T

+ ε5Kk (Gk + Hk NkLk)E
[
e0

kφT
(

x̂0
k

)]
KT

k + ε5KkE
[

φ
(

x̂0
k

) (
e0

k

)T
]
(Gk + Hk NkLk)

TKT
k

+ ε6KkCE
[

xkφT
(

x̂0
k

)]
KT

k + ε6KkE
[
φ
(

x̂0
k

)
xT

k

]
CTKT

k .

(20)

where Qw = WQ̄wWT , ε1 = αβ0 −
(
αβ0)2, ε2 = β0 − αβ0, ε3 = (2− α) β0 +

(
2α− 2− α2) (β0)2,

ε4 = (1− α) β0, ε5 = (1− α) β0 − (1− α)2(β0)2 and ε6 = (α− 1) α
(

β0)2. According to the initial
condition P̄0

0 ≥ P0
0 , the upper bound of error covariance P0

k+1 can be proved by induction. Let P̄0
k ≥ P0

k ,
we need to prove that P̄0

k+1 ≥ P0
k+1. Using the elementary inequality xyT + yxT ≤ xxT + yyT and the

results of Lemma 1, P0
k+1 can be rewritten as

P0
k+1 ≤ (1 + ε4)

(
A− Kkαβ0C

)
P̄0

k

(
A− Kkαβ0C

)T
+ Qw + (ε1 + ε6)KkCE

[
xkxT

k

]
CTKT

k

+ KkRvKT
k + (ε2 + ε4 + ε5)Kk (Gk + Hk NkLk) P̄0

k (Gk + Hk NkLk)
TKT

k

+ (ε3 + ε5 + ε6)Kkφ
(

x̂0
k

)
φT
(

x̂0
k

)
KT

k

≤ (1 + ε4)
(

A− Kkαβ0C
)

P̄0
k

(
A− Kkαβ0C

)T
+ Qw + (ε1 + ε6)KkCE

[
xkxT

k

]
CTKT

k

+ (ε2 + ε4 + ε5)Kk

(
Gk

((
P̄0

k

)−1
− γLT

k Lk

)−1
GT

k + γ−1Hk HT
k

)
KT

k

+ KkRvKT
k + (ε3 + ε5 + ε6)KkE

[
φ
(

x̂0
k

)
φT
(

x̂0
k

)]
KT

k .

(21)

Noticing the facts that E
[
xkxT

k
]
= P0

k + x̂0
k
(
x̂0

k
)T , the above Inequality (21) can be rewritten

as follows:

P0
k+1 ≤ (1 + ε4)

(
A− Kkαβ0C

)
P̄0

k

(
A− Kkαβ0C

)T
+ Qw + (ε1 + ε6)KkC

(
P̄0

k + x̂0
k

(
x̂0

k

)T
)

CTKT
k

+ (ε2 + ε4 + ε5)Kk

(
Gk

((
P̄0

k

)−1
− γLT

k Lk

)−1
GT

k + γ−1Hk HT
k

)
KT

k

+ KkRvKT
k + (ε3 + ε5 + ε6)KkE

[
φ
(

x̂0
k

)
φT
(

x̂0
k

)]
KT

k .

(22)

Since the assumption that nonlinear function φ
(

x0
k
)

is known and analytic everywhere, we can
deduce that E

[
φ
(

x̂0
k
)

φT (x̂0
k
)]

is calculable and further derive P0
k+1 as the following form

P0
k+1 ≤ (1 + ε4)

(
A− Kkαβ0C

)
P̄0

k

(
A− Kkαβ0C

)T
+ Qw + Kk

(
(ε1 + ε6)C

(
P̄0

k + x̂0
k

(
x̂0

k

)T
)

CT+

(ε2 + ε4 + ε5)

(
Gk

((
P̄0

k

)−1
− γLT

k Lk

)−1
GT

k + γ−1Hk HT
k

)
+ (ε3 + ε5 + ε6) ϕ

(
x̂0

k

)
+ Rv

)
KT

k .
(23)

which implies that Inequality (14) is true.
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In what follows, the gain matrix Kk is determined by minimizing the upper bound of error
covariance given by Equation (14).

