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Abstract: The number of feature points on the surface of a non-cooperative target satellite used for
monocular vision-based relative navigation affects the onboard computational load. A feature point
selection method called the quasi-optimal method is proposed to select a subset of feature points
with a good geometric distribution. This method, with the assumption that all of the feature points
are in a plane and have the same variance, is based on the fact that the scattered feature points can
provide higher accuracy than that of them grouped together. The cost is defined as a function of
the angle between two unit vectors from the projection center to feature points. The redundancy
of a feature point is calculated by summing all costs associated with it. Firstly, the feature point
with the most redundant information is removed. Then, redundancies are calculated again with
the second feature point removed. The procedures above are repeated until the desired number
of feature points is reached. Dilution of precision (DOP) represents the mapping relation between
the observation variance and the estimated variance. In this paper, the DOP concept is used in a
vision-based navigation system to verify the performance of the quasi-optimal method. Simulation
results demonstrate the feasibility of calculating the relative position and attitude by using a subset
of feature points with a good geometric distribution. It also shows that the feature points selected by
the quasi-optimal method can provide a high accuracy with low computation time.

Keywords: non-cooperative satellite; feature point selection; vision-based navigation system;
quasi-optimal method

1. Introduction

Relative navigation of a non-cooperative target satellite is an important part of space missions
such as space offense and defense, on-orbit maintenance and orbital debris removal [1,2]. Different
from the relative navigation of a cooperative target in which special optical markers are equipped on
the target [3,4], the non-cooperative target has no preset special marker to be used. Since satellites are
artificial objects, they usually have obvious feature points such as edges and corners on their surfaces,
and these feature points can be used to obtain the relative navigation information [5]. If all of the
feature points extracted from the surface of the target satellite are used for the relative navigation,
the computational load will be very large. It is a great challenge for the chaser satellite with limited
computing ability or a high real-time requirement. Therefore, a compromise between the computational
load and the performance should be explored in practice. From this point of view, a subset of feature
points can be selected for the relative navigation. The number of selected feature points should be
far less than the number of the total feature points to reduce the computational load. Meanwhile,
the accuracy with the selected feature points should meet the navigation requirement.

The estimated variance in a vision-based navigation system is closely related to the geometric
distribution of feature points [6]. The accuracy can be described by the dilution of precision (DOP),

Sensors 2018, 18, 854; doi:10.3390/s18030854 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s18030854
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 854 2 of 17

which is widely used in the Global Navigation Satellite System (GNSS) [7–9]. A smaller DOP value
indicates a higher navigation accuracy. For a vision-based navigation system that estimates position
and attitude simultaneously, the geometric distribution of feature points affects the accuracies of
position and attitude. Therefore, the accuracies of position and attitude can be described by position
DOP (PDOP) and attitude DOP (ADOP), respectively.

The DOP of the vision-based system have been studied in recent years. Baine [10] studied the
DOP of the vision-based system using the directional cosine matrix in the navigation frame and applied
it to the consistency test. Park [11] studied the DOP of a combined vision and IMU system taking
into account the alignment error and the mapping error, then analyzed the characteristics of the DOP
in this system. Won [12] derived the weighted DOP using the unit vectors of feature points when
the variances of feature points were different with respect to the geometrical distortion of the vision
sensor. These research works were concerned with the DOP of absolute navigation and took the target
body frame as the reference frame. To estimate the position and attitude of the non-cooperative target
satellite, the DOP for the relative navigation in the sensor frame should be studied.

With the concept of DOP, the problem of the feature point selection for the non-cooperative target
satellite can be described as selecting m from n feature points to make the DOP value as small as
possible, where m represents the number of selected feature points and n represents the number of the
total feature points. The most straightforward method called the optimal method [13] is to calculate
the DOP values of all possible combinations with the number of m, then the subset with the minimum
DOP value is selected. In this method, all possible combinations of m from n are tested, and each
combination has matrix multiplication and inversion. The corresponding number of combinations is
n!/[m!(n−m)!]. For example, if n = 60 and m = 15, then there will be almost 5.3× 1013 combinations
to be tested. The number of combinations rapidly increases with the increase of the total feature points,
and it is unacceptable for the chaser satellite to complete the computation.

