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Abstract: With the development of deep neural networks, many object detection frameworks have
shown great success in the fields of smart surveillance, self-driving cars, and facial recognition.
However, the data sources are usually videos, and the object detection frameworks are mostly
established on still images and only use the spatial information, which means that the feature
consistency cannot be ensured because the training procedure loses temporal information. To address
these problems, we propose a single, fully-convolutional neural network-based object detection
framework that involves temporal information by using Siamese networks. In the training procedure,
first, the prediction network combines the multiscale feature map to handle objects of various sizes.
Second, we introduce a correlation loss by using the Siamese network, which provides neighboring
frame features. This correlation loss represents object co-occurrences across time to aid the consistent
feature generation. Since the correlation loss should use the information of the track ID and detection
label, our video object detection network has been evaluated on the large-scale ImageNet VID dataset
where it achieves a 69.5% mean average precision (mAP).

Keywords: deep neural network; video object detection; temporal information; Siamese network;
multiscale feature representation

1. Introduction

Object detection in images has received much attention in recent years with tremendous
progress mostly due to the emergence of deep neural networks, especially deep convolutional neural
networks [1–4], and their region-based descendants [5–11]. These methods achieve excellent results
on still image datasets, such as Pattern Analysis, Statistical Modelling and Computational Learning
Visual Object Classes (PASCAL VOC) and Microsoft Common Object in Context (COCO).

With this success, computer vision tasks have been extended from the still image domain to the
video domain because, in reality, the data sources of practical applications, such as smart surveillance,
self-driving, and face recognition, are mostly videos. Thus, the additional challenges are [12]: (1) motion
blur: due to rapid camera or object movement; (2) quality: due to the quality of internet video clips
being lower than that of still images, even if the resolutions are the same; (3) partial occlusion: due
to the position change in the camera or object; and (4) pose: due to unconventional object-to-camera
poses that are frequently shown in video clips. To overcome this gap, most video object detection
methods [13–16] use exhaustive post-processing in addition to still image detectors. For example,
T-CNN [13] uses the two-stage Faster RCNN [8] detection framework for individual video frames.
Then, context suppression and tracking are applied for the detection results. Since they do not actually
involve temporal information, those video object detection methods do not have favourable results on
video sources.
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In this paper, to introduce time-series information to the network, we propose a novel training
framework based on the Siamese network [17,18], which is fully-convolutional with respect to adjacent
frames. By introducing the Siamese network, we can effectively maintain feature consistency by
computing the feature similarity across adjacent frames, which maintains feature consistency in
the detection process. In the training stream, the input is a pair of neighboring frames. Then,
a backbone network and a set of fully-convolutional layers are cascaded to generate the multiscale
feature representation for detection. In this way, we can handle multiscale objects. Afterwards,
we design a novel loss function based on the Siamese network to maintain the feature consistency.
Correlation loss is a constraint between neighboring frames that is calculated by computing the
similarity of the object features with the same label and track ID. In the detection stream, by sharing
with the multiscale feature representation, the detection results are optimized by Soft-NMS [19].

Our network is evaluated on the larger-scale ImageNet VID validation dataset. Our proposed
network has a 1.6% improvement compared to the baseline Single Shot Multibox Detector. Moreover,
for demonstrate the effectiveness of the proposed framework, we also conduct an experiment on the
YouTube Object dataset and the proposed framework has a 4.4% bonus compared to the baseline.

2. Related Works

In this section, we review still image object detection, video object detection, video action detection,
and 3D shape classification.

2.1. Still Image Object Detection

There are two classes of detection methods. One method is based on region proposal classification,
and the other method is based on sliding windows. Before the larger improvement of computational
sources, the best of these two approaches are the Deformable Part model (DPM) [20] and Selective
Search (SS) [21]. After the dramatic improvement that was shown by R-CNNs [8], region proposal
object detection methods became prevalent. For the one-stage detection framework based on sliding
windows, the You Look Only Once (YOLO) [22] and Single Shot Multibox Detector (SSD) [10] became
renowned. These two detection methods have comparable results. Moreover, there are added benefits
to using the one-stage architecture. The processing speed of the one-stage method is faster than the
region proposal method. For example, SSD300 obtained a speed of 46 fps, whereas the Faster RCNN [6]
was 7 fps.

2.2. Video Object Detection

Recently, ImageNet [23] introduced a new solution for object detection from video clips, which is
the well-known ImageNet VID. This competition brings the object detection task into the video domain.
In this competition, nearly all the detection methods that involve time-series information have been
post-processed after the detection on individual frames. The T-CNN [13] incorporates optical flow
information to fix the neighboring frame results. The MCMOT [16] approaches post-processing as a
multi-object tracking problem by applying a series of man-made rules (e.g., the threshold of confidence
and changing point detection). The Seq-NMS [14] regards post-processing as a confidence re-scoring
problem. The boxes of the video sequence are re-scored to the average confidence. Unfortunately,
these methods incorporate temporal information by post-processing and the detection in a video is a
multi-stage pipeline. The temporal information is not truly involved in the algorithm.

2.3. Video Action Detection

Different from video object detection, video action detection is to detect every occurrence of a
given action within a long video, and to localize each detection both in space and time. How to
use the temporal information effectively is the common problem in video object detection and
video action detection. Finding Action Tubes [24] extracts frame-level action proposals using
selective search and link them using Viterbi algorithm. Multi-region RCNNs [25] applies two stream
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R-CNNs for action detection, where a spatial Region Proposal Network (RPN) and a motion RPN
are used to generate frame-level action proposals. Tube CNN [26] proposes an end-to-end Tube
Convolutional Neural Network for action detection, which exploits a 3D convolutional network to
extract spatial-temporal features.