Theorem 2. Consider the stochastic system described by Equation (1) with measurements in Equation (3)
suffering from both packet dropouts and randomly occurring sensor nonlinearities. The gain matrix Kk is given
as follows

Kk = ε̃1 AP̄0
k CT [ε̃2 CP̄0

k CT + ε̃3Cx̂0
k

(
x̂0

k

)T
CT+

ε̃4

(
Gk

((
P̄0

k

)−1
− γLT

k Lk

)−1
GT

k + γ−1Hk HT
k

)
+ ε̃5 ϕ

(
x̂0

k

)
+ Rv

]−1 (24)

where ε̃1 = (1 + ε4) αβ0, ε̃2 = (1 + ε4) α2(β0)2
+ ε̃3, ε̃3 = ε1 + ε6, ε̃4 = ε2 + ε4 + ε5 and ε̃5 = ε3 + ε5 + ε6.

Furthermore, the upper bound of the estimator error covariance P̄0
k+1 is recursively calculated by Riccati-like

difference Equation (15).

Proof. We are ready to show that the gain described by Equation (24) is optimal in the sense that
minimizes the upper bound P̄0

k+1. Note that three terms in Equation (15) are quadratic in Kk. The

matrix differentiation formulas may be applied to Equation (15). Now differentiate trace
(

P̄0
k+1

)
with

respect to Kk. The result is

∂
(

trace
(

P̄0
k+1

))
∂ (Kk)

= (1 + ε4)
(

A− Kkαβ0C
)

P̄0
k

(
A− Kkαβ0C

)T
+ Qw+

Kk

(
(ε1 + ε6)C

(
P̄0

k + x̂0
k

(
x̂0

k

)T
)

CT+ (ε3 + ε5 + ε6) ϕ
(

x̂0
k

)
+ Rv+

(ε2 + ε4 + ε5)

(
Gk

((
P̄0

k

)−1
− γLT

k Lk

)−1
GT

k + γ−1Hk HT
k

))
KT

k .

(25)

We set the derivative equal to zero and the optimal gain is solved as follows

Kk = ε̃1 AP̄0
k CT [ε̃2 CP̄0

k CT + ε̃3Cx̂0
k

(
x̂0

k

)T
CT+

ε̃4

(
Gk

((
P̄0

k

)−1
− γLT

k Lk

)−1
GT

k + γ−1Hk HT
k

)
+ ε̃5 ϕ

(
x̂0

k

)
+ Rv

]−1 (26)

with ε̃1 = (1 + ε4) αβ0, ε̃2 = (1 + ε4) α2(β0)2
+ ε̃3, ε̃3 = ε1 + ε6, ε̃4 = ε2 + ε4 + ε5 and ε̃5 = ε3 + ε5 + ε6.

which is as same as (24). It is clear that the estimator gain is optimal that minimizes the upper bound
P̄0

k+1 for the estimator error covariance.

3.2. Data Forwarding with Packet Dropouts

Thus far, we have derived an upper bound of the estimator error covariance and such an upper
bound is subsequently minimized by properly designing the estimator gain. However, as shown
in Section 3.1, we only consider the case of data packet dropouts in the sensor transmission stage.
The problem on data packet loss is neglected in the multi-hop links. In the following, the mean-square
boundedness of the error covariance Pi

k will be presented.

