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Abstract: Heterogeneous networks, constituted by conventional macro cells and overlaying pico cells,
have been deemed a promising paradigm to support the deluge of data traffic with higher spectral
efficiency and Energy Efficiency (EE). In order to deploy pico cells in reality, the density of Pico Base
Stations (PBSs) and the pico Cell Range Expansion (CRE) are two important factors for the network
spectral efficiency as well as EE improvement. However, associated with the range and density
evolution, the inter-tier interference within the heterogeneous architecture will be challenging, and
the time domain Enhanced Inter-cell Interference Coordination (eICIC) technique becomes necessary.
Aiming to improve the network EE, the above factors are jointly considered in this paper. More
specifically, we first derive the closed-form expression of the network EE as a function of the density
of PBSs and pico CRE bias based on stochastic geometry theory, followed by a linear search algorithm
to optimize the pico CRE bias and PBS density, respectively. Moreover, in order to realize the pico
CRE bias and PBS density joint optimization, a heuristic algorithm is proposed to achieve the network
EE maximization. Numerical simulations show that our proposed pico CRE bias and PBS density
joint optimization algorithm can improve the network EE significantly with low computational
complexity.
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1. Introduction

With years of data traffic exponential growth in wireless networks, energy costs and their
contribution to global carbon dioxide emission are emerging as major concerns, which is a severe
problem for cellular networks [1]. To meet the traffic exponential growth, the network capacity
improvement is constrained by the limited spectral resources and severe energy consumption. How
to improve the spectral efficiency while reducing the network energy consumption becomes of high
importance for the wireless networks. Therefore, the network Energy Efficiency (EE) that considers
both spectral efficiency and energy consumption has been valued not only as an important network
performance indicator for modern wireless networks, but also for the operational expenditure reduction
and sustainable development [2]. Heterogeneous networks (HetNets) consisting of a conventional
macro cell deployment and overlaying pico cells have been investigated in the 3rd Generation
Partnership Project (3GPP) Long Term Evolution (LTE)-Advanced as a promising paradigm shift
to support the deluge of data traffic with higher spectral efficiency and EE [3–6]. With pico cells
deployment in HetNets, wireless links to end users become shorter, which turns out to improve the
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link quality in terms of spectrum efficiency as well as the network EE [7]. It is estimated that HetNets
will contribute 56-fold enhancement to the 1000-fold increase in traffic demand [8]. Consequently,
HetNets is emerging as one of the core features for 5G cellular networks.

1.1. Motivation

In HetNets with Macro cell Base Stations (MBSs) and Pico cell Base Stations (PBSs), Cell Range
Expansion (CRE) scheme is proposed to adjust the coverage of PBS and balance the load between MBSs
and PBSs by adding a positive bias to their measured Reference Signal Received Power (RSRP) during
cell association [9,10]. The pico edge User Equipment (UE), however, will suffer significant interference
from MBSs, even causing the outage of control signal. As a result, the downlink interference mitigation
needs to be performed even for control channels, which becomes a fundamental requirement for the
network EE improvement.

Another feature called time domain Enhanced Inter-Cell Interference Coordination (eICIC) has
been adopted as a baseline method for control channel interference mitigation in LTE-Advanced [11].
In eICIC schemes, each MBS remains silent for certain periods, termed as Almost Blank Subframe
(ABS), over which PBS can schedule CRE area UEs with reduced interference [12]. On the basis of
eICIC ABS technology, obtaining the optimal pico CRE bias will directly affect the number of UEs
served by PBSs and eventually contribute to the network EE improvement. This is also one of the key
issues to realize 5G green cellular networks [13,14].

Furthermore, to meet 1000 times wireless traffic volume increment in the near future, massive PBSs
deployment will be necessary and the related EE problems will become severe due to the following
reasons. First, the dense deployment of PBSs causes additional inter-tier and intra-tier interference,
which is difficult to characterize. Second, most PBSs are typically deployed to satisfy the peak traffic
volume, while the highly dynamic wireless traffic may result in low EE if massive PBSs are still
awakened during low traffic periods such as midnight [15].

1.2. Related Works

Existing literature mainly focused on the pico CRE bias, ABS power and other parameters’
optimization for the network capacity maximization or link reliability improvement in HetNets [5,9,16,17],
and recent works began to shift to the network EE optimization with the consideration of inter-tier
data channel interference coordination and mitigation [18–23], including spectrum allocation [18,19],
power control [20–22], and cognitive sensing based on the inter-cell co-channel downlink interference
coordination [23]. In [24], the authors maximized the EE of pico cells in HetNets by means of some
non-convex methods. To move one step further, a few works have tried to optimize the network EE
considering pico CRE with eICIC technology [14,15,25]. For example, in [25], an adaptive ABS ratio
configuration scheme was investigated to meet the network EE. In [14], the optimal transmission
power of each MBS in the protected bands was developed by using Differential Evolution (DE) theory
to enhance the system throughput and EE. In [15], the frequency allocation among cells in HetNets
with interference coordination and user association for energy saving was optimized by adjusting the
cell selection bias.