2.4. 3D Shape Classification

3D data has three-dimensional information, which consists of 2D information and depth
information. A video clip is similar to 3D data, which also has three-dimensional data (2D information
and time-series information). The processing of 3D data is mainly focused on shape classification.
The common problem of video object detection and 3D shape classification is how to use the
third-dimensional information (depth or time-series information). LWU [27] leverages stochastic
gradient Markov Chain Monte Carlo (SG-MCMC) and Bayesian interpretations to learn the weight
uncertainty and improve the robustness in deep neural networks. GM3D [28] extracts geodesic
moments as shape features and uses a two-layer stacked sparse auto encoder to digest these features
to predict the shape category.

3. Method

Figure 1 illustrates the entire pipeline of the proposed method. The pipeline is introduced in
two parts: the training stream and the testing stream. First, for the training procedure to have a
better training starting point, the backbone of the proposed fully-convolutional neural networks
is the VGG-16, which is pre-trained by using the ImageNet CLS-LOC dataset. Second, by feeding
forward a set of fully-convolutional layers cascaded after the backbone network, the multiscale feature
representation is generated to handle multiscale objects. Third, a set of different anchor shapes are
generated on the multiscale feature maps to adapt objects with different scales’ aspect ratios. Fourth,
considering the predictions for each anchor and the intersection of union (IOU) of the anchor and
ground truth, the detection loss is formed. Finally, the above procedures are replicated twice to establish
a Siamese network. By measuring the similarity with the neighboring frame feature, the correlation
loss, which consists of the center-value loss and the anchor coordinate loss, is computed. For the
testing procedure, after sharing the backbone multiscale feature representation, anchor generation,
and prediction, the testing results are computed after the Soft-NMS optimization.

3.1. Network Architecture

The following section details the proposed network, which contains the backbone network,
multiscale feature representation, anchor generation, anchor prediction, and training sample selection.
The network architecture explains the data flow in the feed-forward procedure.

3.1.1. Backbone Network

In this paper, the backbone network is the VGG-16 [3], which is pre-trained on the ImageNet
CLS-LOC dataset [23]. As shown in Figure 2, the original VGG-16 is a deep CNN that includes 13
convolutional layers and three fully-connected layers. The convolutional layers generate deep features,
which are then fed into the fully-connected layers. Similar to SSD, we remove the fully-connected
layers and only use the convolutional layers to generate the feature maps.

The followings detail the entire backbone network:

(1) Input: images with RGB channels.
(2) Convolutional layers: The convolutional layers mainly contain five groups—conv1, conv2, conv3,

conv4, and conv5. Conv1 includes two convolutional layers with 64 3× 3 kernels. Conv2 includes
two convolutional layers with 3× 3 kernels. Similar to conv1 and conv2, conv3, conv4, and conv5
include three convolutional layers with 256, 512, and 512 3× 3 kernels, respectively.
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(3) The activation function is rectified linear units [29], and the kernel size of the max pooling layer
is 2× 2.
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Sensors 2018, 18, 774 5 of 21

3.1.2. Multiscale Feature Representation

After the backbone network, the multiscale feature representation network is cascaded, which
is generated by feed-forward convolutional networks [4,30]. According to SSD [10], conv4_3 has a
different feature scale compared to the other layers in the backbone network. Therefore, the multiscale
feature representation is started from conv4_3 after applying a L2 normalization to scale the feature
norm at each location in the feature map to 20 and to learn the scale during back propagation.

Considering that the size of the input image is initialized to 300× 300, conv4_3 has a 38× 38
feature map size, and conv4_3 is the first feature scale map. The multiscale feature representation is
generated after conv4_3 by applying feed-forward convolution.

Traditionally, the low-resolution feature map can be generated from the high-resolution feature
map by a certain convolutional layer, but the computational costs are high. To reduce the computational
costs, each scale block contains 2 convolutional layers. The first convolutional kernel size is 1× 1×
M× N. Here, M is the upper layer channel number, and N is the current channel number. By using
a 1 × 1 × M × N kernel, the middle feature map channel is decreased from M to N. The second
convolution kernel size is 3× 3× N × K, where K is the current scale-feature channel number.

Table 1 shows the details of the multiscale feature representation. There are six scale feature maps
with feature map sizes of 38× 38, 19× 19, 10× 10, 5× 5, 3× 3, and 1× 1, where 38× 38 is the conv4_3
in VGG16. In the options list, s is the convolutional kernel stride, p is the padding size, and dilation is
the dilated convolution. In the dilation, the stride is 1, the padding size is 6, and the convolutional
kernel size is 6 with 3× 3 parameters.

Table 1. Details of the multiscale feature representation.

Stage Conv Kernel Size Feature Map Size Usage Options

Conv4_3 (3× 3× 512)× 512 38× 38× 512 Detection for scale 1 s-1, p-1
Conv6_1 (3× 3× 512)× 1024 19× 19× 1024 Enlarge receptive field dilation
Conv6_2 (1× 1× 1024)× 1024 19× 19× 1024 Detection for scale 2 s-1, p-0
Conv7_1 (1× 1× 1024)× 256 19× 19× 256 Reduce channels s-1, p-0
Conv7_2 (3× 3× 256)× 512 10× 10× 512 Detection for scale 3 s-2, p-1
Conv8_1 (1× 1× 512)× 128 10× 10× 128 Reduce channels s-1, p-0
Conv8_2 (3× 3× 128)× 256 5× 5× 256 Detection for scale 4 s-2, p-1
Conv9_1 (1× 1× 256)× 128 5× 5× 128 Reduce channels s-1, p-0
Conv9_2 (3× 3× 128)× 256 3× 3× 256 Detection for scale 5 s-1, p-0
Conv10_1 (1× 1× 256)× 128 3× 3× 128 Reduce channels s-1, p-0
Conv10_2 (3× 3× 128)× 256 1× 1× 256 Detection for scale 6 s-1, p-0