Theorem 3. Consider the relay node i and the stochastic system described by Equation (1) subject to random
packet loss in the multi-hop links. Let ρs (A) be s-th eigenvalue of matrix A and s = 1, · · · , n. If system
matrix A is unstable and satisfies |ρs (A)| < 1√

βi
, then the error covariance Pi

k is mean-square bounded, namely,

E
(

Pi
k
)
≤ Θ, where Θ is a unique positive solution.
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Proof. The upper bound of the error covariance Pi
k in the relay node i is updated according to

Equations (12) and (14), and then, by taking expectation on both sides, we obtain

E
(

P̄i
k

)
= βi

(
AE

(
P̄i

k−1

)
AT + Qw

)
+
(

1− βi
)
E
(

P̄i−1
k

)
. (27)

The differences of expectations between two adjacent sampling instants can be derived as follows

E
(

P̄i
1

)
−E

(
P̄i

0

)
= βi

(
AE

(
P̄i

0

)
AT + Qw

)
+
(

1− βi
)
E
(

P̄i−1
1

)
−E

(
P̄i

0

)
=
(

1− βi
) (

E
(

P̄i−1
1

)
−E

(
P̄i−1

0

))
+ βi

(
AE

(
P̄i

0

)
AT + Qw −E

(
P̄i

0

))
=
(

1− βi
) (

E
(

P̄i−1
1

)
− P0

0

)
+ βi

(
AP0

0 AT + Qw − P0
0

) (28)

where the initial condition P̄i
0 = P0

0 > 0. According to the considered topology given in Figure 1 and
the unstable system matrix A, it is shown that

if E
(

P̄i−1
1

)
= P0

0 , we have E
(

P̄i
1

)
−E

(
P̄i

0

)
= βi

(
AP0

0 AT + Qw − P0
0

)
;

else if E
(

P̄i−1
1

)
= AP0

0 AT + Qw, we have E
(

P̄i
1

)
−E

(
P̄i

0

)
= AP0

0 AT + Qw − P0
0 .

(29)

Then, from the above equalities in Equation (29), we can infer that E
(

P̄i
1
)
> E

(
P̄i

0
)

via the Lemma
2.2 presented in [48], which implies that E

(
P̄i

1
)
≤ Θ1, where Θ1 > 0. Utilizing the induction method

and the continuity of Equation (27), we can know that E
(

P̄i
k
)
≤ Θ, where Θ > 0. Further, let us

denote Pi
∞ as the steady-state value for E

(
P̄i

k
)

in the current relay node i, and Pi
∞ is the solution of the

following matrix equation.

βi APi
∞ AT − Pi

∞ = −βiQw −
(

1− βi
)
E
(

P̄i−1
k

)
(30)

where E
(

P̄i−1
k

)
> 0. This is equivalent to an extended Lyapunov equation and has a unique positive

solution if
|ρs (A)| < 1√

βi
. (31)

As a result, E
(

Pi
k
)
≤ Θ, where Θ is a unique positive solution. It can be concluded that the

boundedness and convergence of E
(

Pi
k
)

is guaranteed.

Remark 4. In fact, from Equations (29) and (28), it is obviously known that E
(

P̄i
1
)
≤ E

(
P̄i

0
)
= P0

0 ,
when system matrix A is stable. Therefore, the error covariance Pi

k is also mean-square bounded if the stochastic
system presented by Equation (1) is stable.

Remark 5. Due to the random packet dropouts, the error covariance Pi
k is time-varying for any given positive

initial state. However, Pi
k is bounded with probability if E

(
Pi

k
)

is bounded [49]. Therefore, E
(

Pi
k
)
≤ Θ with

Θ > 0 can be considered that the estimation error is mean square stable.

Although many event-triggered sensor schedules (e.g., [50,51]) can be utilized in the multi-hop
networks, wireless communication network failures make the relay nodes unable to complete the
data-forwarding tasks. Thus, it is necessary to design an energy-efficient data-forwarding scheme for
relay nodes against the situation of network data dropouts.

Theorem 4. Given that a positive constant δi < ∞, if the following event condition of the relay node i

trace
(∣∣∣P̄i

k − P̄i
k−1

∣∣∣) ≤ δi (32)
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is satisfied, where |·| stands for the absolute value, then the proposed estimator in Equation (11) can ensure that
trace

(
E
(

P̄i
k
))

is bounded by trace
(
E
(

P̄i
k
))
≤ Ω, where Ω is a unique positive solution.