The feature point selection in a vision-based navigation system is similar to the satellite selection
in GNSS. In GNSS, more and more satellites are in view because of the advent of Galileo, Compass
and GPS. The increase of satellites will make use of the optimal method intractable. Many scholars
have proposed different satellite selection methods in GNSS including the recursive method [14],
maximum volume method [15,16], four-step method [17], neural network method [18,19] and other
methods [20–23]. Since these methods utilize the characteristics of satellite orbit such as longitude and
latitude or have a restriction on the selected number, they cannot be used to select feature points in a
vision-based navigation system.

The image cannot be used to select feature points in different planes directly because of the lack
of three-dimensional information. This paper assumes that feature points are in a plane. They can
be easily obtained at close range navigation or based on the structure model of the target satellite,
which is known in advance. Thus, the distribution of the feature points on the surface of the target
satellite is similar to the distribution of the feature points on the image. The feature point selection is
to select feature points on the image.

Inspired by Park [24], a quasi-optimal method is proposed for selecting feature points.
In this method, the redundancy is determined by as a function of the angles between two unit
vectors from the projection center to feature points, and the feature point with the largest redundancy
is removed one by one. The quasi-optimal method yields a near-optimal geometric distribution without
restrictions on the number of selected feature points and reduces the computational load significantly.

This paper is organized as follows. In Section 2, we review coordinate systems and the observation
model. Section 3 gives the DOP of the vision-based navigation system in the sensor frame, and Section 4
gives the quasi-optimal feature point selection method. The performance of the quasi-optimal method
is discussed in Section 5. Finally, Section 6 is the conclusion.
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2. Vision Measurement Model

Relative position and attitude between two satellites are estimated with feature points on the
surface of the target satellite. These feature points are projected on the image of the vision sensor
equipped on the chaser satellite. Feature points are extracted from the image by extraction methods
such as SIFT (scale-invariant feature transform) [25] or SURF (speeded up robust features) [26], and they
are compared with feature points extracted from the next image to find the correspondences. A robust
extraction and estimation process must be achieved in cases where the target satellite disappears from
the vision sensor field of view [27]. Then, the relative position and attitude are estimated with the
navigation algorithm based on these feature points.

2.1. Coordinate Systems

During the navigation, feature points are described in different coordinate systems. To obtain the
observation model, the target body frame Otxtytzt, the sensor frame Osxsyszs and the image frame
Oimxy are defined. Without loss of generality, we assume the sensor frame as the reference frame [28].

The origin of the image frame is the center of the image, and its x axis and y axis are parallel to the
image’s row and column, respectively. The zs axis of the sensor frame, whose origin is the projection
center of the vision sensor, is parallel to the projection axis and points to the target satellite. The xs axis
and ys axis of the sensor frame are parallel to the x axis and y axis of the image frame, respectively.
The distance between the image plane and the projection center is the focal length. The target body
frame is fixed on the target satellite. Its origin and axes are defined based on the structure of the
target satellite.

2.2. Observation Model

As seen in Figure 1, the vector Ss
i =

[
xs

i ys
i zs

i
]T from the projection center to the i-th feature

point in the sensor frame can be expressed as:

Ss
i = Cs

t St
i + t (1)

where St
i =

[
xt

i yt
i zt

i
]T is the position of the i-th feature point in the target body frame and

t =
[
tx ty tz

]T is the position of the origin of the target body frame in the sensor frame. Cs
t is

the direction cosine matrix from the target body frame to the sensor frame, and it can be expressed as:

Cs
t =

 cos (θ) cos (ψ) cos (θ) sin (ψ) − sin (θ)

− cos (ϕ) sin (ψ) + sin (ϕ) sin (θ) cos (ψ) cos (ϕ) cos (ψ) + sin (ϕ) sin (θ) sin (ψ) sin (ϕ) cos (θ)
sin (ϕ) sin (ψ) + cos (ϕ) sin (θ) cos (ψ) − sin (ϕ) cos (ψ) + cos (ϕ) sin (θ) sin (ψ) cos (ϕ) cos (θ)

 (2)

where ϕ, θ and ψ represent roll angle, yaw angle and pitch angle, respectively. The vector  = [ϕ θ ψ]T

represents the rotating angle from the target body frame to the sensor frame.
According to the pinhole model, the measurement zi = [xi yi]

T is the coordinate of the i-th
feature point in the image frame. Thus, the relationship between zi and Ss

i =
[
xs

i ys
i zs

i
]T can be

obtained as:

zi =

[
xi
yi

]
=

f
zs

i

[
xs

i
ys

i

]
+ vi =

f
zs

i

[
xs

i
ys

i

]
+

[
vxi
vyi

]
(3)

where f is the focal length of the vision sensor and vi =
[
vxi vyi

]T is the measurement error of the i-th
feature point.