Another factor to improve the network EE is through PBSs density optimization [3,26–28]. In [26],
a density threshold of small cells in ultra-dense cellular networks was investigated considering the
backhaul network capacity and EE. In [27], the authors came up with an approximation algorithm to
solve the intractable user association problem by controlling the PBS density dynamically. Furthermore,
[3] proved that not only did the density of PBS have a notable impact on the network EE, but the
density of MBSs could also affect the network EE. The authors of [28] optimized the PBS density and
MBS density together through traffic-aware sleeping strategies to enhance the network EE. The authors
of [29] optimized the BS transmit power and BS density jointly based on stochastic geometry theory.
[30] investigated the distribution of transmit power for uplink UEs and the energy efficiency of
uplink transmission in HetNets. In addition, PBSs density can be optimized by combining with
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other technologies to further improve the network EE. For example, Multiple-Input Multiple-Output
(MIMO) technology and Coordinated Multipoint (CoMP) transmission were investigated to improve
the network EE in [31–37]. Particularly, the authors of [34] proposed a low-complexity algorithm to
figure out the minimum power consumption problem based on MIMO technology combining with
small BSs’ deployment strategy. Reference [37] studied the Energy-Spectral Efficiency (ESE) benefiting
from the joint optimization of CoMP transmission and Base Station (BS) density.

From the above, most existing works either researched the impacts of PBS density on the network
EE, or studied the eICIC parameters (like Pico CRE bias, ABS power, etc.) influence on the network EE.
However, few works jointly considered the PBS density and eICIC parameters effect on the network
EE. By jointly considering the pico CRE bias and PBS density with eICIC technology, the total number
of UEs offloaded from macro cells can be optimized with inter-tier interference coordinated and
eventually the network EE can be improved. Hence, this paper analyzes the possible improvement
of the network EE by jointly considering the PBS density and pico CRE bias with eICIC technology.
The main contributions of this paper include two parts: (1) we first analytically derived the closed-form
expression of the network EE as a function of the density of PBS and pico CRE bias by using stochastic
geometry theory; (2) based on the derived network EE function, we proposed a low computational
complexity PBS density and pico CRE bias joint optimization algorithm to achieve the globally optimal
network EE.

The rest of this paper is organized as follows. The network model is described in Section 2.
The analysis model is described in Section 3, where the closed-form expressions of the average
achievable rate of users, the network power consumption and the network EE are derived. A low
complexity joint PBS density and CRE bias tuning algorithm to maximize the network EE is proposed
in Section 4. Numerical results and discussions are presented in Section 5. Concluding remarks are
given in Section 6.

2. Network Model

Due to the randomness of the BSs deployment in HetNets, especially the PBSs, the traditional
hexagonal cellular model cannot reflect the network deployment in reality precisely. Therefore,
the authors of [38,39] proposed a tractable analytical model for homogeneous cellular network and
HetNets, respectively, based on statistic geometry theory, where the location distribution of BSs is
modeled as spatial Poisson Point process (PPP). Then, the closed-form expression of the network
performance such as average rate, Signal to Interference plus Noise Ratio (SINR) coverage, rate
coverage, etc., can be obtained to analyze the network performance conveniently [10,17,39–42].
Therefore, several authors studied the network EE optimization using stochastic geometry theory for
HetNets [3,26,43,44], which is also adopted to model the network in this paper.

A two-tier HetNets consisting of MBSs with higher transmission power and PBSs with lower
transmission power is considered, as shown in Figure 1. Let k ∈ {1, 2} denote the tier index. Without
any loss of generality, let the MBSs be tier 1 and the PBSs constitute tier 2. We assume that the MBSs
and PBSs are spatially located according to a homogeneous PPP Φm and Φp with density λm and
λp, respectively in the Euclidean plane. The UEs are also distributed according to a different and
independent homogeneous PPP Φu with density λu.

To mitigate the downlink interference from MBS to pico CRE users, the ABS scheme is adopted
in MBS. Therefore, all the subframes are divided into two types of subframes for MBS, i.e., the ABS
subframes and the Non-ABS subframes in time domain, respectively. We denote θ to be the ABS ratio,
i.e., the proportion between the amount of ABS subframes and the number of the entire subframes.
The transmission power of MBS in ABS and Non-ABS subframes are 0w and Pm, respectively. Note
that, in an ABS subframe, PBSs still suffer Cell-specific Reference Symbol (CRS) interference from MBS,
which is transmitted at regular intervals by MBS. Therefore, we further assume that CRS interference
cancellation is employed by PBS for analysis simplicity. The transmission power of PBS is denoted
as Pp.
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Figure 1. The network scenario.

We consider a cell association based on the maximum biased RSRP, where a UE is associated with
the strongest BS in terms of the biased received RSRP at the user. In this paper, the association bias for
MBS is assumed to be unity (Bm = 0 dB) and that for PBS is pico CRE bias depicted as Bp. Without
loss of generality, Bp is preferably set to be larger than 0 dB; then, the coverage area of PBS can be
expanded and the load of MBS can be better offloaded.

According to the cell association scheme, all of the UEs can be divided into three different types
as shown in Figure 1: the type of MBS UEs contain the users connected to the MBSs, the type of PBS
CRE UEs correspond to the users located in the expanded region of the PBSs (i.e., the user receiving a
higher RSRP from the nearest MBS than that from the nearest PBS) and the type of PBS center UEs
comprise the users distributed in the original coverage of PBSs (i.e., the user receiving a higher RSRP
from the nearest PBS than that from the nearest MBS).