Proof. Let us start to recall the following expression for E
(

P̄i
k
)

in Theorem 3

E
(

P̄i
k

)
= βi

(
AE

(
P̄i

k−1

)
AT + Qw

)
+
(

1− βi
)
E
(

P̄i−1
k

)
. (33)

Using the property of matrix trace, the above Equation (33) becomes

trace
(
E
(

P̄i
k

))
= βitrace

((
AE

(
P̄i

k−1

)
AT + Qw

))
+
(

1− βi
)

trace
(
E
(

P̄i−1
k

))
. (34)

For the sequence trace
(
E
(

P̄i
k
))

, we have

E
(

trace
(

P̄i
1

))
−E

(
trace

(
P̄i

0

))
= βitrace

(
AE

(
P̄i

0

)
AT + Qw

)
+
(

1− βi
)

trace
(
E
(

P̄i−1
1

)
−E

(
P̄i

0

))
=
(

1− βi
) (

traceE
(

P̄i−1
1 − P̄i−1

0

))
+ βitrace

(
AE

(
P̄i

0

)
AT + Qw −E

(
P̄i

0

))
≤
(

1− βi
)

trace
(∣∣∣P̄i

k − P̄i
k−1

∣∣∣)+ βitrace
(

AE
(

P̄i
0

)
AT + Qw −E

(
P̄i

0

))
(35)

where |·| represents the absolute value. Then, substituting the event condition in Equation (32) into
Equation (35) yields

E
(

trace
(

P̄i
1

))
−E

(
trace

(
P̄i

0

))
≤ βitrace

(
AE

(
P̄i

0

)
AT + Qw −E

(
P̄i

0

))
. (36)

The following proof of Theorem 4 is similar to that of Theorem 3. The detailed proof is thus omitted.

Algorithm 1 Event-triggered data-forwarding scheme
At each time instant k, the relay node i executes:
initialization x̂i

0 and P̄i
0 = P0

0 ;

1: while βi
k = 0 or γi−1

k = 0, the relay node i cannot receive the estimated value due to data packet
dropouts or event condition (32) do

2: x̂i
k = Ax̂i

k−1;
3: P̄i

k = AP̄i
k−1 AT + Qw;

4: if trace
(∣∣∣P̄i

k − P̄i
k−1

∣∣∣) > δi then

5: γi
k = 1, the current relay node i can send the data packet;

6: else
7: γi

k = 0, the current relay node i is not allowed to send the data packet;
8: end if
9: end while

10: x̂i
k = x̂i−1

k ;
11: P̄i

k = P̄i−1
k ;

12: βi
k = 1 and γi−1

k = 1, declaring that the relay node i has successfully received data packets. For the
purpose of achieving more accurate estimation for remote estimator, data packets of the relay
node i are sent to the next relay node without entering the event-triggered decision.

We now elaborate this scheme described in Algorithm 1 for relay node i. First of all,
the measurements are collected locally at each time instant, then the state values are estimated
by a steady-state Kalman filter. Next, the relay node i will forward the estimated state values to the
next relay node. If γi−1

k = 1 and βi
k = 1, the relay node i will successfully receive the estimated state
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values from relay node i− 1 at time instant k, i.e., x̂i
k = x̂i−1

k and the corresponding error variance
can be calculated as P̄i

k = P̄i−1
k . To achieve more accurate estimates of system state, the relay node

i will forward data packets to the next relay node without entering the event-triggered decision
rule. Whereas, if γi−1

k = 0 or βi
k = 0 at time instant k, relay node i− 1 will not send the estimated

state values to relay node i for energy conservation (or relay node i cannot receive the data packets
due to data losses). Without state information from relay node i− 1, the estimated state values and
error variance at relay node i will be updated as follows: x̂i

k = Ax̂i
k−1, and P̄i

k = AP̄i
k−1 AT + Qw.

Then, the event-triggered decision rule will determine whether the relay node i will send the current
estimated state value x̂i

k to the next relay node.