Considering Equations (1) and (3) can be rewritten as:
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xi = f

r11xt
i + r12yt

i + r13zt
i + tx

r31xt
i + r32yt

i + r33zt
i + tz

yi = f
r21xt

i t + r22yt
i + r23zt

i + ty

r31xt
i + r32yt

i + r33zt
i + tz

(4)

where r11 − r33 are the corresponding elements of Cs
t .
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Figure 1. Coordinate systems.

Equation (4) shows the relationship between the measurement of a feature point and the relative
pose including the position t and the attitude . Let hi (t, ) represent the nonlinear relationship, then zi
can be rewritten as:

zi=
f

zs
i

[
xs

i
ys

i

]
+ vi=hi (t , ) + vi (5)

Defining x =
[
tT T]T , the first-order Taylor expansion of Equation (5) at x0 =

[
tT
0 T

0
]T can be

expressed as:

zi ≈ hi (t0 , 0 ) +
∂hi

∂tT (t− t0) +
∂hi

∂T (− 0) + vi (6)

Considering Equation (6), the relation of the measurement residual δzi = zi − hi (t0 , 0 ),
the relative position error δt = t− t0 and the relative attitude error δ = − 0 can be expressed as:

δzi =

[
∂hi

∂tT
∂hi

∂T

] [
δt
δ

]
+ vi = Hi

[
δt
δ

]
+ vi (7)
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where:

∂hi

∂tT =
f

zs
i

2

[
zs

i 0 − xs
i

zs
i − ys

i 0

]

∂hi

∂T =
f

zs
i

2


∂xs

i
∂φ

zs
i −

∂zs
i

∂φ
xs

i
∂xs

i
∂θ

zs
i −

∂zs
i

∂θ
xs

i
∂xs

i
∂ψ

zs
i −

∂zs
i

∂ψ
xs

i

∂ys
i

∂φ
zs

i −
∂zs

i
∂φ

ys
i

∂ys
i

∂θ
zs

i −
∂zs

i
∂θ

ys
i

∂ys
i

∂ψ
zs

i −
∂zs

i
∂ψ

ys
i


∂xs

i
∂ϕ

= 0

∂xs
i

∂θ
= − sin (θ)

(
cos (ψ) xt

i + sin (ψ) yt
i
)
− cos (θ) zt

i

∂xs
i

∂ψ
= − cos (θ)

(
sin (ψ) xt

i − cos (ψ) yt
i
)

∂ys
i

∂ϕ
= sin (ϕ)

(
sin (ψ) xt

i − cos (ψ) yt
i
)
+ cos (ϕ)

(
sin (θ)

(
cos (ψ) xt

i + sin (ψ) yt
i
)
+ cos (θ) zt

i
)

∂ys
i

∂θ
= sin (ϕ)

(
cos (θ)

(
cos (ψ) xt

i + sin (ψ) yt
i
)
− sin (θ) zt

i
)

∂ys
i

∂ψ
= − cos (ϕ)

(
cos (ψ) xt

i + sin (ψ) yt
i
)
+ sin (ϕ) sin (θ)

(
− sin (ψ) xt

i + cos (ψ) yt
i
)

∂zs
i

∂ϕ
= cos (ϕ)

(
sin (ψ) xt

i − cos (ψ) yt
i
)
− sin (ϕ)

(
sin (θ)

(
cos (ψ) xt

i + sin (ψ) yt
i
)
+ cos (θ) zt

i
)

∂zs
i

∂θ
= cos (ϕ)

(
cos (θ)

(
cos (ψ) xt

i + sin (ψ) yt
i
)
− sin (θ) zt

i
)

∂zs
i

∂ψ
= sin (ϕ)

(
cos (ψ) xt

i + sin (ψ) yt
i
)
+ cos (ϕ) sin (θ)

(
− sin (ψ) xt

i + cos (ψ) yt
i
)

3. DOP in a Vision-Based Navigation System

In a vision-based navigation system, the geometric distribution of feature points affects the
navigation accuracy. The DOP is determined and utilized to estimate the accuracy of the vision-based
navigation system.