Based on the different subframe types and user types, the UEs scheduling can be executed
as: each MBS remains silent on ABS subframes, over which PBSs can schedule PBS CRE UEs with
reduced interference; the Non-ABS subframes will be assigned to the MBS UEs and the corresponding
subframes for pico are allocated to the PBS center UEs.

Without loss of generality, we conduct analysis on a typical UE at the origin. This is justified by
Slivyak theorem, which states that there is no difference in property observed either at a point of the
PPP or at an arbitrary point [16]. We adopt the index l ∈ L = {mu, pc, pe} to denote the indication of
the above three types of UEs, respectively, where mu represents MBS UEs, pc denotes the PBS center
UEs, and pe signifies PBS CRE UEs.

The received signal power of a typical UE l from a BS of the kth tier at a distance of rl can be
represented as Pkhr−α

l , where Pk is the transmission power of BS in the kth tier, the variable h denotes
the channel fast fading gain, which is modeled as Rayleigh distributed with average unit power, i.e.,
h ∼ exp (1), the term α is the large scale path loss exponent, which is assumed to be the same in both
of the two tiers for analysis simplicity. Thus, the SINR of a typical UE l according to its user type can
be expressed as:

γl =



Pmhr−α
l

∑2
k=1 Ik,l+σ2 if l = mu,
Pphr−α

l
∑2

k=1 Ik,l+σ2 if l = pc,

Pphr−α
l

I2,l+σ2 if l = pe,

(1)

where Ik,l denotes the interference from the kth tier to UE l.
We restrict that the PBS CRE UEs can only be scheduled by PBSs in the subframes that correspond

to the MBS ABS subframes. Therefore, when l = pe, the interference from MBSs, i.e., tier 1, can be
omitted when the CRS interference cancellation is utilized in pico. This is why we just consider I2,l , i.e.,
the intral-tier interference from PBS tier, in the denominator of the SINR expression when l = pe.



Sensors 2018, 18, 762 5 of 18

3. Analytical Model

3.1. User Type Probability

We assume that the nearest distances from a typical UE to a PBS and a MBS are denoted by rp and
rm, respectively. Generally speaking, the user type of this typical UE can be defined according to the
relationship between the biased received signal strength from its nearest MBS and PBS, respectively, as
Equation (2) below:

l =


mu, when Pmhr−α

m > BpPphr−α
p ,

pc, when Pphr−α
p > Pmhr−α

m ,
pe, when Pphr−α

p < Pmhr−α
m < BpPphr−α

p .
(2)

Lemma 1. The probability of this typical UE belonging to the user type l can be defined as Al = Prob [l ∈ L],
which is given as below:

Al =



λm

λm+(Bp P̂p)
2/α

λp
, when l = mu,

λp

λp+(P̂m)
2/α

λm
, when l = pc,

λp

λp+(B−1
p P̂m)

2/α
λm
− λp

λp+(P̂m)
2/α

λm
, when l = pe,

(3)

where P̂p = Pp
/

Pm, P̂m = Pm
/

Pp.

Proof: See Appendix A.

3.2. Distribution of Serving BS Distance

Lemma 2. Corresponding to the user type, the Probability Density Function (PDF) of the distance rl between a
typical UE l and its serving BS can be expressed as Equation (4), respectively:

fmu (rl) =
2πrl λm

Amu
exp

[
−πrl

2
(

λm +
(

Bp P̂p
)2/α

λp

)]
,

fpc (rl) =
2πrlλp

Apc
exp

[
−πrl

2
(

λp +
(

P̂m
)2/α

λm

)]
,

fpe (rl) =
2πrl λp

Ape

{
exp

[
−πrl

2
(

λp +
(

B−1
p P̂m

)2/α
λm

)]
− exp

[
−πrl

2
(

λp +
(

P̂m
)2/α

λm

)]}
.

(4)

Proof: See Appendix B.

3.3. The Ratio of Almost Blank Subframe

We set the value of the ABS ratio θ to be the proportion between PBS CRE UE user type probability
and the sum of the PBS CRE UE user type probability and the PBS center UE user type probability,
as shown in Equation (5):

θ=
Apc

Apc + Ape

= 1−
λp+

(
B−1

p P̂m

)2/α
λm

λp+
(

P̂m
)2/α

λm
. (5)

3.4. Average Ergodic Rate

Assume that the network adopts full buffer traffic model and all the users in the coverage of a BS
share the entire frequency resource equally. Thus, the mean achievable downlink data rate of a typical
UE l can be represented as follows:

Rl =
Wl

E [Nl ]
E [log2 (1 + γl)] , (6)
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where Nl is the mean load in a Voronoi cell and the expectation of Nl is E [Nl ] =
(

Al
/

ρk
)
+ 1. When

l =mu, then ρk = ρ1 = λm/λu. When l ∈ {pc, ρe}, then ρk = ρ2 = λp
/

λu. Wl is the time-frequency
resource that is allocated to user l and its value depends on the user type of user l. Specifically, when
l = pe, then Wl = θW and when l ∈ {mu, pc}, then Wl = (1−θ)W.

