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Abstract: The production of recombinant proteins in bioreactors requires real-time process monitoring
and control to increase process efficiency and to meet the requirements for a comprehensive audit
trail. The combination of optical near-infrared turbidity sensors and dielectric spectroscopy provides
diverse system information because different measurement principles are exploited. We used this
combination of techniques to monitor and control the growth and protein production of stably
transformed Drosophila melanogaster S2 cells expressing antimicrobial proteins. The in situ monitoring
system was suitable in batch, fed-batch and perfusion modes, and was particularly useful for the
online determination of cell concentration, specific growth rate (µ) and cell viability. These data were
used to pinpoint the optimal timing of the key transitional events (induction and harvest) during batch
and fed-batch cultivation, achieving a total protein yield of ~25 mg at the 1-L scale. During cultivation
in perfusion mode, the OD880 signal was used to control the bleed line in order to maintain a constant
cell concentration of 5 × 107 cells/mL, thus establishing a turbidostat/permittistat culture. With this
setup, a five-fold increase in productivity was achieved and 130 mg of protein was recovered after
2 days of induced perfusion. Our results demonstrate that both sensors are suitable for advanced
monitoring and integration into online control strategies.

Keywords: dielectric spectroscopy; impedance spectroscopy; optical density measurements;
process monitoring; process control; fermentation; recombinant protein production; Drosophila S2

1. Introduction

Sophisticated control strategies are needed to run bioprocesses within a specified operational
window and to ensure system stability [1]. Typically this includes the measurement and control of
physicochemical parameters such as temperature, pH, dissolved oxygen, pressure and stirrer speed.
However, particularly for the production of high-value recombinant proteins, processes must also
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comply with comprehensive guidelines covering good manufacturing practice (GMP) and process
analytical technology (PAT). Accordingly, a more detailed understanding of the process is necessary,
combined with the ability to exert tighter control. This requires the online acquisition of data beyond
standard parameters, especially information about cell growth and physiological status. In this
context, various direct and indirect measurement principles have been evaluated and commercialized.
Biomass can be quantified indirectly by off-gas analysis to measure respiration [2,3], 2D fluorescence
spectroscopy to calculate the NAD(P)H content [4,5], biocalorimetry to monitor metabolic heat [6],
or a combination of process data using soft sensors [7]. Direct methods include cell counting by in situ
microscopy [8], near-infrared (NIR) spectroscopy [9], online optical density measurements [3,10–12]
and dielectric spectroscopy [6,13–15]. Regardless of the chosen strategy, online biomass monitoring
systems must meet several requirements [16]. Most important is a reliable correlation between the
signal and biomass content in the reactor. The measurement principle must therefore be suitable
for whichever cell type is used, e.g., it must accommodate morphology or potential adherence to
growth surfaces. The measurement range, linearity, longevity, ease of evaluation, sampling frequency
and operational costs must be appropriate. Furthermore the signal should not be highly susceptible
to interference from factors such as gas bubbles or suspended solids. In terms of fulfilling these
requirements, all competitive technologies have several distinct advantages and drawbacks, and it is
beneficial to use a combination of different systems to maximize the information output [16,17].

Here we demonstrate the complementary use of dielectric spectroscopy and online optical density
measurements. Both technologies are well established, commercially available and have already been
used in industry [10,16–20]. Dielectric spectroscopy dates back more than 150 years and its theory
has been extensively reviewed [13,21–25]. Briefly, an alternating electric field is used to measure the
dielectric properties of a suspension as a function of the applied frequency. Suspended cells act as
small spherical capacitors and the capacitance or permittivity therefore reflects the quantity of intact
cells. The optical density probe provides information about the number of light-scattering particles
in the reactor. Both systems have been used separately to monitor processes based on lepidopteran
cell lines and the lytic baculovirus expression vector system (BEVS) [11,26–28], but they have not
been tested comprehensively with stably transformed Drosophila melanogaster S2 cell lines (rS2 cells),
which provide an equally powerful expression platform [29–31]. We carried out an in-depth analysis of
the ability of both methods to predict the density of rS2 cells during cultivation. Based on a set of batch,
fed-batch and perfusion processes, the sensor signals were compared to the reference measurement
by flow cytometry, allowing a statistical analysis of sensitivity and reproducibility. The impact of cell
viability on the sensor signals was evaluated in a controlled environment as well as during a real
cultivation, and the sensors were used to coordinate the critical steps (induction and harvest) during
batch and fed-batch cultivation. Finally, a control strategy for an intensified perfusion process based
on OD880 readings was established in order to increase target protein yields.

2. Materials and Methods

2.1. NIR Turbidity Sensor ExCell 230 and Dielectric Spectroscopy with the Incyte Sensor

We compared the NIR absorbance sensor EXcell 230 (EXNER Process Equipment,
Ettlingen, Germany) and the dielectric spectroscopy system Incyte (Hamilton, Bonaduz, Switzerland).
Both probes fit standard 12-mm ports, which facilitates their integration into common bioreactors.
The EXcell 230 sensor is based on the scattering of NIR light at 880 nm. When transmitted through
a 5-mm slit, the light is scattered by all types of suspended particles resulting in a proportional loss
of intensity that can be measured (Figure 1a). Interactions with dissolved, colored media ingredients
are excluded by the use of NIR light, and the signal therefore represents all particulate matter in
the reactor. In contrast, the Incyte System exploits the exclusive ability of living cells to store
electrical charge when exposed to an alternating electrical field at radio frequencies (Figure 1b).
The Incyte system was operated at 17 distinct frequencies between 300 and 10,000 kHz (f.scan mode)



Sensors 2018, 18, 900 3 of 26

allowing the construction of cell suspension beta dispersion curves. The difference in permittivity
between 1000 and 10,000 kHz was used as the biomass signal (ε), whereas the complete spectrum
was used to compute the characteristic frequency (fc), the Cole-Cole Alpha (α) and the maximal
permittivity difference (∆ε). The biomass signal therefore provides information about intact cells and
is less influenced by other particulate matter, air bubbles or cell debris. Additionally, the Incyte system
simultaneously determines conductivity at 300 kHz (κ).
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Figure 1. The 12-mm sensors tested in this investigation. (a) The EXcell 230 NIR turbidity sensor and the
corresponding measurement principle of light scattering. (b) The Incyte dielectric spectroscopy probe with
corresponding measurement principle of bio-impedance (measurement principles adapted from [29]).

2.2. Experimental Equipment for Cell Cultivation

2.2.1. Cell Culture and Strain Maintenance

We used recombinant monoclonal D. melanogaster S2 cell lines expressing either gloverin
from the greater wax moth Galleria mellonella (GmGlv) or BR021 from the harlequin ladybird
Harmonia axyridis [30,32,33]. The genes encoding both antimicrobial peptides were controlled by the
D. melanogaster metallothionein promoter. The constructs included a secretion signal and a V5/His6 or
V5/GFP tag. Stable monoclonal cell lines were prepared as previously described [29,30]. The cells were
grown in suspension at 27 ◦C in ExCell 420 serum-free medium (Sigma Aldrich, Munich, Germany)
supplemented with 8–10 mM L-glutamine (Biochrom, Berlin, Germany). Selection was achieved by
adding 10 µg/mL Blasticidin S or 300 µg/mL Hygromycin B (Invivogen, Toulouse, France) during
subculture, depending on which selection marker was used. For maintenance, cultures were split
every 3–4 days to obtain 1.5 × 106 cells/mL.

2.2.2. Bioreactor Setup

The experimental setup is shown in Figure 2. The system consisted of a 2-L Labfors bioreactor
with a 1-L working volume (Infors HT, Bottmingen, Switzerland) equipped with a pitched-blade
impeller (3 × 45◦, d = 65 mm, n = 70–150 rpm), a PT100 temperature probe and sensors for pH and
dissolved oxygen (both from Hamilton). During cultivation, the oxygen saturation was maintained
above 40% using a bubble-free aeration system combined with head space aeration, both provided via
a gas mix of air, oxygen and nitrogen. The pH was maintained at 6.4 by adding 1 M sodium hydroxide
or 1 M phosphoric acid. The target inoculation cell density was 1.5 × 106 cells/mL. After inoculation,
we carried out processes in batch, fed-batch or perfusion mode. For batch cultivation, the cells were
cultivated until mid-exponential phase, before induction with 600 µM copper sulfate. The fermentation
broth was harvested when cell growth started to decline. The accurate timing of both events was
guided by online sensor signals. For fed-batch cultivation, a gravimetrically controlled feed line was
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installed to deliver glutamine-supplemented ExCell 420. The exponential feed rate was calculated to
meet a target growth rate of 0.015–0.02 h−1 as described elsewhere [34]. The cells were induced
in mid-exponential phase and the broth was harvested when the cells stopped growing, as for
the batch cultivation. For the perfusion culture, an external loop was driven by a magnetically
levitated centrifugal pump (PuraLev® i30SU, Levitronix, Zurich, Switzerland) to minimize shear
forces [35]. The bypass flow velocity was set to 100 mL/min and cell separation was achieved with
a changeable 200 cm2 tangential flow filter module (Microgon MiniKros mixed cellulose ester filter,
0.2 µm; Spectrum Labs, Breda, The Netherlands). Permeate flow was controlled at one reactor
volume per day (0.7 mL/min) using an intermittent operating peristaltic pump (Watson Marlow 300,
Rommerskirchen, Germany). The feed and bleed lines were operated with high-precision peristaltic
pumps (Ismatec IPC, Cole-Parmer GmbH, Wertheim, Germany) to maintain a constant reaction volume
of 1 L. The bleed line was programmed to respond to the signal of the optical sensor, thus maintaining
a set point value of OD880 = 0.78 arbitrary units (AU). The permeate, feed and bleed flows were
monitored gravimetrically using balances (Mettler Toledo, Giessen, Germany). All additional perfusion
equipment was controlled by an in-house process control system based on LabVision v2.10 (HiTec Zang,
Herzogenrath, Germany). Perfusion was carried out as a multistep process involving an initial batch
culture step followed by a perfusion step without bleeding to reach the high target cell density,
and cultivation without induction to test the online control strategy. Finally, the feed and the reactor
were induced with 600 µM copper sulfate to initiate continuous protein production.
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Figure 2. Schematic illustration of the cultivation system for batch and fed-batch culture (black symbols)
and additional equipment for perfusion culture (red symbols). The sensors were directly integrated in
the cultivation vessel via 12-mm ports.