For n feature points, δz is the measurement residual vector with 2n× 1 dimensions and H is the
mapping matrix after being linearized with 2n× 6 dimensions. To determine the DOP in a vision-based
navigation system, the error of the state vector δx =

[
δtT δT]T should be estimated assuming that

δz and H are known. The least square method is used to solve Equation (7), and the error function
J (δx) is defined as:

J (δx) = (δz−Hδx)T (δz−Hδx) (8)

where J (δx) is a quadratic form and can be expanded as:

J (δx) = δzTδz− δzTHδx− δxTHTδz + δxTHTHδx

= δzTδz− 2δzTHδx + δxTHTHδx
(9)

Taking the derivative of J (δx) with respect to δx, we can get:

∂J (δx)
∂δx

= −2HTδz + 2HTHδx (10)

To get the optimal δx, Equation (10) should be equal to 0. Thus, it can be expressed as:

− 2HTδz + 2HTHδx = 0 (11)
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By solving Equation (11), δx is estimated as:

δx =
(

HTH
)−1

HTδz (12)

Using Equation (12), the covariance of the state vector δx can be expressed as:

E
[
δxδxT

]
= E

[(
HTH

)−1
HTδzδzTH

(
HTH

)−1
]

=
(

HTH
)−1

HTE
[
δzδzT

]
H
(

HTH
)−1

(13)

It is assumed that all measurements are independent with the same variance σ2
v . The horizontal

and vertical variances of a feature point are also assumed to be independent, although they are
measured simultaneously. Thus, the variance δz can be described as E

[
δzδzT] = σ2

v , and Equation (13)
can be simplified as:

E
[
δxδxT

]
=
(

HTH
)−1

σ2
v (14)

In Equation (14), the matrix
(
HTH

)−1 represents the mapping relationship between the
measurement variance and the state error variance. E

[
δxδxT] is a diagonal matrix because of the

independence of measurements. Thus, DOP is defined as the sum of the elements along the main
diagonal of A with A =

(
HTH

)−1.
Different from the state vector in the GNSS, which has only the term of position, the state vector

of the vision-based navigation system takes position and attitude into consideration. Thus, the DOP of
the vision-based navigation system can be divided into PDOP and ADOP, and they are defined as:

PDOP =
√

A11 + A22 + A33

ADOP =
√

A44 + A55 + A66
(15)

Since the DOP of the vision-based navigation system includes PDOP and ADOP, the optimal
method for the system searches the subset with the minimum PDOP value or the minimum ADOP
value. Subsets with small PDOP values tend to have good geometric distributions. Therefore,
they usually have small ADOP values and vice versa.

Equations (14) and (15) show that a smaller PDOP (or ADOP) means a higher navigation
accuracy of position (or attitude). In GNSS, DOP becomes smaller as the number of satellites increases.
It is always true that the PDOP (or ADOP) of the vision-based navigation system will become smaller
when more feature points are selected.

4. Quasi-Optimal Method for Selecting Feature Points

A large number of feature points can be extracted from the image. This will result in a large
computational load to finish the calculation if all feature points are used. Therefore, it is necessary to
select a subset of feature points. The geometric distribution of the feature points on the surface of the
target satellite plays a key role in the navigation accuracy. Assuming that feature points are in a plane,
this section presents the quasi-optimal method for selecting a subset of feature points.

4.1. The Quasi-Optimal Method

The quasi-optimal method [24] is initially used to select satellites from different constellations in
GNSS. The elements of the matrix H are the direction cosines of angles between the coordinate axis
and vectors from the receiver to satellites. Therefore, the matrix H is used to select satellites directly.
In a vision-based navigation system, the matrix H has no physical meaning. Thus, other measurements
are needed to select feature points.
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The distribution of the feature points on the image can be described by the angles between the
unit vectors from the projection center to feature points as shown in Figure 2. A small angle between
two unit vectors indicates the closeness of the two corresponding feature points on the image.

1p

2p

3p

1v
2v

3v

sx

sy

sz
12

23

13
f

sO

image plane

Figure 2. The relationship between feature points, unit vectors and angles

The cost used in this method is inspired by the intuitive concept that two unit vectors close to
each other provide more redundant information. The cost Jij for the i-th unit vector and the j-th unit
vector is defined as:

Jij = cos 2θij (16)

where θij is the angle between the i-th unit vector and the j-th unit vector.
The cost is a function of the angle between two unit vectors. If the angle between two unit vectors

is small or the corresponding two feature points on the image are close to each other, the cost will be
large. Otherwise, the cost will be small. The redundancy of the i-th unit vector can be defined as the
sum of costs between the i-th unit vector and the other unit vectors. It can be described as:

Ji =
n

∑
j=1

(
cos 2θij

)
(17)

where n is the number of the total feature points. Equation (17) represents the redundancy degree of
the i-th unit vector. Redundancies of other unit vectors can be determined in the same way.