Based on the analysis above, we get Lemma 3 in the following:

Lemma 3. The average achievable downlink rate of a typical UE l can be further deduced as:

Rl =
2πλlWl

Al Nl

∫ ∞
0

∫ ∞
0 exp

(
−ϕl − πrl

2Cl
)

fl (rl)drldt, (7)

where τ = 2t − 1, ϕl = −τσ2rl
2P−1

k , Cl =


λmZ (τ, α, 1) + λpZ

(
τ, α, Bp

)
, when l =mu

λm P̂mZ (τ, α, 1) + λpZ (τ, α, 1) , when l = pc

λpZ (τ, α, 1) , when l = pe

, where

Z (τ, α, β) = τ2/α
∫ ∞
(β/τ)2/α

1
1+xα/2 dx.

Proof: See Appendix C.
Corollary 1. With noise ignored, and setting the large scale path loss exponent α= 4, the average achievable
downlink rate of a typical UE l can be simplified, respectively, according to its user type as follows:

Rmu = (1−θ)W
Amu Nmu

∫ ∞
0

1
Q(τ,4,1)+

λp
λm Q(P̂pτ,4,Bp P̂p)

dt,

Rpc =
(1−θ)W
Ap Npc

∫ ∞
0

1
Q(P̂mτ,4,P̂m)+ λm

λp Q(τ,4,1)
dt,

Rpe =
θW

Ape Npe

∫ ∞
0

1
Q(τ,4,1)+(B−1

p P̂m)
1/2 λm

λp

− 1
Q(τ,4,1)+(P̂m)

1/2 λm
λp

dt,

(8)

where Q (τ, 4, x) =
√

x +
√

τtan−1 (√τ/x
)
.

Proof: when α = 4, σ2 = 0, and let ϕl = 0 in Equation (7), then we can get

Z (τ, α, β) =
√

τ
∫ ∞√

β/τ
1

1+x2 dx =
√

τ arctan
(√

τ
/

β
)

. Combining with Equation (7), we will obtain
the desired results.

3.5. BS Power Consumption

Generally, BS consumes two types of power: static power consumption and transmit power
consumption [3]. Then, for the kth tier, a BS power consumption can be given as follows:

Pk = Pk,s + ξkPk,t, (9)

where Pk,s is the static power consumption of a BS in the kth tier, which is caused by signal processing,
battery backup, as well as site cooling, and is independent with the BS transmit power. Pk,t is the
transmit power of a BS for data transmission in the kth tier, and ξk is the load-dependent power
consumption coefficient of a BS in the kth tier.

Note that the transmit powers of each MBS in ABS subframe and Non-ABS subframe are different.
Therefore, the network power consumption in ABS subframe and Non-ABS subframe will not be
the same. Thus, we decompose the network power consumption into two parts: the network power
consumption in ABS subframe Pabs and the network power consumption in Non-ABS subframe
Pnon_abs. In particular, the transmit power consumption of MBS for data transmission in ABS subframe
is assumed to be zero due to its silence in the ABS subframe. Combined with Equation (9) and the
density of MBS and PBS, Pabs and Pnon_abs can be obtained in the following, respectively:

Pabs = λmP1,s + λpP2,s + Ape λuP2,t
= λmPm,s + λpPp,s + Ape λuPp,t,

(10)
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Pnon_abs = λmP1,s + Amu λuP1,t + λpP2,s + Apc λuP2,t
= λmPm,s + Amu λuPm,t + λpPp,s + Apc λuPp,t.

(11)

Considering the ABS ratio θ, the network total power consumption can be derived as:

Ptotal = θPabs + (1− θ) Pnon_abs. (12)

3.6. Network Energy Efficiency

The network EE can be defined as the ratio of the effective network throughput over the network
total power consumption:

EE =
Rtotal
Ptotal

=
Rtotal

θPabs + (1− θ) Pnon_abs
. (13)

For convenience of derivation, we set α= 4, σ2 = 0. Then, combining Equations (8), (9)–(13),
the expression of the network EE is obtained as follows:

EE = Rtotal
Ptotal

=
(Rmu Amu+Rpc Apc+Rpe Ape)λu

θPabs+(1−θ)Pnon_abs

= λu
Ptotal

∫ ∞
0

(1−θ)W/Nmu
Q(τ,4,1)+ρp,mQ(P̂pτ,4,Bp P̂p)

+
(1−θ)W/Npc

Q(P̂mτ,4,P̂m)+ρ−1
p,mQ(τ,4,1)

− θW/Npe

Q(τ,4,1)+(P̂m)
1/2

ρ−1
p,m

+
θW/Npe

Q(τ,4,1)+(B−1
p P̂m)

1/2
ρ−1

p,m
dt,

(14)

where
λu/Ptotal = λu

/{
λmPm,s + λpPp,s + θApe Pp,tλu

+ λu (1− θ) (AmPm,t +ApPp,t)
} , ρp,m = λp

/
λm.