2.2.3. Parallel Measurement of Turbidity and Permittivity in a Controlled Model Environment

In addition to the bioreactor experiments, turbidity and permittivity were measured in parallel
using a small-scale assay and cell suspensions with adjusted viabilities. S2-GmGlv-V5/His D7 cells
were grown in shake flasks to obtain a highly viable cell stock, which was split into two equal pools.
One group of cells was treated with 30% ethanol for 10 s, and the other group remained untreated.
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The cells were centrifuged (10 min, 200× g) to remove the spent medium and ethanol, and were
re-suspended in fresh medium. This was necessary to ensure that the signal was only affected by the
proportion of dead cells and not by other changes in medium composition. Finally, both pools were
mixed in different proportions and the permittivity and optical density were measured. The total cell
number in all test tubes was constant at 1.3 × 107 cells/mL.

2.2.4. Offline Process Analytics

During cultivation, the offline cell concentration and viability were determined using a Guava
easyCyte HT flow cytometer (Merck Millipore, Darmstadt, Germany). Living and dead cells were
distinguished by staining with 5 mg/L propidium iodide (Carl Roth, Karlsruhe, Germany). In addition,
cell morphology and viability were examined by phase contrast microscopy using a Leica DMi1
instrument (Leica Microsystems GmbH, Wetzlar, Germany) and trypan blue staining (Carl Roth).
Glucose and lactate levels were measured using an enzymatic amperiometric analyzer according to
the manufacturer’s instructions (Biosen C, EKF Diagnostics, Barleben, Germany). The recombinant
proteins were quantified by reducing SDS-PAGE on CriterionXT 4%–20% polyacrylamide gradient gels
(BioRad, Munich, Germany) as previously described [30]. Clarified culture supernatants were analyzed
along with purified protein standards to enable absolute quantification. The identity of the expressed
proteins was verified by their molecular weight and by western blotting using antibodies specific
for the V5 (Thermo Fisher Scientific, Darmstadt, Germany) or His6 (Qiagen, Hilden, Germany) tags.
The proteins were transferred to TransBlot Trubo PVDF membranes (Biorad), blocked with 5% bovine
serum albumin (BSA) in phosphate-buffered saline (PBS), washed with 0.1% Tween-20 in PBS,
and stained with a horseradish peroxidase (HRP) antibody conjugate (diluted 1:5000 in PBS
with 0.05% Tween 20). The signal was detected with Clarity Western enhanced chemiluminescence
substrate using the ChemiDoc system (BioRad).

2.3. Data Analysis

2.3.1. Calibration

The sensor output and corresponding calibration were analyzed using the statistics software
R v3.4.2 [36]. Data obtained from 11 (OD880) or 13 (ε) cultivations were used to establish valid equations
for cell density prediction. For retrospective cases, when data representing a single cultivation were
used to reconstruct a detailed growth curve for a particular experiment, we used ordinary least squares
regression (OLS). Permittivity data were fitted using a simple linear regression model (Equation (1)):

y = β0 + β1 × x + e with e ∼ N
(

0, σ2
)

(1)

The nonlinear response of the optical density sensor was modeled with a second order
polynomial (Equation (2)). In both equations, y and x are the dependent and independent variables,
respectively, whereas the β values represent the regression coefficients and e is the statistical noise.
Based on whether the cell concentration was assigned to x or y, we distinguished between classical
calibration (x = cell concentration, y = sensor signal) and inverse calibration (y = cell concentration,
x = sensor signal) [37,38]:

y = β0 + β1 × x + β2 × x2 + e with e ∼ N
(

0, σ2
)

(2)

In order to access a more general model, we merged the cultivation data to yield a hierarchically
structured dataset that consisted of 11 or 13 subgroups each representing the time course of a single
cultivation. To account for the resulting dependencies, we used linear mixed effects (LME) models
with “cultivation run” as the grouping factor [39]. Here, the response y is modeled as being composed
of a systematic fixed effect (a common relationship between cell concentration and OD880 or ε) and a
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random effect that accounts for an unknown random deviation associated with each distinct experiment.
Furthermore, heteroscedasticity of the residuals was considered by employing suitable variance functions.
For the permittivity sensor, this results in a simple LME model (Equation (3)). Here, yi,j and xi,j refer to
the j-th data point of the i-th cultivation. The fixed effects are represented in the β values, whereas b1,i
denotes a cultivation-dependent random effect and ei,j are the corresponding errors:

yi,j = β0 + (β1 + b1,i)× xi,j + ei,j (3)

For the optical density sensor, we expanded the LME model with a quadratic term, introducing an
additional β value and a second random effects term, b2,i (Equation (4)):

yi,j = β0 + (β1 + b1,i)× xi,j + (β2 + b2,i)× xi,j
2 + ei,j (4)

As a general model for cell density prediction, which is applicable to future cultivations,
we extracted the fixed effects terms because they represent systematic relationships. A more
comprehensive description of the statistical assessment, including diagnostic plots as well as detailed
information on employed models and their assumptions, can be found in Supplementary Material S1.

2.3.2. Calculation of the Specific Growth Rate

The specific growth rate µ was defined as the constant of proportionality in the exponential
growth law (Equation (5)), where N(t) refers to the absolute cell number, t to the elapsed time and N0

to the cell number at the beginning of the considered phase. N(t) is linked to the cell concentration
X(t) via the reaction volume V(t). Equation (5) was fitted to data captured during cultivation in order
to calculate the averaged specific growth rate µ for a corresponding growth phase:

N(t) = N0 × eµ×t with N(t) = X(t)×V(t) (5)

Additionally, we tested two algorithms for the prediction of µ based on the online sensor signals.
The first one uses a moving window with the process data of the past 10 h to calculate µ as slope of the
linear Ln (N(t)) function. The second approximates the time course of N(t) for a 24-h interval prior to
the sampling point with a polynomial of degree two [40,41] (Equation (6)). Based on the corresponding
regression coefficients a1–2 that are calculated for each time point, the growth rate can be calculated
according to Equation (7):

dN
dt

= N × µ with N24h backward = a2 × t2 + a1 × t + a0 (6)

µ =
dN

N × dt
=

2× a2 × t + a1

a2 × t2 + a1 × t + a0
(7)

3. Results

3.1. Correlation between Cell Density, Turbidity and Permittivity during Cultivation

3.1.1. Retrospective Modeling and Predictive Capabilities

Calibration is generally required to relate a parameter of interest (e.g., cell density) to the
corresponding sensor output.
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For the EXcell 230 sensor, we used the dimensionless optical density in AU. The Incyte
system provided a more extensive output comprising five parameters: ε, ∆ε, fc, α and κ. Out of
these, ε appeared most suitable for calibration as shown by a scatter plot matrix of all variables
(Supplementary Material S1). For single experiments, retrospective models were used to fill the
gaps between discrete offline measurements. Thus, the monitoring of either OD880 or ε allowed a
detailed reconstruction of the complete growth curve at the conclusion of each experiment (Figure 3).
Because retrospective models are difficult to generalize, LME models were used to find common
calibration functions that were valid for different cultivations with diverse process conditions (Table 1).Sensors 2018, 18, x FOR PEER REVIEW  7 of 24 
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Table 1. Summary of the extracted fixed effects models as generally valid equations for cell density
prediction (valid below 30 × 106 cells/mL): cell concentration [106 cells/mL], OD880 [AU], ε [pF/cm].

Prediction Based on Optical Density OD880

Inverse calibration
cell concpredicted,inv =

0.365 + 18.457×OD880 + 42.404 ×OD880
2

Classical calibration
cell concpredicted, cl =

−0.0368+
√

0.03682−(−4×0.000578×(0.00319−OD880))
−2×0.000578

Prediction Based on Permittivity ε

Inverse calibration cell concpredicted, inv = −0.0755 + 4.660× ε

Classical calibration cell concpredicted, cl =
ε−0.0397

0.214



Sensors 2018, 18, 900 8 of 26

Sensors 2018, 18, x FOR PEER REVIEW  7 of 24 

 

 

 

Figure 3. Offline cell density (black dots) and corresponding growth curves based on inverse (blue 

line) and classical (red line) calibrations for two representative batch cultivations. Smaller panels 

show corresponding calibration curves. (a) Permittivity-based retrospective models for cultivation 

k_batch_008. (b) OD880-based retrospective models for cultivation k_batch_007. The kinks at ~70 h 

represent induction with 600 µM copper sulfate. 