For the i-th feature point, its unit vector is represented as vi. Thus, K = [v1 v2 · · · vn]
T represents

the unit vectors of n feature points. It is an n× 3 matrix, and the matrix D can be calculated as:

D=KTK=


cos θ11 cos θ12 ... cos θ1n
cos θ21 cos θ22 ... cos θ2n

...
...

...
cos θn1 cos θn2 ... cos θnn

 (18)

where the element of D, dij, is the cosine of the angle between the i-th unit vector and the j-th unit
vector. With Equation (18), the redundancy of the i-th unit vector can be rewritten as:

J1
i =

n

∑
j=1

(
cos 2θij

)
=

n

∑
j=1

(
2cos2 (θij

)
− 1
)

=
n

∑
j=1

(
2d2

ij − 1
) (19)

where the superscript 1 indicates that the redundancy lies in initial redundancies.
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The redundancy of the i-th unit vector can be expressed in terms of the sum of the squares of all
elements in the i-th row of the matrix D. All redundancies can be calculated, and the unit vector with
largest redundancy can be determined as:

J1
k1

= max
{

J1
1 , J1

2 , · · · , J1
n

}
(20)

where the subscript k1 represents the index of the feature point with the largest redundancy.
The kth

1 feature point should be removed because it provides the least additional information. The k1-th
row and the k1-th column are deleted from the matrix D, and a new matrix D with (n− 1)× (n− 1)
dimensions is generated.

Then, new redundancies and the largest redundancy J2
k2

are recalculated for the new matrix D
using Equation (21). Remove the k2-th feature point, and delete the k2-th row and column from the
new D. Another new matrix D with (n− 2)× (n− 2) dimensions is generated.

J2
i =

n−1

∑
j=1

(
2d2

ij − 1
)

J2
k2

= max
{

J2
1 , J2

2 , · · · , J2
n

} (21)

In order to reduce the computational load, Equation (22) is used to compute new redundancies
by subtracting the costs of the previous redundancies associated with the removed feature point.

J2
i = J1

i −
(

2d2
ik1
− 1
)

(22)

Repeat the procedures above until the number of remaining feature points is the same as the
preset number. The flowchart of the method is shown in Figure 3.

Calculate unit vectors

 1 2

T

nK v v v = T
D K K

 1 1 1

1 2 1, , , n rJ J J  

1r 

 1 2 1max , , ,
r

r r r r

k n rJ J J J  

Dertermine the matrix

Calculate initial redundancies
Determine  maximum  

redundancy

1n r If                is 

equal to  the preset  

number?

Remove the       feature point 

1r r 

Output  remaining

feature points 

th

rk

 

Delete the       row and 

column  from D and generate 

a new matrix D

Calculate the  redundancy

 
1

1 22 1
r

r r

i i ikJ J d


  

If     is equal to

               ?1n r 

i 1i i 

th

rk th

rk

1i 

N

Y

Y

N

Figure 3. The flowchart of the quasi-optimal method

4.2. Analysis of the Method

The quasi-optimal method proposed in this paper is an iterative method that removes the most
redundant feature points one by one. An alternative to the quasi-optimal method is the one-step
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method. This method calculates the initial redundancies
{

J1
1 , J1

2 , · · · , J1
n
}

firstly. Then, it removes
multiple feature points with larger redundancies directly, and the remaining feature points are the
selection result.

The feature point with the largest redundancy has different effects on the redundancies of
other feature points. Therefore, the feature point with the second largest redundancy in the initial
redundancies is not usually the most redundant after the feature point with the largest redundancy is
removed. The one-step method does not consider this effect, but the iterative method does. This is the
reason why the iterative method is chosen in this paper to filter out feature points. To demonstrate the
advantage of the iterative method, an example for selecting two from four feature points is given.

In this example, it is assumed that only translation motion between the target satellite and the
chaser satellite exists. There are four feature points on the surface of the target satellite, as shown
in Figure 4, and two of them with a low PDOP value will be selected. The initial condition for this
example is shown in Table 1. Coordinates of the four feature points are in the target body frame.

Table 1. Coordinates of feature points, focal length and relative position.