4. Joint Parameters Optimization

Referring to Equation (14), the network EE is determined by ρp,m, i.e., the ratio between PBS
density λp and MBS density λm, UE density λu, MBS transmission power Pm, PBS transmission power
Pp, ABS ratio θ and pico CRE bias Bp together. Fortunately, the MBS transmission power Pm and PBS
transmission power Pp are usually set to be constant. The MBS density changes slightly, hence we can
also set the MBS density λm in Equation (14) to be a constant value. In addition, the ABS ratio can be
calculated according to Equation (5). Based on the analysis above, the network EE in Equation (14) can
be maximized by ρp,m (i.e., PBS density λp due to the fact that MBS density λm changes slightly) and
pico CRE bias Bp optimization with different UE densities, i.e., network load.

However, the network EE function is nonlinear with ρp,m and Bp, which is a difficult task to solve
the optimal PBS density and the optimal CRE bias at the same time to maximize the network EE.
An alternative would be fixing one variable and solving for the other one. Note that the value ranges
of ρp,m and Bp are limited , which make it possible to seek out the optimal ρp,m and Bp, respectively,
through a linear search algorithm by fixing one of these two variables. Then, a heuristic algorithm
is proposed to optimize these two variables jointly. By defining 0 < Bp ≤ 25 dB and 0 < ρp,m ≤ 30,
the objective function can be expressed as

arg max EE
Bp ,λp

=
(Rmu Amu+Rpc Apc+Rpe Ape)λu

θPabs+(1−θ)Pnon_abs
,

s.t. 0 < Bp ≤ 25 dB,
0 < ρp,m ≤ 30.

(15)
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4.1. Optimization of Pico CRE Bias

For the sake of getting the optimal CRE bias for network EE maximization, suppose that the
ratio between PBS density and MBS density ρp,m is a known quantity. Further assume that λu is a
constant value, which can be adjusted to represent different network loads. Then, the pico CRE bias
optimization problem can be formulated as follows:

B∗p = arg max EE
Bp

(
Bp
) ∣∣∣λp ,ρp,m ,

s.t. 0 < Bp ≤ 25 dB,
ρp,m is an a arbitrary constant between 0 and 30.

(16)

Suppose that the variable step length of Bp is 0.1. Thus, the optimal pico CRE bias for the network EE
maximization can be obtained by means of a linear search algorithm, which is described in Algorithm 1.

Algorithm 1: CRE Bias Optimization (CBO) Algorithm.
1. Initialization:
(1) Initialize the network scenario and the values λu, λm and ρp,m, where ρp,m ∈ (0, 30].
(2) Set the initial value of Bp = 0.1.
(3) Denote κ as the variable step length of Bp. Denote EE∗ as the optimal value of the network

EE. Denote B∗p as the optimized CRE bias. Let B∗p = Bp, EE∗ = EE
(

Bp
) ∣∣∣λp ,ρp,m and κ= 0.1.

2. Calculate the optimal pico CRE bias
while Bp ≤ 25 do

Bp = Bp + κ

EE′ = EE
(

Bp
) ∣∣∣λp ,ρp,m according to Equation (14)

if EE′ > EE∗ then

B∗p = Bp, EE∗ = EE′

end if
end while

4.2. Optimization of PBS Density

As the MBS density can be set as a constant, the PBS density optimization problem can be
converted to ρp,m optimization to maximize the network EE. After the optimized ρ∗p,m is obtained, then
the optimal PBS density can be calculated by λ∗p = λmρ∗p,m. Similarly, suppose that the PBS CRE bias Bp

is a known quantity. Further suppose that λu is a constant value. Thus, the PBS density optimization
problem can be formulated as follows:

ρ∗p,m = arg max EE
ρp,m

(
ρp,m

) ∣∣∣λu ,Bp ,

s.t. 0 < ρp,m ≤ 30,
Bp is an a arbitrary constant between 0 and 25.

(17)

Assume that the variable step length of ρp,m is set to be 0.03. Thus, the optimal PBS density
optimization for the network EE maximization can be also obtained by means of a linear search
algorithm, which is shown in Algorithm 2.
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Algorithm 2: PBS Density Optimization (PDO) Algorithm.
1. Initialization:
(1) Initialize the network scenario and the values λu, λm and Bp, where Bp ∈ (0, 25].
(2) Set the initial value of ρp,m=0.03.
(3) Denote σ as the variable step length of ρp,m. Denote EE∗ as the optimal value of the
network EE. Denote ρ∗p,m as the optimized ratio between PBS density MBS density. Let

ρ∗p,m=ρp,m, EE∗ = EE
(
ρp,m

) ∣∣∣λu ,Bp and σ= 0.03.
2. Calculate the optimal ratio of PBS density to MBS density
while ρp,m ≤ 30 do

ρp,m=ρp,m+σ

EE′ = EE
(
ρp,m

) ∣∣∣λu ,Bp according to Equation (14)
if EE′ > EE∗ then

ρ∗p,m = ρp,m, EE∗ = EE′

end if
end while
3. Obtain the optimal PBS density
λ∗p = λmρ∗p,m

4.3. Joint Optimization of Pico CRE Bias and PBS Density

Based on the aforementioned parameter optimization algorithms, each parameter is just optimized
with the other one being fixed, which in fact cannot reach these parameters’ global optimization due to
the fact that these parameters are affected by each other. Therefore, combining the CBO Algorithm
and PDO Algorithm, we further propose a heuristic pico CRE bias and PBS density joint optimization
algorithm to address the objective Equation (15), which is as shown in Algorithm 3.