3.1.3. Anchor Generation

The anchor in the proposed network plays two roles. The first role is in the data selection
procedure. The IOU of the ground truth and an anchor decides whether this anchor is a positive
sample [31]. Traditionally, if the IOU is more than 50%, the anchor is a positive sample. The second
role is in the training and testing procedure. In the training procedure, the classification and location
loss are computed by the anchors. In the testing procedure, the bounding box results are computed
by the anchor location layers and, after the non-maximum suppression of the bounding box results,
the detection results are computed. Figure 3 shows the flow of the anchor generation.

Traditional object detection methods suggest processing an image at different scales and then
combines the results. Since we have the multiscale feature representation, we can utilize these feature
maps with different scales in a single network to have a similar effect with the traditional image
processing method.

Similar to the Faster RCNN and the SSD, the anchors are generated on the feature maps by dense
sampling. First, to handle different sizes of objects, different scales of objects are detected on different
feature maps. Therefore, in different feature maps, we allocate different scales. In the feature map with
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low resolution, the anchor scale is large, and in the feature map with high resolution, the anchor scale is
small. Second, for a certain scale, the anchor should have different aspect ratios. The design of these
aspect ratios are decided by the object’s aspect ratios. Suppose that we have m feature maps and the
detection is applied to these m feature maps, the anchor scale of the feature map is computed as follows:

sn = smin +
smax − smin

m− 1
(n− 1), n ∈ [1, m] (1)

In the formulation, smin is the minimum scale of the objects to be detected, and smax is the
maximum scale of the objects to be detected. n represents the nth square feature map. sn is the scale of
the certain feature map. According to the scales, the anchor area is obtained as anchorarea = s2

n.
For the aspects of the anchors, different aspect ratios are set according to the object’s aspect ratios.

Traditionally, the aspect ratios contain ar = [1, 2, 3, 1
2 , 1

3]. Furthermore, for the scale consistency, a scale of
s′n =

√
snsn+1 and the aspect ratio of 1 are also considered. The width and height are computed as follows:{

anchor_wn = sn
√

ar

anchor_hn = sn/
√

ar
(2)

Finally, there are six anchors for each pixel in the feature maps.
In the proposed model, we allocate the different scales from 0.1 to 0.95, in which 0.95 indicates that

the object occupies the entire image and 0.1 indicate the down-sampling rate on Conv4_3. Moreover,
we set the starting scale of Conv6_2 is 0.2. The aspect ratios contain ar = [1, 2, 3, 1

2 , 1
3 ] and aspect ratio

of 1 for scale of
√

snsn+1.
Table 2 shows the anchor details with the height, weight and number of each feature map in

Section 3.1.2. In the table, for clarity, the channel number of the feature map is hidden. To include more
objects with different aspect ratios and scales, there are six anchor shapes for each pixel on the feature map.
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Figure 3. Anchor generation flow. For each pixel on the feature map, six anchor shapes are generated
that share the same center with the scales of 0.2 and 0.27. In addition, the center of each anchor is the
pixel center. In the figure, the center is (0.5, 0.5).

Table 2. Anchor details in multiscale feature representation.

Feature Feature Map Size Anchor Height Anchor Width Number

Conv4_3 38× 38 0.0707, 0.0577, 0.1414
0.1732, 0.1000, 0.1414

0.1414, 0.1732, 0.0707
0.0577, 0.1000, 0.1414 8864

Conv6_2 19× 19 0.1414, 0.1155, 0.2828
0.3464, 0.2000, 0.2784

0.2828, 0.3464, 0.1414
0.1155, 0.2000, 0.2784 2166

Conv7_2 10× 10 0.2740, 0.2237, 0.5480
0.6712, 0.3875, 0.4720

0.5480, 0.6712, 0.2740
0.2237, 0.3875, 0.4720 600

Conv8_2 5× 5 0.4066, 0.3320, 0.8132
0.9959, 0.5750, 0.6621

0.8132, 0.9959, 0.4066
0.3320, 0.5750, 0.6621 150

Conv9_2 3× 3 0.5392, 0.4402, 1.0783
1.3207, 0.7625, 0.8511

1.0783, 1.3207, 0.5392
0.4402, 0.7625, 0.8511 54

Conv10_2 1× 1 0.6718, 0.5485, 1.3435
1.6454, 0.9500, 1.0395

1.3435, 1.6454, 0.6718
0.5485, 0.9500, 1.0395 6
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3.1.4. Anchor Prediction

After associating a set of anchors with each feature map, the anchor prediction is the next key
procedure during the algorithm. At each anchor, we predict the offsets relative to the anchor shapes
and the per-class scores that indicate the presence of a class instance in this anchor. Suppose that the
class number that we want to predict is n. For each anchor, the output size is (n + 1) + 4. (n + 1) is the
class number and background, and 4 is the bounding box offset for this anchor. Figure 4 shows the
prediction procedure of an anchor.