Table 1. Summary of the extracted fixed effects models as generally valid equations for cell density 

prediction (valid below 30 × 106 cells/mL): cell concentration [106 cells/mL], OD880 [AU], ε [pF/cm]. 

Prediction Based on Optical Density OD880 

Inverse calibration 𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖𝑛𝑣 =0.365+ 18.457× 𝑂𝐷880 + 42.404 × 𝑂𝐷880
2   

Classical calibration 
𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑐𝑙 =

−0.0368 + √0.03682 − (−4 × 0.000578 × (0.00319 − 𝑂𝐷880))

−2 × 0.000578
    

Prediction Based on Permittivity ε 

Inverse calibration 𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖𝑛𝑣 =− 0.0755 +  4.660 × 𝜀    

Classical calibration 𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑐𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑐𝑙 =  
𝜀 − 0.0397

0.214 
 

 

 

Figure 4. Calibration using the fixed effects terms of the classical and inverse LME models. (a) Scatter 

plot of measured viable cell concentration and the signal of the EXcell 230 NIR turbidity sensor based 

on exponentially growing populations. (b) Correlation between measured viable cell concentration 

and the Incyte permittivity ε (1000–10,000 kHz) based on exponentially growing populations. 

Figure 4. Calibration using the fixed effects terms of the classical and inverse LME models.
(a) Scatter plot of measured viable cell concentration and the signal of the EXcell 230 NIR
turbidity sensor based on exponentially growing populations. (b) Correlation between measured
viable cell concentration and the Incyte permittivity ε (1000–10,000 kHz) based on exponentially
growing populations.

OD880-based calibration revealed high conformity between cultivations for cell densities
below 10 × 106 cells/mL (Figure 4a). However, deviations expand as linearity ceases at higher cell
densities. Nonlinearity can be explained by the fact that, at high cell density, neighboring cells cause
shading which in turn results in a non-equal contribution to the scattering signal. Another consequence
is that classical and inverse calibration yield slightly different predictions at the upper end of the
calibration range. In contrast, the scatter plot based on ε shows an entirely linear relationship, but also a
stronger variability among different cultivations (Figure 4b). Here, inverse and classical calibrations are
virtually indistinguishable. Predictions based on the four established models were in good agreement
with the offline measurements, confirming that all proposed methods yield practically applicable
calibration functions (Figures A1–A4).

3.1.2. Timing of Induction and Harvest for Batch and Fed-Batch Cultures with High Viability

The dynamic measurement of cell concentration was analyzed in detail for two processes in batch
and fed-batch mode, where standard parameters such as dissolved oxygen, pH and temperature were
kept constant to ensure optimal production conditions. Monitoring of cell growth was enabled by the
inverse fixed effects models and compared to the retrospective models (Figure 5).
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Figure 5. Growth curves and corresponding process data for representative batch (left panel, batch_008)
and fed-batch (right panel, fed_batch_011) processes for the production of GmGlv in the cell line S2
GmGlv-His-D7. The lower panel shows the inverse LME (dotted) and inverse retrospective (solid lines)
models for biomass estimation based on OD880 (red) or ε (blue). Note that the last point of the GmGlv
concentration in the batch culture originates from the small amount of culture broth that was further
cultivated after harvest.

As expected, the retrospective models performed slightly better because they were exclusively
related to the experiment. However, the fixed effects term of the LME model also delivered
reasonable predictions and showed clear differentiation between the process phases. During the initial
non-induced batch phases, cells were highly viable and the average growth rate was 0.024–0.030 h−1,
which is in good agreement with previous reports [31]. The post-induction growth rates dropped due
to the cytotoxicity of the inducer, and decreased further at the onset of nutrient depletion. The moving
window-based calculation of µ provided a high-resolution insight to the evolution of this parameter,
particularly emphasizing the transition from the non-induced to the induced state and finally to a
non-proliferating state (Figure 6). Despite growth arrest at the end of the cultivation, cell viability
remained >95% until harvest.

As well as the prediction of the growth curve, it was necessary to relate the sensor signals
to the key transitional events (induction and harvest) to gain additional benefits from their online
availability. Previous statistically designed experiments on rS2 cells found that the optimal induction
cell density was 7–10 × 106 cells/mL [30]. We therefore used the online signals to achieve induction
within this window. Thereafter, the concentration of GmGlv in the supernatant was monitored to
determine the optimal window for harvest. The highest concentration of GmGlv (25 mg/L) was
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observed at the onset of the stationary phase. However, prolonged stationary cultivation provided
no additional benefit and carries the risk of product degradation or the release of contaminating
host cell proteins [30] (compare also Figure A5). Such negative effects were avoided by tight online
monitoring, allowing harvesting to be initiated before cellular decay. The measurement of glucose as
an alternative parameter was not suitable for this purpose because cell growth declined before the
main carbon and energy source was exhausted. The early decline in cell growth may reflect either
prolonged exposure to the cytotoxic inducer or the depletion of another growth-limiting substrate.
In summary, dielectric spectroscopy and the online measurement of optical density were both suitable
for the control of batch and fed-batch processes.
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Figure 6. Growth rate calculation based on of cell numbers that were predicted with the inverse
fixed effects model and the ε data for cultivation fed_batch_011. Offline calculation of averaged
growth rates according to three different process phases (left panel and red line in the right panel),
moving window-based calculations (right panel, gray and dark blue lines).

3.2. Viability Assessment via the Parallel Measurement of Turbidity and Permittivity

3.2.1. Determining Cell Viability in a Controlled Environment

In order to investigate the influence of dead cells on the sensor outputs, we worked with
standardized rS2 cell suspensions that were independent from changes in medium composition and cell
aging, both of which occur in a real cultivation setting. The standardized rS2 cell suspensions allowed
us to prepare mixtures in which the cell viability could be defined precisely. First we verified our assay
using standard offline methods (Figure 7a). Trypan blue staining showed that the ethanol-treated
cells remained macroscopically intact, but lost their ability to exclude the stain. Propidium iodide
staining and flow cytometry confirmed these results and also revealed morphological changes in
the light-scattering properties of dead cells, which were smaller and more granular than living cells.
However after mixing both pools (99% viable, 100% dead) in defined proportions, the OD880 signal
showed no reaction to the variations (Figure 7b). This is because the total quantity of light-scattering
particles (living cells, dead cells and cell debris) was constant and apparently the changed scattering
properties did not influence the overall signal. In contrast, the permittivity value dropped with the
increasing proportion of defective cells, reflecting the fact that cells with leaking membranes lose their
ability to store an electrical charge (Figure 7b). We also observed changes in the characteristic frequency
fc, which may reflect differences in the cell size distribution, the specific membrane capacitance,
and intracellular conductivity (Supplementary Material S2). Because the permittivity at 1000 kHz
(ε) is strongly affected by a changing fc value, we used the less susceptible ∆ε value for further
analysis. Taking the quotient of ∆ε and OD revealed a linear dependence on viability (Figure 7c).
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Consequently, a stain-free viability assessment was possible via the parallel measurement of turbidity
and permittivity.
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Figure 7. Viability assessment via the parallel measurement of turbidity and permittivity in a controlled
environment. (a) Preparation of cell suspensions with different viabilities and analysis of the resulting
cell pools via flow cytometry and microscopy. (b) Raw signals of ∆ε and OD880nm show the different
responses of the sensors (n = 4, mean ± SD). (c) The ratio of the two signals shows linear dependence
on the viability of the cell suspension (n = 4, mean ± SD).

3.2.2. Case Study of Viability Assessment during Batch and Fed Batch Cultivation

Having demonstrated proof of concept, we used prolonged batch and fed-batch cultivations
to verify the online measurement of viability under practical conditions. For both processes, cells
reached their peak density at ~120 h with >95% viability, followed by progressive cell death after
the depletion of essential nutrients in the stationary phase (Figure 8, upper panel). In accordance
with the small-scale assay, the latter event was associated with a drop in ∆ε, whereas the OD880

remained constant over time. The transition from active to stationary culture was especially observable
in the corresponding ∆ε-OD880 phase trajectories (Figure 8, lower panel), where the growth-related
correlation between the two signals disappeared suddenly following the onset of growth arrest and
cell death. However, because of the changing conditions and process-to-process variations, it was
not possible to determine the exact percentage of viability based on the calibration with standardized
rS2 cells. Nonetheless, the phase trajectory shows a sharp kink, which can be used to optimize the
harvesting time. As soon as the kink appears, the degradation and contamination of our target peptide
BR021 was observed, reflecting the release of proteases and host cell protein from damaged cells
(Figure A5). In this context, the parallel measurement of turbidity and permittivity is suitable for
online process control and allows a rapid response to detrimental events.
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Figure 8. Growth and offline viability curves for prolonged batch (a) and fed-batch (b) cultivations
for the two different cell lines S2 Mt-BR021-V5/His (k_batch_016) and S2 Mt-Glv-V5/GFP
(k_fed_batch_005). Induction commenced at 92 h and 120 h, respectively. After entering the stationary
phase and the depletion of essential nutrients, the cell population lost viability. The transition from
active to decaying culture is visible in the corresponding ∆ε-OD880 phase trajectories. Black dots
represent the process before 120 h, followed by gray dots for subsequent time points (lower panel).