Parameter Parameter Value

p1 coordinate (m) [−0.6 0.2 0]T

p2 coordinate (m) [0 0.8 0]T

p3 coordinate (m) [0.8 − 0.8 0]T

p4 coordinate (m) [0.9 − 0.9 0]T

sensor focal length (mm) 4.0
relative position (m) [0 0 2]T

sy sx

1p

2p

3p
4p

sz

tx

ty

chaser

target surface

Figure 4. The distribution of the four feature points

Before removing feature points, the redundancies of the four feature points should be calculated
first. The redundancies of p3 and p4 are larger than those of p1 and p2, as shown in Figure 5a.
The one-step method is shown in Figure 5b. It removes the two feature points p3 and p4 directly
because they have larger redundancies. The PDOP value of the remaining feature points, p1 and
p2, is 2764.43, which is approximately 1.8-times greater than the optimal PDOP 1525.84, as shown
in Table 2.

Figure 5c is the first step of the iterative method. It removes the feature point p3 and recalculates
the new redundancies of the remaining three feature points. Then, the feature point p1 is removed
because it has the largest redundancy in new redundancies as shown Figure 5d. The two feature points
p2 and p4 are left. Their PDOP is 1556.22, which is only 2.0% higher than the optimal PDOP value.
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0 11 0.5 0.5
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1

0.5

1

0.6018

0.6808

0.4690

0.9705

(a)

0 11 0.5 0.5

0

0.5

1

0.5

1

PDOP 2764.43

(b)

0 11 0.5 0.5

0

0.5

1

0.5

1

0.5204

0.5654

0.3047

(c)

0 11 0.5 0.5

0

0.5

1

0.5

1

PDOP 1556.22

(d)

Figure 5. Processes of the iterative method and one-step method for selecting two out of four feature
points. (a) Redundancies of the four feature points; (b) removing two feature points with larger
redundancies by the one-step method; (c) redundancies after removing the feature point with the
largest redundancy; (d) removing the second feature point based on new redundancies. PDOP, position
dilution of precision.

In this example, the iterative method shows a better performance than the one-step method.
As shown in Table 2, the angle between the unit vectors of p3 and p4 is only 4.874 degrees. Its cost
is 0.9856, which is much larger than others. Thus, the redundancies of p3 and p4 may be larger than
those of the others because of the existence of the cost J34. When p4 is removed, the cost J34 does not
exist, and the redundancy of p4 is lower than the redundancy of others.

Table 2. Angles, costs and PDOP values for all possible combinations.

Combination Angle Cost PDOP

p1 p2 22.975 0.6953 2764.43
p1 p3 43.958 0.0364 1667.95
p1 p4 48.731 −0.1299 1525.84
p2 p3 46.474 −0.0514 1716.95
p2 p4 50.036 −0.1749 1556.22
p3 p4 4.874 0.9856 9209.04

5. Simulation and Result

In order to verify the performance of the feature point selection method in the vision-based
navigation system, the quasi-optimal method is compared with the optimal method in terms of
accuracy and computation time in this section. Due to the significantly increase of the possible
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combinations, the optimal method could not be completed if the number of the total feature points is
large. Therefore, the number of feature points in this section is small.

Simulations in this section are conducted with MATLAB running on a computer with 2.67 GHZ
Intel(R) Core(TM)2 CPU and 4 GB RAM. Feature points used in simulations are generated by MATLAB
randomly in a 1 m × 1 m square plane. Then, coordinates of these feature points in the sensor frame
are determined utilizing the coordinate transformation. Using the pinhole model, feature points are
projected on the image. The simulation condition is shown in Table 3.

Table 3. Simulation parameters.

Parameter Parameter Value

focal length (mm) 4.0
pixel size (µm) 8.9× 8.9

image size 1280× 768
relative position (m) [0.5 1 10]T

relative attitude (◦) [30 10 25]T

5.1. Accuracy Evaluation

DOP values are used to evaluate the accuracy of the relative position and attitude with the selected
feature points. For better analysis, DOP ratios are used to evaluate the performance. The DOP ratios,
ξP and ξA, are defined as:

ξP= PDOPquasi/PDOPoptimal
ξA= ADOPquasi/ADOPoptimal

(23)

where subscripts quasi and optimal represent the DOP values of the quasi-optimal method and the
optimal method.

Since the optimal method provides the smallest PDOP and ADOP values in all possible
combinations, ξP and ξA are always greater than or equal to one. The closer ξP and ξA to one, the better
the geometric distribution of feature points is.