Referring to the multiscale feature representation in Section 3.1.2, Table 3 shows the detailed
prediction kernels. The confidence output of each anchor is (n + 1)× 6 dimensions with (n + 1) classes
and six shapes. The bounding box output of each anchor is (n + 1)× 4 dimensions with (n + 1) classes
and (bx, by, bw, bh).
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Figure 4. Confidence and bounding box prediction from an anchor. The red point is the center of the
example anchor. There are two kernels of 3× 3 for the confidence prediction and the bounding box
prediction for this anchor. The red kernel is the confidence kernel and the blue kernel is the bounding
box prediction kernel.

Table 3. Details of the prediction kernel.

Feature Feature Map Size Confidence Kernel Location Kernel

Conv4_3 38× 38× 512 3× 3× 512× (n + 1)× 6 3× 3× 512× (n + 1)× 4
Conv6_2 19× 19× 1024 3× 3× 1024× (n + 1)× 6 3× 3× 1024× (n + 1)× 4
Conv7_2 10× 10× 512 3× 3× 512× (n + 1)× 6 3× 3× 512× (n + 1)× 4
Conv8_2 5× 5× 256 3× 3× 256× (n + 1)× 6 3× 3× 256× (n + 1)× 4
Conv9_2 3× 3× 256 3× 3× 256× (n + 1)× 6 3× 3× 256× (n + 1)× 4
Conv10_2 1× 1× 256 3× 3× 256× (n + 1)× 6 3× 3× 256× (n + 1)× 4

3.1.5. Training Sample Selection

In the training procedure, the training samples are generated from the anchors. A matching
strategy between the anchors and the ground truths is applied. The strategy begins by matching each
anchor to the ground truth. Different from Multibox, the positive samples are the anchors with a
Jaccard overlap higher than a threshold. The others are the negative samples. This strategy simplifies
the training sample selection problems and provides the network with more positive samples.

Moreover, to improve performance, the network also incorporates hard example mining and
data augmentation.
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1. Hard Example Mining

Since the negative samples are selected from the background, the number of negative samples
is much larger than the number of positive samples. This difference causes a significant imbalance
between the positive and negative training samples. To overcome this difficulty, following OHEM [32],
we sort the samples by their prediction scores. By selecting the top scores, we restrict the ratio between
the negative and positive training samples to 3:1. In this way, we can avoid training mainly on the
negative samples.

2. Data Augmentation

To improve the generalization of the network, we also apply data augmentation. Similar to SSD,
each training image is augmented by one of the following options:

• Use the entire original input image;
• Sample a patch so that the minimum Jaccard overlap with the objects is 0.1, 0.3, 0.5, 0.7, or 0.9;
• Randomly sample a patch.

After the aforementioned sampling step, each augmented image is resized to a fixed size and is
horizontally flipped with the probability of 0.5.

3.2. Loss Function

In the proposed network, the loss function mainly contains two parts: the detection loss and
the correlation loss. The detection loss relates to the object classification and the object bounding box
regression. The correlation loss is the neighboring object feature correlation, which could involve the
time-series information of the network.

3.2.1. Detection Loss

Detection loss relates to an object in a single frame, and it involves the frame information
concerning the object. Similar to the Faster RCNN [6], detection loss consists of a combined
classification loss Lcls and a bounding box regression loss Lbbox. The overall detection loss is the
sum of Lcls and Lbbox. Suppose that f is a feature in a certain anchor with a Jaccard overlap that is
higher than 0.5. Then:

Ldet( f , l, g, c) =
1
n
(aLbbox( f , l, g) + Lcls( f , c)), (3)

where n is the number of anchors whose Jaccard overlap is higher than 0.5; f is the feature of the certain
anchor; c is the classification score of the anchor; and l and g are the bounding box offsets and ground
truth, respectively.

Similar to SSD, Lcls is formed by multi class softmax:

Lcls( f , c) = −(
n

∑
i∈positive

f label
ij log(

_
c

label
i ) +

n

∑
i∈negtive

log(
_
c

label
i )), (4)

where:
_
c

label
i =

exp(clabel
i )

∑label clabel
i

, (5)

In the formulation, clabel
i is the anchor classification prediction score of the certain label in the ith

anchor box. For example, cperson
5 is the prediction score of person in the 5th anchor box. Let f label

ij = [1, 0]
be the indicator for the ith anchor box to the jth ground truth of label. Moreover, the background label
is 0. Therefore, if i ∈ negtive, then clabel

i = c0
i .
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Lbbox is based on the Huber loss [33] between the ground truth and the bounding box. The Huber
loss is less sensitive to outliers in the data than the squared error loss. Lbbox is formulated as follows:

Lloc =
n

∑
i∈positive

∑
k∈(bx,by,bw,bh)

f label
ij Huber(prem

i −
_
g

m
j ), (6)

in which:

Huber(x) =

{
0.5x2 (|x| ≤ α)

α(|x| − 0.5α) (|x| > α)
(7)

Similar to R-CNN, α is a hyper-parameter and set to 1.
Suppose that the bounding box has four parameters, which are (bx, by, bw, bh). (bx, by) is the

center of the bounding box; and (bw, bh) is the width and height, respectively. Pre and g refer to the
prediction box and the ground truth box, respectively. i and j are as the same as Lcls.

Moreover, when formulating Lbbox, we adopt the parameterizations of the anchor bounding box(a)
and the ground truth box(g) following R-CNN [8]:

_
g

bx
j =

gbx
j −abx

i

abw
i

_
g

by
j =

gby
j −aby

i

abh
i

_
g

bw
j = log(

gbw
j

abw
i
)

_
g

bh
j = log(

gbh
j

abh
i
)

(8)

This parameterization enhances the effect of the center (bx, by) and weakens the effect of the width
(bw) and height (bh).