3.2.3. Phase Trajectories of ε and ∆ε as Alternative Sources of Process Information

As stated in Section 3.2.1, the accumulation of dead cells leads to alterations in the shape
of the β-dispersion and consequently ε and ∆ε differed in their responses to a decaying culture.
Therefore, we evaluated the practicability of ε-∆ε phase trajectories as an alternative method for
online viability monitoring. Figure 9 shows the ε-∆ε plots corresponding to the cultivations discussed
above. Where high cell viability was combined with an optimal harvest time, there was an almost
linear correlation between ε and ∆ε (see Section 3.1.2 and Figure 9a). This applied to the majority
of our cultivations. For prolonged batch and fed-batch cultivations, deviations from linearity were
observed at later process sages, because of the changing cell physiology and culture conditions, and the
increasing prevalence of cell death (see Section 3.2.2 and Figure 9b–d). However, these transitions were
not exclusively related to viability and even occurred before massive cell death was detected. Using the
fed-batch cultivation in Figure 9d as an example, the changes of direction can be related to distinct
events such as the end of the exponential growth phase, feed stock depletion and complete glucose
exhaustion. These events may be related to changes in intracellular conductivity and membrane
capacitance. In summary, the results confirm the applicability of ε-∆ε plots beyond simple viability
monitoring, but also emphasize the need for comprehensive offline monitoring to assign direction
changes to corresponding events.
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Figure 9. Analysis of the representative cultivations described in Section 3.1.2 (batch_008,
fed_batch_011) and 3.2.2 (batch_016, fed_batch_005) by plotting the ε-∆ε phase trajectories. Healthy and
exponentially growing batch (a) and fed-batch (b) cultures show a predominantly linear relationship
between ε and ∆ε. Prolonged cultures with nutrient depletion (late stage b–d) show altered trajectories
reflecting physiological changes in the cell population. Different process phases and key transition
points are highlighted.

3.3. OD880-Controlled Perfusion to Achieve a Turbidostat/Permittistat Culture with Enhanced Productivity

The total protein yield in batch and fed-batch cultures is limited by finite cell growth and protein
degradation during the stationary phase. Therefore, perfusion processes offer an alternative route to
achieve superior productivity without growth restriction. Based on tangential flow filtration (TFF) we
realized a constant nutrient supply and accordingly high cell concentrations using essentially the same
equipment used in the other process modes. In order to characterize our system and to determine the
effect of elevated cell concentration on productivity, the corresponding cultivation was divided into
four phases (Figures 10–12). The steps for generation of a high cell concentration (I, II) were followed
by a test of the OD880-based bleed control (III) and finally induction with 600 µM copper sulfate for
protein production (IV).

During the initial batch and unlimited perfusion phases (I, II), the cells proliferated exponentially
with a specific growth rate of 0.029 h−1. Accordingly, the main carbon and energy source (glucose) was
consumed, but no lactate production was observed. The target cell density of 50 × 106 cells/mL was
reached after 141 h. At this point, the controller started the bleed pump and the OD880 was kept constant
at 0.78 AU for 16 h (III). Following the establishment of a forced steady state, we tested the robustness of
the system. As a model disturbance, the reactor was completely filled with additional medium and half
of the cells were removed afterwards to restore the original volume. Subsequently, the imbalanced system
was left undisturbed, to allow for compensation by the control algorithm. Within the next 22 h, the reactor
reached its previous steady state in terms of cell density and glucose concentration, demonstrating the
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stability of the system. Copper sulfate was then added to initiate the production of GmGlv, which was
monitored offline by SDS-PAGE and anti-His6 western blotting (Figure 10).
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Figure 10. SDS-PAGE and western blot analysis of the reactor/bleed line and the perfusion stream
after induction in the steady state (phase IV).

After an initial ramp-up, the concentration of GmGlv in the permeate and bleed flow stabilized
with small deviations (Figure 10). In summary, this resulted in a linear increase in the total amount
of recombinant protein with a final titer of 130 mg after 49 h (Figure 11). This is equivalent to a
volumetric productivity of 63 mg/(L·d). Compared to the final yield of typical batch cultivations,
the short continuous production phase already achieved a five-fold increase. In terms of cell density
control, we observed minor fluctuations during the induced phase, which were quickly compensated
by the automatically adjusted bleed rate. Overall, the OD880, ε and ∆εwere characterized by similar
time courses, which is in accordance with the high cell viability (>97%) throughout cultivation and
additionally confirms that both sensors can be used interchangeably for the control of a healthy
turbidostat/permittistat process. The entirely linear ε-∆ε phase trajectory supports the observation
that the cells remained in good condition during all phases (Figure 12).
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Figure 11. Time course of the key process variables during the four distinct phases of the perfusion
cultivation of S2-GmGlv-His D7 cells. The small bleed volume increase at ~130 h is attributed to a
manual manipulation on the bleed line and was not included in the bleed rate calculation.
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The OD-∆ε trajectory is curved due to the nonlinearity of the ExCell sensor at high cell densities.
Furthermore, the rapid process disturbance is visible as a turn in the OD-∆ε trajectory (Figure 12).
However, this is a consequence of the slow response of the Incyte System rather than changes in cell
physiology. Finally, both plots show that the system stabilizes at its previous state.

4. Discussion and Conclusions

4.1. Characterization of the ExCell 230 and the InCyte Sensors

The calibration of the ExCell 230 and InCyte sensors confirmed their suitability for the monitoring
of rS2 cells. Highly accurate retrospective models (R2 > 0.99) allowed the fundamental analysis of
growth kinetics, in agreement with previous results [30]. By combining LME models with the data
from different cultivations of rS2 cells producing GmGlv, we improved the calibration procedure and
developed a more general model. The resulting equations can be used for robust cell density predictions
in future experiments. Our analysis showed that the inverse and classical calibration approaches are
comparable. From a strict mathematical point of view, only the classical approaches ensure the correct
assignment of dependent and independent variables. However, in terms of practical applications,
the inverse models performed equally well and are more straightforward to calculate, especially for
higher-order polynomials. This is particularly relevant for the ExCell 230 sensor, because its signal is
not linearly related to cell concentration. Comprehensive evaluation of different online OD sensors in
mammalian cell bioreactors showed that nonlinearity is a common property of OD sensors [10]. This is
attributed to shading effects, which become more prevalent at higher cell concentrations, and similar
phenomena were observed in our experiments. The use of second or third order polynomials is therefore
frequently reported for the inverse calibration of OD sensors [11,26,41–43] and linear calibration is only
conceivable at low cell concentrations [12,44]. Emerging nonlinearity was also associated with a with a
stronger signal variability among the cultivations (heteroscedasticity), which in turn resulted in a lower
certainty of prediction at the end of the cultivation, a behavior also observed for hybridoma cell lines [42].
Nonetheless, the ExCell 230 sensor was reliable at concentrations of up to 5 × 107 rS2 cells/mL, which is
in agreement with previous reports for other cell types [10,41]. These results highlight the fact that optical
sensors require a suitable optical path length as the key parameter to adjust the linear measurement
region, because only this region gives precise results. It is notable that interfering factors such as gas
bubbles were excluded by our reactor setup, but are potential sources of error that must be considered
in other reactor systems [17]. Color-related disturbances were easily excluded by the use of NIR light.
Neither medium color changes during cultivation nor the addition of the strong blue copper sulfate had
an impact on the online measurement (Supplementary Material S3).
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Due to its measuring principle, the Incyte sensor was not susceptible to any of the disturbances
mentioned above and additionally showed a linear response. This facilitated linear calibration using
either the inverse [20,45] or classical [46] approach, as previously reported. However, despite the
satisfactory prediction capability, the signals from different cultivations were less congruent compared
to the OD sensor, which is reflected in a broader distribution of the data points around the ε-calibration
curve. The origin of this variance is unclear, but a study with microorganisms showed that dielectric
spectroscopy is a more complex method that still needs refinement. The same study also mentions
that long-term stability is not guaranteed, and that a considerable drift in measurement capability is
possible following multiple autoclaving cycles [44]. Dielectric spectroscopy is generally very sensitive
to changes in morphology and the cellular interior, which may be an additional reason for the lack
of congruence. Beyond the easily implemented linear ε-calibration discussed herein, there are also
more complex calibration methods available. The first involves a rearrangement of the Cole-Cole
equation combined with the determination of the cell-specific membrane capacitance per unit area
and the cytoplasmic conductivity [47]. The second uses partial least squares (PLS) regression on the
raw dielectric spectra [47,48]. In studies with CHO cells, all approaches (linear, Cole-Cole and PLS)
achieved acceptable accuracy [47,49], although the PLS and Cole-Cole models were preferable in one
case [49]. Whereas linear calibration provides easy access to dielectric spectroscopy, the considerable
effort required for the more complex methods is worthwhile if one is interested in the additional
parameters (e.g., intracellular conductivity in the Cole-Cole model) associated with these methods.
Summing up our data, both sensors gave comparable results for monitoring viable rS2 cells, but we
recommend their complementary application to gain a redundant source of information. As a future
perspective, both outputs could be combined within an error-weighted soft sensor as proposed for
other techniques [45,50].