5.1.1. Simulations for Different Total Numbers

The simulations assume that there are four groups of feature points with different numbers
(12, 14, 16 and 18), but only eight feature points are selected. In each group, feature points for 1000 cases
are randomly generated. The two selection methods are implemented and tested with these feature
points. For each case, the PDOP and ADOP values of the feature points selected by the quasi-optimal
method are calculated. The smallest PDOP and ADOP values are selected from all possible PDOP and
ADOP values. Then, the DOP ratios, ξP and ξA, are determined and evaluated.

The distributions of ξP and ξA for 1000 cases are evaluated in Figure 6 when the numbers of
feature points are 12, 14, 16 and 18, respectively. The bin size is 0.05. It can been seen that the DOP
ratios are near one, and most of them are less than 1.2. There are cases with PDOP ratios between
2 and 2.5 and ADOP ratios near two in the four groups. Although, the DOP ratios in these cases
are a little large for navigation, this is acceptable because large DOP ratios account for an extremely
low percentage.

The average and maximum DOP ratios for different numbers are shown in Table 4. In the group
of 18 feature points, the average ξP and ξA are 1.1324 and 1.0897, respectively. Thus, the average PDOP
value of the quasi-optimal method is 13.24% greater than the optimal PDOP value, and the average
ADOP value of the quasi-optimal method is only 8.97% greater than the optimal ADOP value on
average in this group. This indicates that the average PDOP and ADOP values of the selected feature
points are close to the average optimal values. Moreover, the other groups perform better than this
group on average values.
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Figure 6. Distributions of DOP ratios for different numbers of total feature points.

Table 4. The statistics of DOP ratios.

Total Number
ξP ξA

avg max avg max

12 1.0642 2.4478 1.0502 1.9767
14 1.0964 2.3875 1.0748 1.9610
16 1.1156 2.1719 1.0862 1.5859
18 1.1324 2.5185 1.0897 2.0216

Two cases in the group of 18 feature points are used to analyze the DOP values in worst cases.
The ξP and ξA of the two cases are 2.5185 and 2.0216, respectively. They are maximum ratios in
1000 cases, as shown in Table 4. The DOP values of the quasi-optimal method and all possible DOP
values are shown in Figure 7. There are 43,758 combinations, and all possible DOP values are sorted in
ascending order. This shows that the PDOP and ADOP values of the quasi-optimal method in the two
worst cases are not significantly large compared with those of all possible combinations.
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Figure 7. All possible DOP values and DOP values of the quasi-optimal method with ξP = 2.5185 and
ξA = 2.0216. (a) PDOP values; (b) attitude DOP (ADOP) values.

5.1.2. Simulations for Different Selected Numbers

To further evaluate the accuracy of the quasi-optimal method, the two methods are implemented
in 1000 cases with 18 feature points. In this simulation, the number of selected feature points is assigned
from 4–17 because it takes at least four feature points in a plane to make HT H a nonsingular matrix.

As shown in Figure 8, the DOP values of the two methods have a similar trend. The figure shows
that the mathematical proof derived by Yarlagadda [29] for DOP in GNSS also works in a vision-based
navigation system. The proof indicates that the DOP value decreases as the number of the selected
measurements increases. The DOP values of the selected feature points approach those of all feature
points when the number of selected feature points increases.
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Figure 8. Average PDOP and ADOP values for different selected numbers of the two methods.
(a) PDOP values; (b) ADOP values.

The average PDOP values decrease, and the ratios of the PDOP values given by the two methods
to those of all feature points on average are shown in Table 5. The average PDOP value is flat if the
decrease is less than 5%. As shown in Table 5, the PDOP value of the optimal method is flat when
the number of selected feature points is eight. However, the quasi-optimal method requires more
than 10 feature points to make the average PDOP value flat. The PDOP value of the optimal method
is 9.55% bigger than that of all feature points when the selected number is nine. The quasi-optimal



Sensors 2018, 18, 854 14 of 17

method can reach goodaccuracy only when the number is more than 11. This indicates that the position
accuracy of the selected feature points is a little lower than that of all feature points with a reasonable
selected number. The optimal method performs better than the quasi-optimal method. However,
the quasi-optimal method can also perform well by adding the selected feature points. The same result
can be obtained for ADOP or the attitude accuracy according to Table 6.

Table 5. The statistics of average PDOP values, decreases and ratios to all feature points’ PDOP values
for the two methods.