Algorithm 3: Joint Pico CRE Bias and PBS Density Optimization (JBPDO) Algorithm.
1. Initialization:
(1) Initialize the network scenario and the values λu, λm, Bp and ρp,m, where Bp ∈ (0, 25] and
ρp,m ∈ (0, 30].
(2) Let EE∗ = 0 represent the initial optimal value of the network EE. Initialize algorithm
iteration number Nloop = 0. Given a tolerance ε > 0.
(3) Denote B∗p as the optimized PBS CRE bias. Denote ρ∗p,m as the optimized ratio of PBS
density to MBS density. Denote λ∗p as the optimized PBS density.
2. Calculate the suboptimal CRE bias according to CBO Algorithm
Bsub_opt

p = arg max EE
Bp

(Bp)
∣∣
λu, ρp,m

Bp = Bsub_opt
p

3. Calculate the suboptimal ratio of PBS density to MBS density according to PDO Algorithm

ρ
sub_opt
p,m = arg max EE

ρp,m

(
ρp,m

) ∣∣∣∣λu ,Bsub_opt
p

ρp,m = ρ
sub_opt
p,m

EEsub_opt = EE(Bsub_opt
p , ρ

sub_opt
p,m )

4. Termination of the loop
if
∣∣∣EEsub_opt − EE∗

∣∣∣ > ε then

EE∗ = EEsub_opt, Nloop = Nloop+1, go to step 2
else

B∗p = Bp, ρ∗p,m = ρp,m
λ∗p = λmρ∗p,m, EE∗ = EEsub_opt

end if
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5. Numerical Results and Analysis

A square of 1000 m × 1000 m network coverage area is considered in the simulation.
The deployment of PBSs and MBSs follows the PPP model and the typical user is placed in the
origin. The detailed simulation parameters are summarized in Table 1. Monte Carlo simulation
method is adopted to illustrate our proposed algorithms. In Monte Carlo simulation, the locations of
MBSs, PBSs and UEs are modeled as spatial PPP for each time of the network realization, respectively.
According to the network topology realized by spatial PPP model, the network EEs will be calculated
for all the different combinations of pico CRE bias and PBS density values within their value ranges
based on wireless link quality. Then, the maximum network EE and the optimal pico CRE bias and
PBS density can be obtained by comparing all the calculated network EEs. By averaging 50 times of
the network realizations, Monte Carlo simulation results can be obtained.

Table 1. Network scenario parameters.

Parameters Value

Carrier frequency f 2 GHz
Path loss exponent α 4

Path Loss L
L = 10 log (L0) + α10 log (rl),

where L0 =
(
4π f

/
c
)2,

c = 3× 108 m/s
MBS transmit power Pm or Pm,t 43 dBm or 20 W
PBS transmit power Pp or Pp,t 30 dBm or 1 W

Bandwidth W 10 MHz
MBS static power Pm,s 800 W
PBS static power Pp,s 130 W

MBS density λm 0.00003

5.1. Performance Analysis for Pico CRE Bias Optimization

The performances of the optimal pico CRE bias obtained according to CBO Algorithm are
compared with those of the static pico CRE bias and Monte Carlo simulation, which are shown
in Figures 2 and 3 from different aspects, respectively. The network EE for the static pico CRE bias is
calculated according to Equation (14) and the static pico CRE bias is set to be 3 dB, 9 dB and 15 dB,
respectively. The Monte Carlo simulation results show the maximum network EE within the value
range of PBS density.

The network EE versus λp with UE density λu = 0.0018 is shown in Figure 2. As shown in
Figure 2, the performances of CBO Algorithm always outperform those of static pico CRE bias and
agreed with those of Monte Carlo simulation very well, which illustrate on the one side the accuracy
of our derived closed form of network EE and on the other side the effectiveness of our proposed CBO
Algorithm. Furthermore, simulation results show that no matter what the value of pico CRE bias is, all
the curves of network EE keep increasing with PBS density increasing at the initial stage, and then tend
to fall down slightly with PBS density further increasing. This indicates that increasing the PBS density
deployment can improve the network EE significantly with a certain UE density. Nonetheless, when
the PBS density achieves a certain level, further increasing of it will not only cause a lot of interference
to users, but also give rise to more power consumption, and eventually deteriorate the network EE.

The network EE versus λu with fixed PBS density λp = 0.0006 is depicted in Figure 3, which
shows that the network energy efficiencies of CBO Algorithm are always better than those of static pico
CRE bias and capture the results of Monte Carlo simulation very well. This is due to the fact that the
CBO Algorithm can optimize the number of UEs offloaded from macro cell on the basis of the network
EE. In addition, with the increase of UE density, the performance gap between CBO Algorithm and
static pico CRE bias increase accordingly, which further signifies the importance of pico CRE bias
optimization for the heavy network load scenario.
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Figure 2. The network EE versus λp with λu = 0.0018.
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Figure 3. The network EE versus λu with λp = 0.0006.