4.2. Gaining Process Understanding by Online Monitoring of Cell Density, Specific Growth Rate and Viability

To gain added value from online monitoring, it is necessary to link cellular status information
to the sensor signals, which in turn facilitates automated process control. In this context,
dielectric spectroscopy and the online measurement of optical density have proven to be valuable
tools for the online monitoring of various cell lines including CHO, Vero, hybridoma, HeLa, Sf9 and
High Five cells [17,21]. In terms of insect cell culture, dielectric spectroscopy has been used mainly to
monitor baculovirus-infected Sf9 cells, where the permittivity signals were used for the detection of
infection-related cell swelling [51] and to determine the optimal timing for infection and harvest [52].
Accordingly online optical density measurements were also shown to correlate well with Sf9 cell
density but the resulting models failed to represent the lysing cell population post-infection [11,26].

Based on these earlier results, we have demonstrated the successful adaption of both techniques
for the online monitoring of rS2 cells [30]. Online monitoring allowed us to determine optimal
windows for the key transitional events (induction and harvest), achieving optimized product titers
and avoiding late-stage product degradation. In batch and fed-batch cultivation, induction commenced
at the mid-exponential phase and subsequent production peaked at the end of growth. This is
consistent with reports for other rS2 lines [30,53–55] and demonstrates that the productivity of
the cells is strongly coupled to replication given that both processes require efficient protein
synthesis. Accordingly, the specific growth rate µ is another key parameter suitable for monitoring.
However, the direct calculation of µ from online raw signals is hampered by the susceptibility of
the differentiation operation to noise [41]. With the help of two moving window-based filtering
techniques, we improved this situation to achieve the detailed analysis of the corresponding time course
of µ. Although we used a non-lethal and optimized copper sulfate concentration of 600 µM [30,56],
the copper ions had an immediate impact on the growth rate indicating a strong influence on cell
metabolism (e.g., by inhibiting key enzymes). Likewise, the monitoring of µ can be used to highlight
nutrient depletion and even the µ-based automation of feeding is conceivable, as demonstrated
before [56,57]. As long as the cells are highly viable, the outputs of both sensors can be used
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interchangeably for the purposes described above. However, the complementary use of optical density
and permittivity not only provides redundancy for healthy populations but also enables the robust
measurement of viability at later process stages, e.g., the OD880-ε phase trajectories indicate the
onset of cell death as a sharp kink. Beyond this approach, also a more detailed online assessment
of viability seems feasible given that recent studies using CHO cells introduced a soft sensor based
on permittivity and optical density to model the evolution of viable cells, dead cells and cell debris
during cultivation [45]. Because this soft sensor is based on several assumptions, phase trajectory
plots will remain as an easy-to-implement and straightforward tool for the evaluation of multiple
sensor readings. The ε-∆ε plots were also suitable for process monitoring. During exponential
growth, both parameters were linearly related, but deviations showed up during later process
phases. These transitions were not exclusively related to viability, but can be interpreted as a result
of changes in the physiological status and composition of the cell population. The analysis of two
high-density CHO perfusion processes using similar plots provided evidence that the observed changes
were related to cell shrinkage and membrane permeabilization coupled with the release of internal
organelles [48]. A smaller number of large intact cells generally leads to a shift in the characteristic
frequency towards higher values because smaller cells are “charged” more rapidly. The resulting
shifted β dispersion curve in turn leads to direction changes in the ε-∆ε plots. Our small-scale viability
assay demonstrated that the reduced cell size in the ethanol-treated population was associated with
an increased fc (Supplementary Material S2). However, a one-to-one comparison between bioreactor
cultivations and the small-scale assay is not possible because the real process involves a less clearly
defined situation, and changes in cell physiology occur more fluently. The mode of cell death,
either induced by toxic chemicals or as a result of nutrient depletion, also has a major impact on
the dielectric spectrum [58]. Whereas solvents and detergents may disrupt the membrane and lead
to a rapid traumatic cell death, starvation tends to cause major physiological changes before cell
lysis [58]. This leads directly to the question of how to define cellular viability. It is clear that different
methods of viability assessment give different results, depending on the parameters that are measured,
which typically include membrane integrity (Trypan blue exclusion), metabolic activity (MTT assay) or
proliferation capability (plate counts). Among the available techniques, dielectric spectroscopy tests
for membrane integrity and changes in intracellular conductivity or specific membrane capacitance.
Consequently, it is not a simple substitute for other methods, but can be regarded as an independent
tool to provide additional information [47]. For example, we detected the impact of a glutamine
bolus and of complete glucose exhaustion as direction changes in the ε-∆ε plot. In CHO cell
cultures, a decrease in fc (and consequently changes in ∆ε) were attributed to a loss of intracellular
conductivity caused by glutamine exhaustion [59]. Similarly, studies with the yeast Saccharomyces
cerevisiae showed that intracellular conductivity varied among the different growth phases and in
response to thermal stress, thus affecting the β-dispersion [60]. These findings emphasize the inherent
ability of dielectric spectroscopy to provide information about the intracellular environment, but also
show that comprehensive offline monitoring is necessary to identify the underlying phenomena.
For research purposes, we therefore recommend the use of dielectric spectroscopy in combination
with complementary methods such as spent medium analysis, respiration monitoring [47] or the
determination of metabolic parameters such as the specific quantity of intracellular nucleotide
triphosphates [61].
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4.3. Process Intensification Using an OD880-Controlled Perfusion Process

The commercial production of biologicals in animal cells is usually carried out as fed-batch
or perfusion processes [62]. Perfusion is particularly attractive because it offers a high maximum
cell density (>5 × 107 cells/mL) combined with superior volumetric productivity and long-term
production cycles [63,64]. However, to be effective and robust, the corresponding processes require
the appropriate reactor setup and the controlled adjustment of feed and bleed rates. Maintaining the
perfusion-derived pseudo-steady-state in such bioreactors is especially challenging because high and
potentially fluctuating cell densities can cause serve changes in the environmental conditions [19,65].
In this case, infrequent manual sampling provides insufficient information to characterize or to
control the process. In order to overcome this sampling bottleneck, dielectric spectroscopy is already
frequently used for perfusion monitoring [48,49,66]. For example, it allows the control and optimization
of cell-specific perfusion rates (in nL/(cell·day)) [66] and the determination of optimal production
temperatures for continuous protein production in CHO cells [67]. In another continuous process with
hybridoma cells growing on a fluidized bed, the capacitance signal was used for closed-loop control of
the glutamine feed rate [61]. Likewise, optical sensors enabled the establishment of hybridoma cultures
with stationary cell counts (turbidostat) [68]. Accordingly, we used the ExCell 230 NIR sensor to
maintain a constant cell concentration by automatic manipulation of the bleed rate (at a fixed perfusion
rate). This not only allowed us to adjust the maximum cell density to the oxygenation capacity of
our reactor system, but also resulted in a very stable process. Fluctuations of various magnitudes
were easily compensated by the closed-loop controller, while online assessment of healthiness was
enabled by the parallel measurement of permittivity. Using a short model production phase of 2 days,
we increased the total amount of target protein from typically 25 mg for batch or fed-batch processes
to ~130 mg. The linear production kinetics during perfusion shows that at least for this short period
the production rate was constant at around 63 mg/(L·d). This is quite similar to the production of
tissue-type plasminogen activator (~60 mg/(L·d)) in a permittivity-supervised CHO cell process [66].
In summary, the proposed process strategy outperformed the classical cultivation modes in terms
of robustness and effectiveness, demonstrating the benefits associated with the transition from pure
monitoring to closed-loop control. However, the system is not yet fully optimized and a further
assessment of the cell-specific perfusion rate may improve nutrient utilization and increase cell-specific
productivity. Also, long-term production has yet to be investigated, highlighting the issues of cell line
stability and membrane fouling characteristics.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/18/3/900/s1,
File S1: Statistical analysis of the relationship between cell concentration, optical density and permittivity, File S2:
Raw values of the measured parameters in the small-scale viability assay, File S3: Color change of the medium
following the addition of copper sulfate.
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Abbreviations

The following abbreviations are used in this manuscript:

Symbol Name Unit
a Regression coefficients for the approximation of N(t)
b Random effects coefficients
β Fixed effects coefficients
BEVS Baculovirus expression vector system
BR021 Harmonia axyridis antimicrobial peptide BR021
BSA Bovine serum albumin
CHO Chinese hamster ovary cells
e error
GmGlv Galleria mellonella antimicrobial peptide gloverin
HeLa Henrietta Lacks cell line
High Five Ovarian cell line from the cabbage looper Trichoplusia ni
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
NIR Near infrared
OD880 Optical density at 880 nm
PBS Phosphate-buffered saline
PVDF Polyvinylidene difluoride
rS2 Recombinant Drosophila melanogaster Schneider 2 cells
SD Standard deviation
SDS PAGE Sodium dodecylsulfate polyacrylamide gel electrophoresis
Sf9 Clonal isolate of Spodoptera frugiperda Sf21 cells
TFF Tangential flow filtration
Vero African green monkey kidney epithelial cells (from verda reno = green kidney)
fc Characteristic frequency [kHz]
N Absolute cell number [-]
t Time [h]
X Cell concentration [106/mL]
κ Conductivity [mS/cm]
µ Specific growth rate [h-1]
∆ε Maximal permittivity difference [pF/cm]
ε Permittivity [pF/cm]
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Figure A2. Estimated time courses of 13 cultivations based on the inverse calibration of the Incyte
system with a LME model. The fixed effects predictions (blue line) represent the systematic relationship,
whereas the mixed effects predictions (red line) consider systematic and cultivation dependent
random effects.
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system with a LME model. The fixed effects predictions (blue line) represent the systematic relationship,
whereas the mixed effects predictions (red line) consider systematic and cultivation dependent
random effects.
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Figure A5. Growth and viability curves for prolonged batch cultivations for the production of BR021 in
the cell line S2 Mt-BR021-V5/His E3. After entering the stationary phase and the depletion of essential
nutrients, the cell population lost viability. The transition from an active to a decaying culture is
visible in the corresponding ∆ε-OD880 phase trajectories. Black dots represent the process before 120 h,
followed by gray dots for the subsequent time points. SDS PAGE shows that the lower cell viability
is associated with protein degradation and the release of host cell protein. The shifted band position
results from the exceptional high pI of 10.72 that alters the migration properties of BR021 during
SDS PAGE.