4. Experimental Verification

In this section, the effectiveness of the proposed theoretical algorithm will be evaluated on
a test bed that is a scale-down industrial process of twin water tanks. Based on the architecture
of Figure 1, a sensor node (Node 1) and two relay nodes (Node 2 and Node 3) are designed to
construct a multi-hop network transmitting water level information from Node 1 to Node 2 and to
Node 3. At Node 3, the information on water level will be fed to a remote computer. This section is
organized as follows. A new transmission protocol including the implementation of hardware and
the corresponding procedure is presented in Section 4.1. Section 4.2 introduces system description
and modeling. Experimental results on estimation quality and energy conservation are obtained in
Section 4.3.

To verify the effectiveness of our proposed data-forwarding scheme, we shall present a new
transmission protocol in the following section.

4.1. A New Transmission Protocol for Data Forwarding Scheme

In the most industrial applications, a wireless transmission module (WTM) always consumes
more energy than a computation module. This is why we have designed data-forwarding scheme
to reduce the amount of time for sending and receiving data, making the lifetime of the wireless
node longer. However, stopping communication does not mean stopping energy consumption. It is
because the WTM of each node keeps monitoring whether the data has arrived or not. Although
the characteristic of the WTM can make it sleep to achieve the result of energy conservation in the
single-hop wireless networks [52], the wireless transmission technology may not allow us to obtain
such a sleeping capability in the multi-hop networks. For example, two nodes including station (STA)
mode and access point (AP) mode have been embedded in the Wi-fi technology and they have to exist
in the relay node. However, the WTM chosen as AP mode will spend a lot of time waking up (or even
cannot wake up) once it enters a sleep state. It will extend the transmission time and lead to limited
applications in real-world applications. The ZigBee communication technology cannot be applied to
the network topology described in Figure 1 because the coordinator and router, which have to be added
as a relay node in the multi-hop network, cannot go to sleep. In addition, the Bluetooth technique is not
qualified as the WTM of relay nodes due to its long matching time and limited transmission distance.
All of these motivate us to come up with a new transmission protocol suitable for any data-forwarding
schemes in multi-hop relay networks.

First, we introduce the components of each relay node: (i) the wireless transmission module
forwards the data packets between the relay nodes; (ii) the computation module determines when
to forward data packets via our forwarding scheme; (iii) the switching module turns off and on the
power of WTM; and (iv) the transmitter and receiver are a pair of wireless transceivers to distinguish
them from the WTM. The transmitter and receiver are used as a medium to wake up WTM quickly
and to ensure the network connectivity when the WTM is commanded into a sleep mode.

The procedure of this new transmission protocol is now presented in Algorithm 2.
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Algorithm 2 The implementation steps for the new transmission protocol
When the data packet is requested to be sent from the relay node i to the relay node i + 1, the following
steps are performed:
Step 1: For relay node i, the computation module sends a specified digital signal to the transmitter
through I/O ports.
Step 2: For relay node i, the switching module turns on the power of WTM.
Step 3: The transmitter of relay node i sends a signal to the receiver of relay node i + 1.
Step 4: For relay node i + 1, the receiver sends a specified digital signal to wake up the computation
module by I/O ports.
Step 5: For relay node i+ 1, the computation module requires switching module to power on the WTM.
Step 6: The WTM of relay node i forwards data packets to the WTM of relay node i + 1.
Step 7: For relay node i, the switching module turns off the power of WTM after the end
of transmission.
end