5.2. Performance Analysis for PBS Density Optimization

The performances of the optimal PBS density obtained according to PDO Algorithm are compared
with those of the static PBS density (represented by the static ratio of PBS density to MBS density) and
Monte Carlo simulation, which are presented in Figures 4 and 5 from different aspects, respectively.
The network EE for the static ratio of PBS density to MBS density is obtained according to Equation (14)
and the static ratio ρp,m is set to be 10, 15 and 20, respectively. The Monte Carlo simulation results
show the maximum network EE within the value range of PBS density and are averaged over 50 times
of network realizations.

The relationship between the network EE and Bp with UE density λu = 0.0018 is depicted in
Figure 4. The network EE versus λu with pico CRE bias Bp = 5 dB is described in Figure 5. Both of the
simulation results show that the performances of PDO Algorithm outperform those of the static PBS
densities and fit those of Monte Carlo simulation precisely. Figure 4 also shows that the network EE is
nonlinear with Bp, which signifies the difficulty of Bp optimization by closed-form solution. As shown
in Figure 5, the curves of static PBS densities cross with each other under different UE densities, which
indicates that the PBS density should be carefully adjusted according to the network load fluctuation.
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This is why the performance of our proposed PDO Algorithm can always outperform those of static
PBS density scheme.
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Figure 4. The network EE versus Bp with λu = 0.0018.
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Figure 5. The network EE versus λu with Bp = 5 dB.

5.3. Performance Analysis for Joint Optimization of CRE Bias and PBS Density

The network EE performance of JBPDO Algorithm are compared with those of a CBO Algorithm
with fixed λp = 20λm, PDO Algorithm with fixed Bp = 5 dBm, Traverse Algorithm and Monte Carlo
simulation in Figure 6. Traverse Algorithm simulation results are obtained by traversing all the values
of pico CRE bias and PBS density to find optimal CRE bias and PBS density based on Equation (14)
to maximize the network EE. The Monte Carlo simulation results show the maximum network EE
within the value ranges of PBS density and pico CRE bias together and are averaged over 50 times of
network realizations. Clearly, due to the fact that the JBPDO Algorithm can jointly optimize pico CRE
bias and PBS density together to achieve these two parameters global optimization, the number of UEs
offloaded from macro cells can be further optimized and eventually the JBPDO Algorithm can further
enhance the network EE compared with CBO Algorithm and PDO Algorithm. Monte Carlo simulation
results once again illustrate the accuracy and effectiveness of our proposed JBPDO Algorithm.

The network EE increments of JBPDO Algorithm compared with CBO Algorithm and PDO
Algorithm are depicted in Figure 7 under different user densities. As shown in Figure 7, due to the fact
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that JBPDO Algorithm can realize pico CRE bias and PBS density joint optimization, the performance
of JBPDO Algorithm can always outperform CBO Algorithm and PDO Algorithm obviously with
different user densities. The network EE performance gap is also given in Figure 7 between our
proposed JBPDO Algorithm and Traverse Algorithm, which can also realize pico CRE bias and PBS
density joint optimization with higher computational complexity. Simulation results show that the
network EE performance of our proposed JBPDO Algorithm is just slightly worse than that of Traverse
Algorithm.

Referring to Figures 6 and 7 together, the performance of Traverse Algorithm outperforms
JBPDO Algorithm slightly. However, the computational complexity of JBPDO Algorithm is much
lower than that of Traverse Algorithm. The computational complexity of Traverse Algorithm
will be O

(
np,cre × np,density

)
and that of JBPDO Algorithm will be O

[(
np,cre + np,density

)
× Nloop

]
.

The convergence of JBPDO Algorithm is simulated in Figure 8, which is averaged with 30 different
UE densities. It is seen from Figure 8 that JBPDO Algorithm can converge after two iterations. Hence,
although the network EE performance of JBPDO Algorithm is slightly smaller than that of Traverse
Algorithm, the computational complexity of JBPDO is much lower than that of Traverse Algorithm.
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Figure 6. The network EE versus λu with different optimization algorithms.
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6. Conclusions

In this paper, we analyze the network EE for a two-tier HetNets consisting of MBSs and PBSs by
means of stochastic geometry theory, where CRE implemented on PBS and ABS based on an eICIC
scheme is adopted by MBS for downlink interference mitigation to PBS CRE UEs. We first derive the
closed-form expression of the network EE. Then, a linear search algorithm is adopted to optimize
the pico CRE bias and PBS density, respectively. Finally, a heuristic based algorithm is proposed to
optimize the pico CRE bias and PBS density jointly to achieve the network EE maximization. Extensive
simulation results show the accuracy of our theory deduction and the effectiveness of our proposed
optimization algorithms for the network EE optimization with reduced complexity.
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Appendix A

Proof of Lemma 1. Considering a typical user, it is at a distance r away from its closest BS in the kth
tier. Then, there is no BS closer than r in the kth tier. Due to the fact that the void probability of 2D PPP
in an area of Ψ is e−λkΨ, we can obtain