Sensors 2018, 18, 900 23 of 26

References

1. Junker, B.H.; Wang, H.Y. Bioprocess monitoring and computer control: Key roots of the current PAT initiative.
Biotechnol. Bioeng. 2006, 95, 226–261. [CrossRef] [PubMed]

2. Aehle, M.; Kuprijanov, A.; Schaepe, S.; Simutis, R.; Lübbert, A. Simplified off-gas analyses in animal cell
cultures for process monitoring and control purposes. Biotechnol. Lett. 2011, 33, 2103–2110. [CrossRef]
[PubMed]

3. Casablancas, A.; Gámez, X.; Lecina, M.; Solà, C.; Cairó, J.J.; Gòdia, F. Comparison of control strategies
for fed-batch culture of hybridoma cells based on on-line monitoring of oxygen uptake rate, optical cell
density and glucose concentration: Monitoring and control of hybridoma cell fed-batch culture. J. Chem.
Technol. Biotechnol. 2013, 88, 1680–1689. [CrossRef]

4. Marose, S.; Lindemann, C.; Scheper, T. Two-Dimensional Fluorescence Spectroscopy: A New Tool for On-Line
Bioprocess Monitoring. Biotechnol. Prog. 1998, 14, 63–74. [CrossRef] [PubMed]

5. Lindemann, C.; Marose, S.; Nielsen, H.O.; Scheper, T. 2-Dimensional fluorescence spectroscopy for on-line
bioprocess monitoring. Sens. Actuators B Chem. 1998, 51, 273–277. [CrossRef]

6. Cole, H.E.; Demont, A.; Marison, I.W. The Application of Dielectric Spectroscopy and Biocalorimetry for the
Monitoring of Biomass in Immobilized Mammalian Cell Cultures. Processes 2015, 3, 384–405. [CrossRef]

7. Luttmann, R.; Bracewell, D.G.; Cornelissen, G.; Gernaey, K.V.; Glassey, J.; Hass, V.C.; Kaiser, C.; Preusse, C.;
Striedner, G.; Mandenius, C.-F. Soft sensors in bioprocessing: A status report and recommendations.
Biotechnol. J. 2012, 7, 1040–1048. [CrossRef] [PubMed]

8. Bluma, A.; Höpfner, T.; Lindner, P.; Rehbock, C.; Beutel, S.; Riechers, D.; Hitzmann, B.; Scheper, T.
In-situ imaging sensors for bioprocess monitoring: State of the art. Anal. Bioanal. Chem. 2010, 398, 2429–2438.
[CrossRef] [PubMed]

9. Cervera, A.E.; Petersen, N.; Lantz, A.E.; Larsen, A.; Gernaey, K.V. Application of near-infrared spectroscopy
for monitoring and control of cell culture and fermentation. Biotechnol. Prog. 2009, 25, 1561–1581. [CrossRef]
[PubMed]

10. Wu, P.; Ozturk, S.S.; Blackie, J.D.; Thrift, J.C.; Figueroa, C.; Naveh, D. Evaluation and applications of optical
cell density probes in mammalian cell bioreactors. Biotechnol. Bioeng. 1995, 45, 495–502. [CrossRef] [PubMed]

11. Bédard, C.; Jolicoeur, M.; Jardin, B.; Tom, R.; Perret, S.; Kamen, A. Insect cell density in bioreactor cultures
can be estimated from on-line measurements of optical density. Biotechnol. Tech. 1994, 8, 605–610. [CrossRef]

12. Fan, R.; Ebrahimi, M.; Quitmann, H.; Aden, M.; Czermak, P. An Innovative Optical Sensor for the Online
Monitoring and Control of Biomass Concentration in a Membrane Bioreactor System for Lactic Acid
Production. Sensors 2016, 16, 411. [CrossRef] [PubMed]

13. Druzinec, D.; Weiss, K.; Elseberg, C.; Salzig, D.; Kraume, M.; Pörtner, R.; Czermak, P. Process analytical
technology (PAT) in insect and mammalian cell culture processes: Dielectric spectroscopy and focused
beam reflectance measurement (FBRM). In Animal Cell Biotechnology; Pörtner, R., Ed.; Humana Press:
Totowa, NJ, USA, 2014; pp. 313–341. ISBN 978-1-62703-732-7.

14. Druzinec, D.; Salzig, D.; Brix, A.; Kraume, M.; Vilcinskas, A.; Kollewe, C.; Czermak, P. Optimization of insect
cell based protein production processes-online monitoring, expression systems, scale up. Adv. Biochem.
Eng. Biotechnol. 2013, 136, 65–100. [CrossRef] [PubMed]

15. Reinecke, T.; Biechele, P.; Sobocinski, M.; Suhr, H.; Bakes, K.; Solle, D.; Jantunen, H.; Scheper, T.;
Zimmermann, S. Continuous noninvasive monitoring of cell growth in disposable bioreactors. Sens. Actuator
B Chem. 2017, 251, 1009–1017. [CrossRef]

16. Junker, B.H.; Reddy, J.; Gbewonyo, K.; Greasham, R. On-line and in-situ monitoring technology for cell
density measurement in microbial and animal cell cultures. Bioprocess Eng. 1994, 10, 195–207. [CrossRef]

17. Kiviharju, K.; Salonen, K.; Moilanen, U.; Eerikäinen, T. Biomass measurement online: The performance of in
situ measurements and software sensors. J. Ind. Microbiol. Biotechnol. 2008, 35, 657–665. [CrossRef] [PubMed]

18. Kaiser, C.; Carvell, J.P.; Luttmann, R. A Sensitive, Compact, In Situ Biomass Measurement System.
BioProcess Int. 2007, 5, 52–56.

19. Carvell, J.P.; Dowd, J.E. On-line Measurements and Control of Viable Cell Density in Cell Culture
Manufacturing Processes using Radio-Frequency Impedance. Cytotechnology 2006, 50, 35–48. [CrossRef]
[PubMed]

http://dx.doi.org/10.1002/bit.21087
http://www.ncbi.nlm.nih.gov/pubmed/16933288
http://dx.doi.org/10.1007/s10529-011-0686-5
http://www.ncbi.nlm.nih.gov/pubmed/21744145
http://dx.doi.org/10.1002/jctb.4019
http://dx.doi.org/10.1021/bp970124o
http://www.ncbi.nlm.nih.gov/pubmed/9496670
http://dx.doi.org/10.1016/S0925-4005(98)00195-6
http://dx.doi.org/10.3390/pr3020384
http://dx.doi.org/10.1002/biot.201100506
http://www.ncbi.nlm.nih.gov/pubmed/22489000
http://dx.doi.org/10.1007/s00216-010-4181-y
http://www.ncbi.nlm.nih.gov/pubmed/20835863
http://dx.doi.org/10.1002/btpr.280
http://www.ncbi.nlm.nih.gov/pubmed/19787698
http://dx.doi.org/10.1002/bit.260450606
http://www.ncbi.nlm.nih.gov/pubmed/18623249
http://dx.doi.org/10.1007/BF00241682
http://dx.doi.org/10.3390/s16030411
http://www.ncbi.nlm.nih.gov/pubmed/27007380
http://dx.doi.org/10.1007/10_2013_205
http://www.ncbi.nlm.nih.gov/pubmed/23995041
http://dx.doi.org/10.1016/j.snb.2017.05.111
http://dx.doi.org/10.1007/BF00369530
http://dx.doi.org/10.1007/s10295-008-0346-5
http://www.ncbi.nlm.nih.gov/pubmed/18392869
http://dx.doi.org/10.1007/s10616-005-3974-x
http://www.ncbi.nlm.nih.gov/pubmed/19003069


Sensors 2018, 18, 900 24 of 26

20. Ducommun, P.; Kadouri, A.; von Stockar, U.; Marison, I.W. On-line determination of animal cell concentration
in two industrial high-density culture processes by dielectric spectroscopy. Biotechnol. Bioeng. 2002, 77,
316–323. [CrossRef] [PubMed]

21. Justice, C.; Brix, A.; Friemark, D.; Kraume, M.; Pfromm, P.H.; Eichenmueller, B.; Czermak, P. Process control
in cell culture technology using dielectric spectroscopy. Biotechnol. Adv. 2011, 29, 391–401. [CrossRef]
[PubMed]

22. Yardley, J.E.; Kell, D.B.; Barrett, J.; Davey, C.L. On-line, real-time measurements of cellular biomass using
dielectric spectroscopy. Biotechnol. Genet. Eng. Rev. 2000, 17, 3–35. [CrossRef] [PubMed]

23. Markx, G.H.; Davey, C.L. The dielectric properties of biological cells at radiofrequencies: Applications in
biotechnology. Enzyme Microb. Technol. 1999, 25, 161–171. [CrossRef]

24. Davey, C.L.; Davey, H.M.; Kell, D.B.; Todd, R.W. Introduction to the dielectric estimation of cellular biomass
in real time, with special emphasis on measurements at high volume fractions. Anal. Chim. Acta 1993, 279,
155–161. [CrossRef]

25. Schwan, H.P. Electrical Properties of Tissue and Cell Suspensions. In Advances in Biological and Medical
Physics; Tobias, J.H.L., Ed.; Elsevier: Amsterdam, The Netherlands, 1957; Volume 5, pp. 147–209.