Selected Number
Optimal Method Quasi-Optimal Method

Avg PDOP % Decrease Ratio to All Avg PDOP % Decrease Ratio to All

4 9015.95 − 1.4666 11857.30 − 1.9288
5 8183.07 9.2378 1.3311 10299.56 13.1374 1.6754
6 7612.24 6.9758 1.2383 9259.25 10.1005 1.5062
7 7227.73 5.0512 1.1757 8548.65 7.6744 1.3906
8 6945.25 3.9083 1.1298 7963.22 6.8482 1.2953
9 6734.66 3.0322 1.0955 7497.85 5.8441 1.2196
10 6573.73 2.3896 1.0693 7169.66 4.3771 1.1663
11 6451.26 1.8630 1.0494 6908.89 3.6371 1.1238
12 6357.54 1.4527 1.0342 6696.81 3.0697 1.0893
13 6286.47 1.1178 1.0226 6545.02 2.2667 1.0647
14 6235.02 0.8185 1.0142 6419.64 1.9157 1.0443
15 6197.87 0.5958 1.0082 6319.62 1.5580 1.0280
16 6172.17 0.4147 1.0040 6240.86 1.2462 1.0152
17 6155.72 0.2665 1.0013 6182.30 0.9383 1.0057
All 6147.58 − − 6147.58 − −

Table 6. The statistics of average ADOP values, decreases and ratios to all feature points’ ADOP for the
two methods.

Selected Number
Optimal Method Quasi-Optimal Method

Avg. ADOP % Decrease Ratio to All Avg. ADOP % Decrease Ratio to All

4 10441.90 − 1.4921 12885.03 − 1.8412
5 9474.39 9.2656 1.3539 11347.85 11.9300 1.6216
6 8826.84 6.8348 1.2613 10282.25 9.3903 1.4693
7 8354.98 5.3457 1.1939 9507.36 7.5362 1.3586
8 8013.48 4.0874 1.1451 8888.22 6.5122 1.2701
9 7752.69 3.2544 1.1078 8399.48 5.4987 1.2003
10 7550.07 2.6134 1.0789 8043.02 4.2439 1.1493
11 7395.22 2.0511 1.0568 7772.89 3.3586 1.1107
12 7275.54 1.6183 1.0397 7565.00 2.6745 1.0810
13 7185.91 1.2319 1.0268 7409.61 2.0541 1.0588
14 7118.81 0.9338 1.0173 7271.70 1.8612 1.0391
15 7069.25 0.6961 1.0102 7169.49 1.4055 1.0245
16 7033.49 0.5059 1.0051 7093.89 1.0545 1.0137
17 7009.92 0.3351 1.0017 7032.07 0.8715 1.0049
All 6998.05 − − 6998.05 − −

5.2. Time Performance

The average computation time of the optimal method and that of the quasi-optimal method are
estimated in this section. The two methods are used to select 4–8 feature points out of 9–18 feature
points for 1000 cases. Figure 9 shows the average time of the optimal method. The average time of
the optimal method increases along with the increasing of the number of the total feature points.
The reason is that more feature points provide more possible combinations. Figure 10 is the average
time of the quasi-optimal method proposed in this paper. It shows that the time of the quasi-optimal
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method increases as the number of feature points increases. Notice that the time of the quasi-optimal
is four orders of magnitude lower than that of the optimal method. This means that the quasi-optimal
method outperforms the optimal method greatly in terms of computation time.
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Figure 9. Time performance for the optimal method.
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Figure 10. Time performance for the quasi-optimal method.

6. Conclusions

Relative navigation based on vision sensors increasingly becomes significant because of the
advantage of accuracy. However, too many feature points on the surface of a target satellite will result
in a large computational load and burden the chaser satellite. The main purpose of this paper is to
provide an effective method to select feature points.

This paper proposes a quasi-optimal method for selecting a subset of feature points with a good
geometric distribution. The method is an iterative method. Firstly, the initial redundancies are
calculated, and the feature point with the largest redundancy is removed. Then, the redundancies of
the remaining feature points are recalculated, and the second feature point is removed. Feature points
are removed one by one through the procedures above until the desired number is reached. Moreover,
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the dilution of precision is used to verify the performance of the quasi-optimal method. Simulations
show that the quasi-optimal method can select feature points with good geometric distribution.
Although cases with large PDOP or ADOP values exist, they only account for an extremely low
percentage. The results also show that the quasi-optimal method can perform well by adding the
selected feature points and requires only a limited time for computation.
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