3.2.2. Correlation Loss

Detection loss is mainly concerned with intra-frame information. However, in video sources,
detection loss does not consider inter-frame information. Correlation loss is a strategy that involves
the inter-frame information by measuring the feature difference between frames.

As is known, the traditional detection frameworks based on deep neural networks are
discriminative algorithms. The main concern is how to plot a line or surface in the feature space. If the
feature is on the left side of the line, the feature is generated by the positive sample. According to the
well-constructed feature space of a convolutional neural network, the linear classifier (Softmax) could
easily differentiate the negative features from the positive features. Due to the discriminative algorithm
characteristics, the feature in the feature space is scattered. In video object detection, the object
is continuously moving. Therefore, when the training dataset is completed, the intra-frame-based
detection framework may have a favorable result.

The proposed correlation loss is inspired by the tracking task. In the tracking task [16,34–37],
the feature consistency is the key point to judge the tracking result, especially in the correlation-based
tracking algorithm such as the correlation filter [34]. In the deep feature [12] and flow-guided
feature [38], according to the object’s movement, the feature is copied or aggregated from the key
frames of other frames. In this way, the feature stability has been guaranteed. Different from these
approaches, we formulate a correlation loss to supervise the feature consistency.

As shown in Figure 1, the correlation loss is computed by the Siamese network, which is a
two-path network that uses replication. since we construct the multiscale feature map, the correlation
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loss is generated from it. The correlation loss (Lcorr) is the combination of the center value loss
(Lcenter_value) and the anchor coordinate loss (Lcoordinate):

Lcorr( f t, f t+1, mapt+1, at+1) =
1
n
(Lcenter_value( f t, f t+1) + Lcoordinate( f t, mapt+1, at+1)), (9)

where n is the number of ground truths; f t and f t+1 are the anchor center features of the neighboring
frame t and t + 1, respectively; and at+1 is the positive anchor box in frame t + 1. Each positive anchor
box has 4 parameters (bx, by, bw, bh). mapt+1 is the entire scale feature map in frame t + 1. Moreover,
the positive anchor is different from the positive sample selection. In the correlation loss procedure,
the anchor selection is the maximum Jaccard overlap between the ground truth box and the anchors,
which means that the number of positive anchors is the same as the ground truth.

First, the correlation loss is a value that compares the correlation distance between the same
labelled object features in the neighboring frame.

The following is the formulation of (Lcenter_value):

Lcenter_value( f t, f t+1) =
n
∑

i∈positive
f t,label_t,track_t
i ⊗ f t+1,label_t+1,track_t+1

j ,

i f (label_t = label_t + 1) and (track_t = track_t + 1)
(10)

Here, ⊗ is the correlation operation. The correlation operation measures the consistency of the
feature. label_t and track_t are the ground truth label and the track ID, respectively, that relate to this
anchor. By searching all the positive anchors in the neighboring frame, we can obtain the one-to-one
corresponding positive anchor with its label and track ID in frame t and frame t + 1. f t,label_t,track_t is
the center value of the positive anchor.

Second, the anchor coordinate loss measures the tracking result loss on the neighboring frame
feature. Inspired by the correlation filter, we take the positive anchor in frame t as the first-frame
tracking ground truth. We obtain the response map in frame t + 1. Then, the coordinate of the highest
response is the tracking result in frame t + 1. Figure 5 shows the Lcoordinate computation flow.
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Figure 5. Coordinate loss computation flow. The red and green points are the positive anchors of frame
t and frame t + 1, respectively. A score heat map is computed with the correlation operation by using a
3× 3 kernel in frame t with the red point center and the feature map of frame t + 1, similar to tracking
on frame t + 1. After obtaining the max point coordinate, Lcoordinate can be computed by the max point
coordinate and the green point coordinate.
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Then, the anchor coordinate loss is formed as:

Lcoordinate( f t, mapt+1, at+1) =
n
∑

i∈positive
Dis(T( f t,label_t,track_t

i , mapt+1), at+1,label_t+1,track_t+1)/map_size,

i f (label_t = label_t + 1) and (track_t = track_t + 1)
(11)

where:

T( f t,label_t,track_t
i , mapt+1) = max(

_
f

t,label_t,track_t

i ⊗mapt+1)[bx, by] (12)

The T (Track) formulation obtains the center (bx, by) of the max response location. In Lcoordinate,
Dis computes the center Euclidean distance of the tracking result and the positive anchor in frame
t + 1. Moreover, in case the coordinate loss is high, we normalize it by the size of the feature map.
By applying the correlation loss, the object feature in the neighboring frame can be more consistent.

4. Experiment and Results

We report the results of the ImageNet VID validation dataset. The training set contains the
ImageNet VID training dataset. The performance of our method is compared to the R-CNN [8],
Fast R-CNN [5], original SSD [10], T-CNN [15], and TPN + LSTM [39], and the winner of the
competition of ImageNet VID 2015 [13]. The detailed evaluation metrics are described in Section 4.1.
All the methods in the experiments were programmed based on the Pytorch deep learning framework.
The computational resources include a TITAN X GPU, 128 GB of memory, and an Intel Xeon E5-2670
CPU (2.30 GHz). The operating system used is Ubuntu 14.04. Moreover, in order to show the
effectiveness of the proposed method, we also evaluate our model on the YouTube Object (YTO)
dataset and the Unsupervised [40], YOLO [22], Context [41], a_LSTM [42], T-CNN [15], Base [10]
models are selected for comparison.