4.1.1. Hardware Design for the Experiment

Node 1 acts as the head node, Nodes 2 and 3 together construct a multi-hop network for
verification of our theoretical results in this experiment. The physical connection diagram in Figure 2
is a photograph of the components in Node 2. Due to the limited space in this paper, the structures of
Node 1 and Node 3 are omitted. They are similar to the structure of Node 1 except that the receiver and
transmitter ignored in the Node 1 and Node 3, respectively. As shown in Figure 2, the node contains
the following components: an STM32L162ZD micro-controller [53] (STM32, Geneva, Switzerland)
including an ARM cortexTM-M3 CPU, a 384 Kbytes Flash memory, and a 48 Kbytes RAM that allows
us to use it as a computation module; and an HC-11 [54] (also called 433 Mhz UART serial wireless
transceiver module) with simple and flexible operation is selected as the WTM. Furthermore, the
corresponding switching module is an S9013 NPN type triode and the power management system is
composed of an X6206 voltage regulator and a Lithium-ion battery. In particular, the reason why we
choose 315M transmitter and receiver is due to their extreme low power consumption. Even though
its transmission rate is very limited, the electric current of idle state is approximately 0 mA, and the
electric current in transmission state is lower than 2 mA.

Figure 2. The physical connection diagram of Node 2.
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4.1.2. Implementation of the Experiment

To implement this experiment, two scenarios will be discussed in Algorithms 3 and 4. If the
transmission commands are calculated by the STM32 using our designed forwarding scheme, the active
mode is executed and the sleep mode is activated otherwise.

Algorithm 3 The active mode for Node i
When Node i sends the data packet to Node i + 1, the following steps will be performed:
Step 1: For Node i: STM32 sends a signal to 315M transmitter and activates HC-11.
Step 2: For Node i + 1: 315M receiver activates STM32 then activates HC-11.
Step 3: Node i forwards data packets to Node i + 1.
Step 4: For Node i: turns off HC-11.
end

Algorithm 4 The sleep mode for Node i
When Node i is not allowed to send the data packet to Node i + 1 , the following steps will
be performed:
Step 1: For Node i: STM32 and 315M transmitters enter an idle state and the HC-11 is not turned on.
Step 2: For Node i + 1: STM32 calculates the corresponding decision to determine whether or not
sending data packets based on the proposed data-forwarding scheme. The 315M receiver enters an
idle state then HC-11 is not turned on.
end

Additionally, the received data packets may contain incomplete data packets (or data packets
with error information) due to network failures, so a data validation algorithm is presented in
Algorithm 5 which also reduce the probability of data-packet loss to some extent. We now introduce
two indicators f lag1 ∈ {success, f ailure} and f lag2 ∈ {success, f ailure}. Either f lag1 = f ailure or
f lag2 = f ailure, the re-transmission commands sent by Node 2 (or Node 3) will be fed back to Node 1
(or Node 2). Conversely, both f lag1 = success and f lag2 = success, the end command will be executed.

Algorithm 5 Data validation
When sending the data packets from Node 1 to Node 2 (or from Node 2 to Node 3), the following
procedures will be executed:
initialization f lag1 = f lag2 = f ailure;

1: while f lag1 = f ailure or f lag2 = f ailure do
2: if Node 2 (or Node 3) does not receive the data packets, then
3: f lag1 = f ailure, Node 2 (or Node 3) sends the retransmission command to Node 1 (or

Node 2);
4: else if data-packet length is incomplete then
5: f lag1 = success;
6: f lag2 = f ailure, Node 2 (or Node 3) sends the re-transmission command to Node 1 (or

Node 2);
7: else
8: f lag1 = success;
9: f lag2 = success, Node 2 (or Node 3) sends the end command to Node 1 (or Node 2);

10: end if
11: end while

4.2. System Description and Modeling of the Twin Water-Tank System

In this subsection, the feasibility and practicality of the proposed theoretical results and the
transmission protocol will be examined on a continuous-time linear model [55]. Figure 3 is a
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photograph of the architecture of the twin water-tank system including two small tanks and a reservoir.
The system state-space equations are described as follows.[

ḣ(1)

ḣ(2)

]
=

[
− 1

A(1)r(1)
1

A(1)r(1)
1

A(2)r(1)
−
(

1
A(2)r(1)

+ 1
A(2)r(2)

) ] [ h(1)

h(2)

]
+

[
1

A(1)