26. Akhnoukh, R.; Kretzmer, G.; Schügerl, K. On-line monitoring and control of the cultivation of Spodoptera
frugiperda Sf9 insect cells and β-galactosidase production by Autographa californica virus vector.
Enzyme Microb. Technol. 1996, 18, 220–228. [CrossRef]

27. Zeiser, A.; Elias, C.B.; Voyer, R.; Jardin, B.; Kamen, A.A. On-Line Monitoring of Physiological Parameters of
Insect Cell Cultures during the Growth and Infection Process. Biotechnol. Prog. 2000, 16, 803–808. [CrossRef]
[PubMed]

28. Elias, C.B.; Zeiser, A.; Bédard, C.; Kamen, A.A. Enhanced growth of Sf-9 cells to a maximum density
of 5.2 × 107 cells per mL and production of beta-galactosidase at high cell density by fed batch culture.
Biotechnol. Bioeng. 2000, 68, 381–388. [CrossRef]

29. Zitzmann, J.; Sprick, G.; Weidner, T.; Schreiber, C.; Czermak, P. Process Optimization for Recombinant Protein
Expression in Insect Cells. In New Insights into Cell Culture Technology; Gowder, S.J.T., Ed.; InTech Open:
Rijeka, Croatia, 2017; pp. 43–98. ISBN 978-953-51-3133-5.

30. Zitzmann, J.; Weidner, T.; Czermak, P. Optimized expression of the antimicrobial protein Gloverin from
Galleria mellonella using stably transformed Drosophila melanogaster S2 cells. Cytotechnology 2017, 69, 371–389.
[CrossRef] [PubMed]

31. Moraes, Â.M.; Jorge, S.A.C.; Astray, R.M.; Suazo, C.A.T.; Calderón Riquelme, C.E.; Augusto, E.F.P.; Tonso, A.;
Pamboukian, M.M.; Piccoli, R.A.M.; Barral, M.F.; et al. Drosophila melanogaster S2 cells for expression of
heterologous genes: From gene cloning to bioprocess development. Biotechnol. Adv. 2012, 30, 613–628.
[CrossRef] [PubMed]

32. Kollewe, C. Production of recombinant proteins in insect cells. Am. J. Biochem. Biotechnol. 2013, 9, 255–271.
[CrossRef]

33. Vilcinskas, A.; Mukherjee, K.; Vogel, H. Expansion of the antimicrobial peptide repertoire in the invasive
ladybird Harmonia axyridis. Proc. R. Soc. B Biol. Sci. 2013, 280. [CrossRef] [PubMed]

34. Aehle, M.; Kuprijanov, A.; Schaepe, S.; Simutis, R.; Lubbert, A. Increasing batch-to-batch reproducibility of
CHO cultures by robust open-loop control. Cytotechnology 2011, 63, 41–47. [CrossRef] [PubMed]

35. Blaschczok, K.; Kaiser, S.C.; Löffelholz, C.; Imseng, N.; Burkart, J.; Bösch, P.; Dornfeld, W.; Eibl, R.; Eibl, D.
Investigations on Mechanical Stress Caused to CHO Suspension Cells by Standard and Single-Use Pumps.
Chem. Ing. Tech. 2013, 85, 144–152. [CrossRef]

36. Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2014; ISBN 3-900051-07-0.

37. Besalú, E. The connection between inverse and classical calibration. Talanta 2013, 116, 45–49. [CrossRef]
[PubMed]

38. Centner, V.; Massart, D.L.; de Jong, S. Inverse calibration predicts better than classical calibration. Fresenius J.
Anal. Chem. 1998, 361, 2–9. [CrossRef]

39. Pinheiro, J.; Bates, D.M. Mixed-Effects Models in S and S-PLUS, 1st ed.; Springer: New York, NY, USA, 2001.
40. Zhou, W.; Hu, W.-S. On-line characterization of a hybridoma cell culture process. Biotechnol. Bioeng. 1994, 44,

170–177. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/bit.1197
http://www.ncbi.nlm.nih.gov/pubmed/11753940
http://dx.doi.org/10.1016/j.biotechadv.2011.03.002
http://www.ncbi.nlm.nih.gov/pubmed/21419837
http://dx.doi.org/10.1080/02648725.2000.10647986
http://www.ncbi.nlm.nih.gov/pubmed/11255671
http://dx.doi.org/10.1016/S0141-0229(99)00008-3
http://dx.doi.org/10.1016/0003-2670(93)85078-X
http://dx.doi.org/10.1016/0141-0229(95)00093-3
http://dx.doi.org/10.1021/bp000092w
http://www.ncbi.nlm.nih.gov/pubmed/11027174
http://dx.doi.org/10.1002/(SICI)1097-0290(20000520)68:4&lt;381::AID-BIT3&gt;3.0.CO;2-D
http://dx.doi.org/10.1007/s10616-017-0068-5
http://www.ncbi.nlm.nih.gov/pubmed/28132128
http://dx.doi.org/10.1016/j.biotechadv.2011.10.009
http://www.ncbi.nlm.nih.gov/pubmed/22079894
http://dx.doi.org/10.3844/ajbbsp.2013.255.271
http://dx.doi.org/10.1098/rspb.2012.2113
http://www.ncbi.nlm.nih.gov/pubmed/23173204
http://dx.doi.org/10.1007/s10616-010-9320-y
http://www.ncbi.nlm.nih.gov/pubmed/21057872
http://dx.doi.org/10.1002/cite.201200135
http://dx.doi.org/10.1016/j.talanta.2013.04.054
http://www.ncbi.nlm.nih.gov/pubmed/24148371
http://dx.doi.org/10.1007/s002160050825
http://dx.doi.org/10.1002/bit.260440205
http://www.ncbi.nlm.nih.gov/pubmed/18618682


Sensors 2018, 18, 900 25 of 26

41. Konstantinov, K.B.; Pambayun, R.; Matanguihan, R.; Yoshida, T.; Perusicn, C.M.; Hu, W.-S.
On-line monitoring of hybridoma cell growth using a laser turbidity sensor. Biotechnol. Bioeng. 1992,
40, 1337–1342. [CrossRef] [PubMed]

42. Konstantinov, K.; Chuppa, S.; Sajan, E.; Tsai, Y.; Yoon, S.; Golini, F. Real-time biomass-concentration
monitoring in animal-cell cultures. Trends Biotechnol. 1994, 12, 324–333. [CrossRef]

43. Cho, Y.N.; Chang, Y.K. On-line measurement and control of cell concentration of Saccharomyces cerevisiae
using a laser turbidimeter. Biotechnol. Tech. 1995, 9, 557–562. [CrossRef]

44. Kiviharju, K.; Salonen, K.; Moilanen, U.; Meskanen, E.; Leisola, M.; Eerikäinen, T. On-line biomass
measurements in bioreactor cultivations: Comparison study of two on-line probes. J. Ind. Microbiol. Biotechnol.
2007, 34, 561–566. [CrossRef] [PubMed]

45. Kroll, P.; Stelzer, I.V.; Herwig, C. Soft sensor for monitoring biomass subpopulations in mammalian cell
culture processes. Biotechnol. Lett. 2017, 39, 1667–1673. [CrossRef] [PubMed]

46. Ansorge, S.; Esteban, G.; Schmid, G. On-line monitoring of infected Sf-9 insect cell cultures by scanning
permittivity measurements and comparison with off-line biovolume measurements. Cytotechnology 2007, 55,
115–124. [CrossRef] [PubMed]

47. Opel, C.F.; Li, J.; Amanullah, A. Quantitative modeling of viable cell density, cell size,
intracellular conductivity, and membrane capacitance in batch and fed-batch CHO processes using dielectric
spectroscopy. Biotechnol. Prog. 2010, 26, 1187–1199. [CrossRef] [PubMed]

48. Cannizzaro, C.; Gügerli, R.; Marison, I.; von Stockar, U. On-line biomass monitoring of CHO perfusion
culture with scanning dielectric spectroscopy. Biotechnol. Bioeng. 2003, 84, 597–610. [CrossRef] [PubMed]

49. Párta, L.; Zalai, D.; Borbély, S.; Putics, Á. Application of dielectric spectroscopy for monitoring high cell
density in monoclonal antibody producing CHO cell cultivations. Bioprocess Biosyst. Eng. 2013, 37, 311–323.
[CrossRef] [PubMed]