4.1. ImageNet Dataset

We evaluate our method by using the 2015 ImageNet object detection from a video (VID) [23]
dataset that contains 30 classes in 3862 training and 555 validation videos. The 30 object categories
in ImageNet VID are a subset of the 200 categories in the ImageNet DET dataset. The objects have
ground truth annotations for their bounding box and a tracking ID in a video. Since the ground truth
for the test set is not publicly available, we measure the performance as the mean average precision
(mAP) over 30 classes on the validation set by following the protocols in [12,13,15,38,39], which is
standard practice. Figure 6 shows the number of ground truths in each class, in which we can see that
the training ground truth in each class is unbalanced. Then, we subsample the VID training set by
using only 30 frames from each video.
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Figure 7 shows the object area statistical information in the dataset, in which we can see more
than half of the objects have areas lower than 0.33.

The positive samples are anchors with Jaccard overlap of ground truths of more than 0.5. If the
Jaccard overlaps between all of the anchors and ground truths are lower than 0.5, there would be no
positive samples. Figure 8 shows the statistical information of small objects. In this dataset, if the scale
of the smallest anchor is 0.1, the framework will miss about 10% of the ground truths.
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4.2. Model Training

Baseline-single shot multibox: The baseline is SSD300, which means the input is resized to
300× 300. The multiscale feature map sizes are 38× 38, 19× 19, 10× 10, 5× 5, 3× 3, and 1× 1.
There are six anchor shapes in the multiscale feature map, which contains [1, 2, 3, 1

2 , 1
3 ] with an

aspect ratio of 1, for a scale of
√

snsn+1. The backbone is the VGG 16 net with the fully-connected
layers removed. Following SSD300, we change pool5 from 2× 2− s2 to 3× 3− s1 and use an a trous
algorithm to fill the “holes”.

The baseline uses conv4_3, conv6_2, conv7_2, conv8_2, conv9_2, and conv10_2 to predict both the
locations and confidences. The baseline sets the anchor with a scale of 0.1 on conv4_3, and the other
layers are initialized by the “Xavier” method [43]. For all prediction layers, we included six anchor
shapes as described in Section 3.1.3. The baseline uses the 10−3 learning rate for 200,000 iterations.
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The training was continued for 200,000 iterations with 10−4 and 10−5. Moreover, the optimization trick
has a momentum of 0.9 and a weight decay of 0.0005.

Proposed network: Our network is established on SSD300, whose input image size is also resized
to 300× 300. The training differences between the proposed network and the baseline are as follows:

1. Input image

The input image is a pair of neighboring frames (frame t and frame t + 1). The neighboring frames
must have at least one object pair with the same label and track ID. If one of the neighboring frames is
empty, this frame pair is removed.

2. Correlation loss computation

Correlation loss (Lcorr) has two subsets: (Lcenter_value) and (Lcoordinate). (Lcenter_value) is computed
by the center values of the positive anchors. In Lcoordinate, when computing the response map, the kernel
size is 3× 3, and its center is the positive anchor center. Furthermore, frame t + 1 is padded by one pixel.

3. Learning rate

Since the loss in the proposed network is more than the baseline, we first warm up the network
with a learning rate of 10−4 for 10,000 iterations. Then, the proposed network uses the 10−3 learning
rate for 200,000 iterations. The training was continued for 200,000 iterations with 10−4 and 10−5.

4. Training time

The training time of the baseline is almost three days. Due to the correlation loss computation
and the detection loss that contains two images, the training time of our method is longer than the
baseline. Following the above training process, the entire training time is approximately seven days.

In addition to the above procedure, the proposed network training is mostly the same as the
baseline. The proposed network also uses six layers to predict, and each layer’s anchor shape is six.
The optimization trick that we use is a momentum of 0.9 and a 0.0005 weight decay.

4.3. Testing and Results

We test the baseline and the proposed network on the validation dataset with subsampling.
Moreover, we also adopt Soft-NMS [19] to accurately fix the candidate bounding boxes. Moreover, the
Seq-NMS [14], which is a post-processing method, is applied after the detection process. Table 4 shows
the mAP results on the validation dataset. From the table, the baseline SSD300 achieves a mAP of
67.9%. Our proposed method achieves 69.5%, which is a 1.6% improvement compared to the baseline.

From Table 4, we compare our proposed network with R-CNN [8], Fast R-CNN [5], T-CNN [15],
TPN + LSTM [39], the baseline and the winner in the competition of ImageNet VID 2015 [13]
(multi-model). The R-CNN and Fast R-CNN are baselines designed for still images. The last list
is the winner in the competition of ImageNet VID 2015 and the result is the fusion of DeepID net,
CRAFT and post-processing procedures. For the single model, the proposed network achieves the best
score, which is a 1.1% improvement over TPN + LSTM.

Moreover, because our proposed network is based on SSD300, and because the testing process is
similar, the test time per image is similar. Based on our equipment (Titan X), the testing time per image
is approximately 32 fps because there are more anchors than the original SSD.

During the network feed-forward, Figure 9 shows some middle features, containing conv4_3,
conv6_2, conv7_2, conv8_2, conv9_2, and conv10_2.
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Table 4. Average precision of each class and mAP. The bold values in the table are the best results
among single models for a certain class.