0

]
q(in) (37)

where for i = 1 and 2, h(i) is the water level and can be calculated using the sensor’s measurements
h(i) = 100× V(i)

3.3 where V(i) is voltage values measured by the input-type level transmitter placed

in each tank. The flow rate q(in) can be calculated as q(i) = f (i)
98 and q(in) = f (in)

98 where f (i) and f (in)

are measured by the flow meters. In addition, A(1) and A(2) are the cross-sectional areas of the water
tanks, and r(1) and r(2) are water resistance. Furthermore, y(1) and y(2) are output variables satisfying
the following relationship [

y(1)

y(2)

]
=

[
1 0
0 1

] [
h(1)

h(2)

]
. (38)

Based on parameters of the experimental platform, the discretized model of the system in
Equation (37) with a sample of 5 s is formulated as follows[

h(1)k+1

h(2)k+1

]
=

[
0.99016 0.0024
0.0024 1.12047

] [
h(1)k
h(2)k

]
+

[
0.0145

0

]
q(in) + wk, (39)

[
y(1)k
y(2)k

]
=

[
1 0
0 1

] [
h(1)k
h(2)k

]
+ vk. (40)

where the noise processes {wk} and {vk} are assumed mutually independent, white, zero-mean
and have known variance Qw ≥ 0 and Rv > 0, respectively. The error accuracy em of the level
transmitters is ±0.5 centimeters. Considering the main technical specifications of water level

sensors, the following parameters are chosen as M̄ = 1, Qw =

[
1 0
0 1

]
and Rv =

[
0.25 0

0 0.25

]
.

The nonlinear function φ̄ (x̄k) =

[
cosh(1)k
sinh(2)k

]
and formulate the first-order expansion term coefficient

Gk =

[
− sin ĥ(1)k 0

0 cos ĥ(2)k

]
with the high-order expansion term Hk = diag

[
0.1 0.2

]
.

Figure 3. The components of twin water-tanks.
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4.3. Assessment of Effectiveness of the Theoretical Results

In this part, the effectiveness of the proposed estimator and data-forwarding scheme will be
assessed through the following experiments.

(1) Experiment 1: In the first experiment, the accuracy of state estimation will be evaluated
by using the proposed data-forwarding scheme. we temporarily ignore system fault f̄k in system
Equation (1) for the convenience of discussion. The running times of this system is set to 50, and the
initial water level of the twin water tanks are 53 and 24 centimeters, respectively. To verify the
practicability of the proposed algorithm, the following parameters are set as θi = Pr{βi

k = 1} = 0.9

(i= 1 and 2), Pr{αk = 1} = 0.95, γ = 0.002, Lk = diag
[

0.01 0.01
]

and the transmission threshold

δi = 0.032 (i= 1 and 2). Figures 4 and 5 show that two water levels measured by the level transmitters
and the estimated water levels of each node via our proposed estimator and data-forwarding scheme.
As shown in Figures 4 and 5, the measured values and the estimated values are coincident as time
increases. Obviously, the estimation accuracy is satisfactory using the proposed data transmission
scheme. Moreover, the corresponding communication behaviors on β1

k, γ2
k and β2

k at each time instant
are demonstrated in Figure 6. It can be also noted that our data-forwarding scheme can effectively
reduce the update frequency as compared with the traditional time-triggered mechanism.

(2) Experiment 2: To verify the performance of event-triggered fault estimation, the following
fault scenarios are used to complete our second experiment. A constant fault

f̄k =

{
5 30 < k < 60

1 otherwise
(41)

and a time-varying fault

f̄k =

{
10 sin(0.5i) 30 < k < 60

−0.7 sin(0.5i)− 0.5 otherwise
(42)
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Figure 4. The measured and the estimated water level values for the first water tank.
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Figure 5. The measured and the estimated water level values for the second water tank.
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Figure 6. The communication behaviors on β1
k, γ2

k and β2
k.