P (rk > r) = P (no BS closer than rk) =e−λkπr2
, (A1)

where rk denotes the distance of this typical user to the closest BS in the kth tier, and λk is the BS
density of kth tier. Then, we can get the cumulative distribution function (CDF) of rk as follows:

Frk (r) = 1− exp
(
−λkπr2

)
. (A2)

Hence, the probability density function (PDF) of the distance rk is

frk (r) = 2πλkr exp
(
−πλkr2

)
. (A3)
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Referring to the user type formular expressiones in Equation (2), we deduce the probability of a
similar expression Ar2 < r1 < Br2 as:

P (Ar2 < r1 < Br2) = P (Ar2 < r1 < Br2, r2)

=
∫ ∞

0 P (Ar2 < r1 < Br2) fr2 (r) dr
=
∫ ∞

0

[∫ Br
Ar 2πλ1r exp

(
−πλ1r2) dr

]
fr2 (r) dr

=
∫ ∞

0

[
exp

(
−λ1πA2r2)− exp

(
−λ1πB2r2)]

· 2πλ2r exp
(
−πλ2r2) dr

= λ2
λ2+A2λ1

− λ2
λ2+B2λ1

,

(A4)

where A and B denote the arbitrary value coefficients and the subscript 1 and 2 denote the tier 1 and
tier 2, respectively.

In the same way, we can get the expressions of Amu , Apc and Ape combining Equations (2)
and (A4).

Appendix B

Proof of Lemma 2. To get the PDF of the distance between a typical user and its serving BS, the user
type of this typical UE has to be identified firstly. Then, this issue can be converted to solving a
conditional probability problem, which can be solved by Bayes rule. Assuming that the distance
between the typical user and its serving BS is rl , then the PDF of it according to its user type can be
expressed as:

fmu (rl) = fmu

(
rm

∣∣∣Pmhr−α
m > BpPphr−α

p

)
,

fpc (rl) = fpc

(
rp

∣∣∣Pphr−α
p > Pmhr−α

m

)
,

fpe (rl) = fpe

(
rp

∣∣∣Pphr−α
p < Pmhr−α

m < BpPphr−α
p

)
,

(A5)

where fmu (rl), fpc (rl) and fpe (rl) have similar expressions. If we can deduce the results of fpe (rl),
then fmu (rl) and fpc (rl) can be obtained in the same way. Referring to the expression of fpe (rl), we
first calculate the following similar conditional probability:

P [r2 |Ar2 < r1 < Br2 ] =
P [r2 < r, Ar2 < r1 < Br2]

P [Ar2 < r1 < Br2] ,
(A6)

where the subscripts 1 and 2 denote tier 1 and tier 2 of HetNets, respectively, and A and B represent the
arbitrary value coefficients. P [Ar2 < r1 < Br2] has been obtained in Equation (A4) and is independent
of r. Therefore, the PDF of distance r2 can be obtained by the derivation of the CDF function without
considering P [Ar2 < r1 < Br2].

Substituting C for P [Ar2 < r1 < Br2], the PDF of distance r2 can be expressed as:

fr2 (r) =
d
dr P [r2 |Ar2 < r1 < Br2 ]

= 1
C

d
dr P [r2 < r, Ar2 < r1 < Br2]

= 2πrλ2
C

{
exp

[
−πr2 (λ2 + Aλ1)

]
− exp

[
−πr2 (λ2 + Bλ1)

]}
.

(A7)

Similarly, we can also get the expression of fmu (rl), fpc (rl) and fpe (rl).
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Appendix C

Proof of Lemma 3. On the basis of the expression of the SINR in Equation (1), Wl and Nl can be seen
as constants. fl (r) can be obtained according to Equation (A7). Thus, we can deduce the expression of
the average user rate of user type l as:

Rl =
Wl
Nl

E [log2 (1 + SINRl)]

=Wl
Nl

∫ ∞
0 E

[
log2

(
1 + Pl hr−α

l
∑2

k=1 Il,k+σ2

)]
fl (r) dr

], (A8)

where

E
[

log2

(
1 + Pl hr−α

l
∑2

k=1 Il,k+σ2

)]
(a)
=
∫ ∞

0

[
log2

(
1 + Pl hr−α

l
∑2

k=1 Il,k+σ2

)
> t
]

dt

=
∫ ∞

0

[
h >

(
2t − 1

) (
∑2

k=1 Il,k + σ2
)

rα
l P−1

l

]
dt

(b)
=
∫ ∞

0 exp
[
−τσ2rα

l P−1
l

]
exp [−τ Il,1rα

l P−1
l

]
·exp

[
−τ Il,2rα

l P−1
l

]
dt,

(A9)

where (a) is derived according to E (X) =
∫ ∞

0 P [X > x]dx, (b) is obtained referring to h ∼ exp (µ)

and by setting 2t − 1 = τ and µ = 1. Substituting the following Laplace transform Equation (A10)
into Equation (A9), and further substituting Equation (A9) into Equation (A8), we can then obtain the
expression of the average rate of user type l in the network, which is expressed in Equation (7):

Ll,k

(
τrα

l P−1
l

)
= exp

(
−πλk

(
Pk
Pl

)2/α
r2τ2/α

∫ ∞
(βk/τ)2/α

1
1+x2/α dx

)
.

(A10)
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