Class [8] [5] [15] [39] Baseline Our [13]

Airplane 64.5 82.1 72.7 84.6 79.3 81.2 83.7
Antelope 71.4 78.4 75.5 78.1 73.2 73.5 85.7

Bear 42.6 66.5 42.2 72.0 65.0 70.2 84.4
Bicycle 36.4 65.6 39.5 67.2 72.5 72.3 74.5

Bird 18.8 66.1 25 68 70.9 71.5 73.8
Bus 62.4 77.2 64.1 80.1 76.8 78.6 75.7
Car 37.3 52.3 36.3 54.7 49.2 50.1 57.1

Cattle 47.6 49.1 51.1 61.2 63.8 65.3 58.7
Dog 15.6 57.1 24.4 61.6 56.6 60.4 72.3

Dc_cat 49.5 72.0 48.6 78.9 72.6 70.1 69.2
Elephant 66.9 68.1 65.6 71.6 78.9 82.6 80.2

Fox 66.3 76.8 73.9 83.2 85.6 85.9 83.4
Giant_panda 58.2 71.8 61.7 78.1 79.8 81.2 80.5
Hamster 74.1 89.7 82.4 91.5 86.5 87.5 93.1

Horse 25.5 65.1 30.8 66.8 73.5 75.2 84.2
Lion 29 20.1 34.4 21.6 46.5 47.8 67.8

Lizard 68.7 63.8 54.2 74.4 69.4 71.5 80.3
Monkey 1.9 34.7 1.6 36.6 52.6 50.3 54.8

Motorcycle 50.8 74.1 61.0 76.3 70.8 72.5 80.6
Rabbit 34.2 45.7 36.6 51.4 59.1 61.8 63.7

Red_panda 29.4 55.8 19.7 70.6 67.8 71.9 85.7
Sheep 59.0 54.1 55.0 64.2 38.7 40.0 60.5
Snake 43.7 57.2 38.9 61.2 59.2 62.3 72.9

Squirrel 1.8 29.8 2.6 42.3 83.4 85.1 52.7
Tiger 33.0 81.5 42.8 84.8 76.8 78.1 89.7
Train 56.6 72.0 54.6 78.1 69.3 71.2 81.3
Turtle 66.1 74.4 66.1 77.2 72.9 74.5 73.7

Watercraft 61.1 55.7 69.2 61.5 63.4 65.6 69.5
Whale 24.1 43.2 26.5 66.9 46.8 51.8 33.5
Zebra 64.2 89.4 68.6 88.5 74.9 75.2 90.2
mAP 45.3 63.0 47.5 68.4 67.9 69.5 73.8
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To measure the effect on features, whether involving the correlation loss or not, we extract features
of the anchor with the maximum Jaccard overlap of ground truth. Then, computing the similarity of
the neighbouring frame, the similarity metric is the Euclidean distance. For each class, we choose 10
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pairs of neighbouring frames and the similarity metric is the average of those similarities. In order to
avoid the effect of the channel size, the similarity index is normalized by channels:

Similarity =
n

∑
a

√
( f a

f rame_t − f a
f rame_t+1)

2/channels/n (13)

Here, f a
f rame_t and f a

f ramet+1 are the features of the certain anchor on the neighbouring frame.
The channel is the number of the feature map.

Figure 10 shows the feature’s similarity of the proposed network and baseline. We can see our
proposed method maintains a better feature similarity than the baseline.
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Figure 11 shows the detection results of the validation dataset.

4.4. Model Analysis

The number of anchor shapes and multi-scale feature maps are the key hyper-parameters in the
proposed framework. To evaluate the effects of different number of anchor shapes and feature maps,
additional comparison experiments are conducted on the ImageNet VID dataset.

4.4.1. Number of Anchor Shapes

In the proposed framework, the number of anchor shapes for each pixel in the multi-scale feature map
is one of the key hyper-parameter and the number of anchor shapes could affect the detection performance
and speed. To analyze how the number of anchors affect the detection performance and speed, we conduct
a comparison experiment between different numbers of anchors. Table 5 shows the details about the effect
on detection performance and speed. The settings of this experiment are as following:

1. Anchor-6: For each pixel in multi-scale feature map, there are six anchor shapes in the multiscale
feature map, which contains [1, 2, 3, 1

2 , 1
3 ] and an aspect ratio of 1 for a scale of

√
snsn+1. In our

framework, the total number of anchors is 11,640.
2. Anchor-4: For each pixel in multi-scale feature map, there are four anchor shapes in the multiscale

feature map, which contains [1, 2, 1
2 ] and an aspect ratio of 1 for a scale of

√
snsn+1. In our

framework, the total number of anchors is 7760.
3. Anchor-4 and 6: In this setting, we follow the original SSD setting. In Conv_4_3, Conv9_2,

and Conv10_2, there are four anchor shapes in the multiscale feature map, which contains [1, 2, 1
2 ]
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and an aspect ratio of 1 for a scale of
√

snsn+1. Then, in Conv_6_2, Conv7_2, and Conv8_2, there are
six anchor shapes in the multiscale feature map, which contains [1, 2, 3, 1

2 , 1
3 ] and an aspect ratio

of 1 for a scale of
√

snsn+1. In our framework, the total number of anchors is 8732.
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Table 5. Detection performance on different number of anchor shapes. The bold values in the table are
the fastest detection speed and best performance.

Settings Anchor-6 Anchor-4 Anchor-4 and 6

Anchor number 11,640 7760 8732
Detection speed 32 fps 51 fps 46 fps

Mean AP 69.5 67.9 68.3

From the table, we can see that more anchors refer to better mean average precision. Additionally,
more anchors need more computational resources and the detection speed is lower. If we remove the
aspect ratio of 3 and 1

3 , the performance drops 1.6% and the detection speed has an 18 fps bonus.