The estimated signals of a constant fault and a time-varying fault are illustrated in Figures 7 and 8,
respectively. As comparison, fault-estimating signals using the time-driven learning observer (TDLO)
borrowed from [4] and the evolution of event-triggered communication behaviors are also depicted
Figures 7 and 8. It is worth mentioning that, compared with TDLO, the proposed event-triggered
fault estimation (ETFE) not only provides better rapidity of fault estimation but also achieves robust
reconstruction of the constant and time-varying actuator faults. Further, we examine the effect on
the estimation performance from the different α and βi (i= 1 and 2) in Tables 1 and 2, respectively.
We can also find that a larger probability corresponds to a smaller error bound, that is, when randomly
sensor nonlinearity and packet dropout have smaller probabilities of occurring, the fault estimation
can achieve a better performance. All of these make it possible for the ETFE to be easily implemented
in practice.
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(3) Experiment 3: Here, the energy conservation is now verified using a 50 mAh battery.
The comparison of battery voltage at Node 2 and Node 3 are illustrated by Figure 9 where the
battery voltage using the periodically forwarding scheme drops to 3.28 V after 66 min. Node 2 cannot
work normally because its working voltage must exceed 3.3 V [53]. Comparatively, the battery voltage
at Node 2 using the VDFS reaches 3.3 V after 77 min. We find that Node 2 consumed more energy than
other nodes. The reason is that the 315M transmitter and receiver are installed at Node 2 and they
can consume more energy. Because the network topology described in Figure 1 is fixed, the system
stop operating once the battery at Node 2 is completely consumed. The working life of the battery is
prolonged by 16.7%.

Remark 6. The battery voltage for Node 1 is ignored. Because γ0
k can never be equal to zero constrained by the

VDFS, we can utilize the sensor data transmission schedule (e.g., [31,32]) for Node 1 to achieve energy-saving
in the practical applications.

Table 1. Upper bound of fault estimation error covariance with different α for βi = 0.9.

1 − α 0.12 0.16 0.22 0.26 0.32 0.36 0.42 0.46

An upper bound of error covariance 0.231 0.24 0.373 0.381 0.396 0.412 0.438 0.466

Table 2. Upper bound of fault estimation error covariance with different βi for α = 0.95.

1 − βi (i = 1 and 2) 0.12 0.16 0.22 0.26 0.32 0.36 0.42 0.46

An upper bound of error covariance 0.315 0.362 0.397 0.416 0.478 0.503 0.612 0.681

Figure 7. Reconstruction of a constant fault.
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Figure 8. Reconstruction of a time-varying fault.
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Figure 9. The comparison of battery voltage for Node 2 and Node 3.
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5. Conclusions and Further Work

In this work, we have addressed the co-design problem of state and fault estimation with an
event-triggered data-forwarding scheme against both randomly occurring nonlinearity and randomly
occurring packet dropouts governed by Bernoulli-distributed sequences in multi-hop relay wireless
networks. Recursive Riccati-like matrix equations are established to calculate the estimator gain in
order to minimize an upper bound of error covariance. A Sufficient condition and a data-forwarding
scheme have been derived to achieve the mean-square boundedness of the error covariance in the
multi-hop relay links with random packet dropouts. Such data-forwarding scheme enables each
relay node to forward the estimated values to the remote estimator. Furthermore, a new transmission
protocol can be applied to the desired event-triggered transmission scheme under the fixed network
topology where a relay node has the knowledge of its previous relay node and of next relay node.
The effectiveness of the proposed technique has been evaluated by using a twin water-tank system
with a sensor and two relay nodes.

However, we also find some open problems that should be solved in future research. First, time
delays should be considered in this kind of network topology. The constant (or random) time delays
can occur if the number of relays are large. Next, a switching module S9013 has been used for turning
the wireless transmission module on and off. However, the wireless transmission module may reduce
the operating life due to frequent opening and closing. It is necessary that the wireless transmission
module implement self-dormancy for energy saving. Finally, combing event-triggered transmission
scheme and coding technologies may be an interesting direction for improving energy conservation in
multi-hop relays networks.
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