50. Aehle, M.; Simutis, R.; Lubbert, A. Comparison of viable cell concentration estimation methods for a
mammalian cell cultivation process. Cytotechnology 2010, 62, 413–422. [CrossRef] [PubMed]

51. Zeiser, A.; Bédard, C.; Voyer, R.; Jardin, B.; Tom, R.; Kamen, A.A. On-line monitoring of the progress of
infection in Sf-9 insect cell cultures using relative permittivity measurements. Biotechnol. Bioeng. 1999, 63,
122–126. [CrossRef]

52. Negrete, A.; Esteban, G.; Kotin, R.M. Process optimization of large-scale production of recombinant
adeno-associated vectors using dielectric spectroscopy. Appl. Microbiol. Biotechnol. 2007, 76, 761–772.
[CrossRef] [PubMed]

53. Chang, K.H.; Park, J.-H.; Hwang-Bo, J.; Chung, D.K.; Kim, W.; Chung, I.S. Drosophila melanogaster S2
cells are more suitable for the production of recombinant COX-1 than Trichoplusia ni BTI TN-5B1-4 cells.
Biotechnol. Bioprocess Eng. 2014, 19, 803–810. [CrossRef]

54. Park, J.-H.; Hwang, I.-S.; Kim, K.-I.; Lee, J.-M.; Park, Y.-M.; Park, C.-H.; Chung, I.S. Functional expression
of recombinant human ribonuclease/angiogenin inhibitor in stably transformed Drosophila melanogaster S2
cells. Cytotechnology 2008, 57, 93–99. [CrossRef] [PubMed]

55. Lee, J.M.; Jeon, H.-B.; Sohn, B.H.; Chung, I.S. Functional expression of recombinant canstatin in stably
transformed Drosophila melanogaster S2 cells. Protein Exp. Purif. 2007, 52, 258–264. [CrossRef] [PubMed]

56. Bunch, T.A.; Grinblat, Y.; Goldstein, L.S. Characterization and use of the Drosophila metallothionein promoter
in cultured Drosophila melanogaster cells. Nucleic Acids Res. 1988, 16, 1043–1061. [CrossRef] [PubMed]

57. Lim, H.J.; Cha, H.J. Observation and modeling of induction effect on human transferrin production from
stably transfected Drosophila S2 cell culture. Enzyme Microb. Technol. 2006, 39, 208–214. [CrossRef]

58. Patel, P.; Markx, G.H. Dielectric measurement of cell death. Enzyme Microb. Technol. 2008, 43, 463–470.
[CrossRef]

59. Ansorge, S.; Esteban, G.; Schmid, G. Multifrequency permittivity measurements enable on-line monitoring
of changes in intracellular conductivity due to nutrient limitations during batch cultivations of CHO cells.
Biotechnol. Prog. 2010, 26, 272–283. [CrossRef] [PubMed]

60. Tibayrenc, P.; Preziosi-Belloy, L.; Ghommidh, C. On-line monitoring of dielectrical properties of yeast cells
during a stress-model alcoholic fermentation. Process Biochem. 2011, 46, 193–201. [CrossRef]

61. Noll, T.; Biselli, M. Dielectric spectroscopy in the cultivation of suspended and immobilized hybridoma cells.
J. Biotechnol. 1998, 63, 187–198. [CrossRef]

http://dx.doi.org/10.1002/bit.260401107
http://www.ncbi.nlm.nih.gov/pubmed/18601089
http://dx.doi.org/10.1016/0167-7799(94)90049-3
http://dx.doi.org/10.1007/BF00152443
http://dx.doi.org/10.1007/s10295-007-0233-5
http://www.ncbi.nlm.nih.gov/pubmed/17582540
http://dx.doi.org/10.1007/s10529-017-2408-0
http://www.ncbi.nlm.nih.gov/pubmed/28786039
http://dx.doi.org/10.1007/s10616-007-9093-0
http://www.ncbi.nlm.nih.gov/pubmed/19003001
http://dx.doi.org/10.1002/btpr.425
http://www.ncbi.nlm.nih.gov/pubmed/20730773
http://dx.doi.org/10.1002/bit.10809
http://www.ncbi.nlm.nih.gov/pubmed/14574694
http://dx.doi.org/10.1007/s00449-013-0998-z
http://www.ncbi.nlm.nih.gov/pubmed/23801499
http://dx.doi.org/10.1007/s10616-010-9291-z
http://www.ncbi.nlm.nih.gov/pubmed/20809261
http://dx.doi.org/10.1002/(SICI)1097-0290(19990405)63:1&lt;122::AID-BIT13&gt;3.0.CO;2-I
http://dx.doi.org/10.1007/s00253-007-1030-9
http://www.ncbi.nlm.nih.gov/pubmed/17680241
http://dx.doi.org/10.1007/s12257-014-0239-6
http://dx.doi.org/10.1007/s10616-008-9126-3
http://www.ncbi.nlm.nih.gov/pubmed/19003177
http://dx.doi.org/10.1016/j.pep.2006.11.016
http://www.ncbi.nlm.nih.gov/pubmed/17208009
http://dx.doi.org/10.1093/nar/16.3.1043
http://www.ncbi.nlm.nih.gov/pubmed/3125519
http://dx.doi.org/10.1016/j.enzmictec.2005.10.021
http://dx.doi.org/10.1016/j.enzmictec.2008.09.005
http://dx.doi.org/10.1002/btpr.347
http://www.ncbi.nlm.nih.gov/pubmed/19899122
http://dx.doi.org/10.1016/j.procbio.2010.08.007
http://dx.doi.org/10.1016/S0168-1656(98)00080-7


Sensors 2018, 18, 900 26 of 26

62. Kretzmer, G. Industrial processes with animal cells. Appl. Microbiol. Biotechnol. 2002, 59, 135–142. [CrossRef]
[PubMed]

63. Ceaglio, N.; Bollati-Fogolín, M.; Oggero, M.; Etcheverrigaray, M.; Kratje, R. High Cell Density Cultivation
Process. In Animal Cell Biotechnology In Biologics Production; De Gruyter: Berlin/Heidelberg, Germany;
Boston, MA, USA, 2014; ISBN 978-3-11-027896-5.

64. Rose, S.; Black, T.; Ramakrishnan, D. Mammalian Cell Culture. In Handbook of Industrial Cell Culture;
Humana Press: Totowa, NJ, USA, 2003; pp. 69–103. ISBN 978-1-61737-315-2.

65. Vits, H.; Hu, W.-S. Fluctuations in Continuous Mammalian Cell Bioreactors with Retention. Biotechnol. Prog.
1992, 8, 397–403. [CrossRef] [PubMed]

66. Dowd, J.E.; Jubb, A.; Kwok, K.E.; Piret, J.M. Optimization and control of perfusion cultures using a viable
cell probe and cell specific perfusion rates. Cytotechnology 2003, 42, 35–45. [CrossRef] [PubMed]

67. Ducommun, P.; Ruffieux, P.-A.; Kadouri, A.; von Stockar, U.; Marison, I.W. Monitoring of temperature
effects on animal cell metabolism in a packed bed process. Biotechnol. Bioeng. 2002, 77, 838–842. [CrossRef]
[PubMed]

68. Merten, O.W.; Palfi, G.E.; Stäheli, J.; Steiner, J. Invasive infrared sensor for the determination of the cell
number in a continuous fermentation of hybridomas. Dev. Biol. Stand. 1987, 66, 357–360. [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00253-002-0991-y
http://www.ncbi.nlm.nih.gov/pubmed/12111138
http://dx.doi.org/10.1021/bp00017a004
http://www.ncbi.nlm.nih.gov/pubmed/1369221
http://dx.doi.org/10.1023/A:1026192228471
http://www.ncbi.nlm.nih.gov/pubmed/19002926
http://dx.doi.org/10.1002/bit.10185
http://www.ncbi.nlm.nih.gov/pubmed/11835145
http://www.ncbi.nlm.nih.gov/pubmed/3582764
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	NIR Turbidity Sensor ExCell 230 and Dielectric Spectroscopy with the Incyte Sensor 
	Experimental Equipment for Cell Cultivation 
	Cell Culture and Strain Maintenance 
	Bioreactor Setup 
	Parallel Measurement of Turbidity and Permittivity in a Controlled Model Environment 
	Offline Process Analytics 

	Data Analysis 
	Calibration 
	Calculation of the Specific Growth Rate 


	Results 
	Correlation between Cell Density, Turbidity and Permittivity during Cultivation 
	Retrospective Modeling and Predictive Capabilities 
	Timing of Induction and Harvest for Batch and Fed-Batch Cultures with High Viability 

	Viability Assessment via the Parallel Measurement of Turbidity and Permittivity 
	Determining Cell Viability in a Controlled Environment 
	Case Study of Viability Assessment during Batch and Fed Batch Cultivation 
	Phase Trajectories of  and  as Alternative Sources of Process Information 

	OD880-Controlled Perfusion to Achieve a Turbidostat/Permittistat Culture with Enhanced Productivity 

	Discussion and Conclusions 
	Characterization of the ExCell 230 and the InCyte Sensors 
	Gaining Process Understanding by Online Monitoring of Cell Density, Specific Growth Rate and Viability 
	Process Intensification Using an OD880-Controlled Perfusion Process 

	
	
	References