4.4.2. Number of Multi-Scale Feature Maps

In our framework, the number of multi-scale feature maps is also a key hyper-parameter.
To investigate the effect of the multi-scale feature representation, we do another comparison experiment
between different numbers of multi-scale feature maps. Table 6 shows the details about the effect on
detection performance and speed. Moreover, the anchor shapes in each pixel is six, which consists of [1,
2, 3, 1

2 , 1
3 ] and an aspect ratio of 1 for a scale of

√
snsn+1. The followings are the experimental settings:

1. Feature-6: In this setting, we use six feature maps, which are Conv4_3, Conv6_2, Conv7_2,
Conv8_2, Conv9_2, and Conv10_2. In our framework, the total number of anchors is 11,640.

2. Feature-5: In this setting, we use five feature maps, which are Conv4_3, Conv6_2, Conv7_2,
Conv8_2, and Conv9_2. In our framework, the total number of anchors is 11,634.

3. Feature-4: In this setting, we use four feature maps, which are Conv4_3, Conv6_2, Conv7_2, and
Conv8_2. In our framework, the total number of anchors is 11,580.

4. Feature-3: In this setting, we use three feature maps, which are Conv4_3, Conv6_2, and Conv7_2.
In our framework, the total number of anchors is 11,430.

Table 6. Detection performance on different number of feature maps. The bold values in the table are
the fastest detection speed and the best performance.

Settings Feature-6 Feature-5 Feature-4 Feature-3

Anchor number 11,640 11,634 11,580 11,430
Detection speed 32 fps 32 fps 32 fps 33 fps

Mean AP 69.5 69.3 69.1 66.8

From the table, we can see that more feature maps can significantly enhance the mean average
precision. Since the anchors are mostly generated on feature maps with lower resolution, the speed
between the settings does not make a great difference. Compared with Feature-3, Feature-6 has a 2.7%
bonus on mean average precision.

4.5. Evaluation of the YouTube Object (YTO) Dataset

In order to show the effectiveness of the proposed network, we evaluate our model on a video
object detection task with the YTO dataset [44].

4.5.1. YouTube Object Dataset

The YTO dataset contains 10 object classes, which include an airplane, bird, boat, car, cat, cow,
dog, horse, motor-bike, and train. Moreover, these 10 object classes are a subset of the ImageNet VID
dataset and these objects are also moving objects. Different from the VID dataset which contains full
annotations on all video frames, the YTO training dataset is weakly annotated, i.e., each video is only
ensured to contain one object of corresponding class, and only a few frames, whereas the objects in
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the YTO test dataset are all annotated. In total, the YTO dataset contains 155 videos. However, it only
contains 6087 annotated frames; among them 4306 are for training and 1781 are for testing. The weak
annotation makes it infeasible to train the proposed network on the YTO dataset.

Following [13,15], since the YTO classes are a subset of the VID dataset classes, we only use this
dataset for evaluation and can directly apply the trained models on the YTO dataset for evaluation.
The evaluation metric is the same as the ImageNet VID dataset.

4.5.2. Evaluation Results

We evaluate the model trained on ImageNet to the YTO test dataset and several state-of-the-art
methods are selected for comparison. Table 7 shows the detailed AP lists computed by
Unsupervised [40], YOLO [22], Context [41], a_LSTM [42], T-CNN [15], Base [10] and our own YTO
test dataset.

Table 7. Detection performance on the YTO dataset. The bold values in the table are the best results
among single models for a certain class.

Class [40] [22] [41] [42] [15] Base Our

Airplane 56.5 76.6 76.1 78.9 94.1 80.2 85.2
Bird 66.4 89.5 87.6 90.9 69.7 79.5 83.6
Boat 58.0 57.6 62.1 65.9 88.2 75.8 79.5
Car 76.8 65.5 80.7 84.8 79.3 86.9 90.7
Cat 39.9 43.0 62.4 65.2 76.6 76.5 78.9

Cow 69.3 53.4 78.0 81.4 18.6 82.3 87.4
Dog 50.4 55.8 58.7 61.9 89.6 67.3 71.7

Horse 56.3 37.0 81.8 83.2 89.0 85.2 88.1
Moterbike 53.0 24.6 41.5 43.9 87.3 58.6 65.8

Train 31.0 62.0 58.2 61.3 75.3 71.7 77.8
Mean AP 55.7 56.5 68.7 72.1 76.8 76.4 80.8

From the table, we can see that our proposed framework outperforms by a large margin.
Compared with the baseline, our proposed method has around a 4.4% improvement and, compared
with T-CNN, our proposed method has a 4.0% bonus.

5. Conclusions

In this paper, we propose a fast and accurate object detection network for video sources.
The proposed network is a single-shot object detection network. Unlike the traditional
single-frame-based object detection network, our proposed network involves frame-to-frame
information by using the object pair relations among neighboring frames. Following the Siamese
network, we formulate a correlation loss to restrain the deep features. In this way, we incorporate
correlation into the discriminative algorithm. The backbone network is the VGG16 model that
reduced the fully-connected layers. Based on the backbone network, we establish a multiscale feature
representation to predict detections on multiple layers. Different anchor scales are applied to different
feature maps for different object scales. Hard example mining and data augmentation are also used to
balance the training samples and to test the generalizations. Our proposed model has been tested on
a large object detection dataset, namely, the ImageNet VID dataset. This dataset is the largest video
object detection dataset. Compared to the baseline, our proposed network has a 1.6% bonus, and the
test time does not increase. In order to show the effectiveness of the proposed framework, we evaluate
the model on YTO dataset and the proposed framework has a 4.4% bonus compared to the baseline.

Although our proposed network has a better performance than the baseline, it still has some
limitations. The first limitation is the use of time-series information. The correlation loss is rigid to the
feature map. The second limitation is that we do not fully use the tracking information. The tracking
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process is only on the feature map and does not output the exact tracking result. If the network could
output the exact tracking result, the testing time could be faster.
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