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Abstract: The advent of cooperative systems entails a dynamic composition of their components.
As this contrasts current, statically composed systems, new approaches for maintaining their safety
are required. In that endeavor, we propose an integration step that evaluates the failure model of
shared information in relation to an application’s fault tolerance and thereby promises maintainability
of such system’s safety. However, it also poses new requirements on failure models, which are not
fulfilled by state-of-the-art approaches. Consequently, this work presents a mathematically defined
generic failure model as well as a processing chain for automatically extracting such failure models
from empirical data. By examining data of an Sharp GP2D12 distance sensor, we show that the generic
failure model not only fulfills the predefined requirements, but also models failure characteristics
appropriately when compared to traditional techniques.

Keywords: sensor failures; generic failure modeling; dynamically composed systems; cooperative
systems; maintaining safety; cyber-physical-systems

1. Introduction

Reliable perception of environmental conditions based on (multimodal) sensors is a key feature
for autonomously operating applications. However, the mapping process of relevant information from
the real world on a digital representation is affected by external and internal disturbances. The different
characteristics of possible failures (e.g., continuous or sporadic occurrence, value disturbance with
constant, variable or correlated amplitude, absence of value) complicate the development of
safety-oriented applications. In this case, engineers have to identify all disturbances that may possibly
occur and evaluate their effect on the system’s properties. For this purpose, approaches such as Failure
Mode and Effect Analysis (FMEA) [1], Fault Tree Analysis (FTA) [2], and Event Tree Analysis (ETA) [3]
are commonly applied. Such methods leverage failure models [4] to represent a component’s failure
characteristics and thereby support the selection process of appropriate fault tolerance mechanisms
at a system’s design-time. At run-time, these tolerance mechanisms limit the effect of component
failures and guarantee the system’s compliance with its required safety level. Key to this approach is
the assumption that the system’s composition, i.e., its set of components, is determined at design-time
and does not change at run-time.
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Figure 1. Basic control loop and components of statically composed systems and dynamically composed systems.

In contrast to such statically composed systems, paradigms like Cyber-Physical-Systems [5] and
the Internet of Things [6] propose increasing the autonomy of mobile systems by sharing their
environmental information and achieving cooperative and/or collaborative behavior. The concept of
spatially separated but temporarily integrated external sensors promises an extended coverage and
reduces the requirements for local sensors. However, such dynamically composed systems (see Figure 1)
represent a paradigm shift with respect to safety management and handling. Due to the fact that
crucial information, such as failure characteristics of external sensors, are missing during the design
phase, a number of engineering tasks (sensor selection, interface adjustment) need to be shifted from
design-time to run-time. This specifically affects the safety analysis of external sensors, as the required
information of the sensor’s failure characteristics may become available solely at run-time.

Figure 2 illustrates the inevitable shift of part of the safety analysis process to an integration step,
which occurs at run-time whenever the system composition is about to change.
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Figure 2. Comparison of safety analysis in statically composed systems and dynamically composed systems.

A consequence of this shift is that an external sensor is obligated to share not only its observations,
but also its failure characteristics. This truly enables dynamically composed systems to conduct a
safety analysis at run-time, in a sensor integration step, but requires an explicit and generic model
of the sensor failure characteristics. Consequently, the following fundamental questions about such
model must be answered. What requirements are posed on failure models of external sensors to be
applicable in dynamically composed systems? Are there any suitable failure models already available?
If not, how could one construct an appropriate failure model?
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In the endeavor of answering these questions, we firstly derive and discuss requirements that
have to be fulfilled by failure models to be suitable for such an approach. Then, and considering these
requirements, in Section 3, we review the state of the art on sensor failure modeling, which allows for
concluding about the lack of appropriate failure models. Therefore, a fundamental contribution of
this paper consists in the introduction of a generic failure model fulfilling the initially identified
requirements, which we do in Section 4. Furthermore, the second fundamental contribution of
this paper is provided in Section 5, where we propose and describe a processing chain to support
the automated extraction of a parametrized failure model from raw sensor data. To evaluate this
contribution, in Section 6, we conduct experimental evaluations on raw data produced by a Sharp
GP2D12 (Sensor manufactured by Sharp Cooperation, Osaka, Japan) [7,8] infrared distance sensor.
The evaluation results allow not only to conclude that the processing chain is able to adequately
generate generic failure models, but also that the generated failure models indeed fulfill the
requirements to be applicable in dynamically composed systems. The paper is concluded in Section 7,
where the key contributions are summarized and possible future lines of work are expressed.

2. Identifying Requirements on Failure Models

In the previous section, we clarified the need for explicit and generic sensor failure models in a
dynamically composed system in order to maintain their safety when incorporating external sensors.
As this differs from the traditional use of failure models in statically composed systems, different
requirements also have to be fulfilled, which we identify in this section.

As shown in Figure 2, a general approach for safety analysis in dynamically composed systems
involves an integration step for each new external sensor whose data the application wants to use.
A safety analysis is performed in this integration step, using the explicitly made available failure model
of the external sensor. Given that the safety analysis performed in the integration step is completely
in the hands of the application developer, one should not assume that a specific safety analysis
methodology will be used. For generality, the widest possible range of safety analysis mechanisms
should be applicable, each potentially implementing different failure representations. A Generality
requirement is thus expressed as follows.

Generality: An appropriate failure model is required to have a generic approach to the
representation of failure characteristics. This shall enable an application independent
description of failure characteristics that can be transformed into an application specific
representation when needed.

The Generality requirement ensures that a failure model is defined independently of a specific
application. Further to that, for a successful deployment of the proposed scheme (Figure 2) in various
types of systems, an appropriate failure model has to be capable of representing failures of a wide
range of sensor types (1D, 2D, 3D) to satisfy the needs of both sensor manufacturers and system
engineers. Additionally, as external sensors may be virtual sensors [9] or smart sensors [10], they may
provide not only raw sensor data, but also high-level features. Consequently, they may be affected
by failures in a multitude of different ways. Due to this diversity of sensors and sensor failure types,
a Coverage requirement is thus defined as follows.

Coverage: An appropriate failure model must be capable of representing various failure
characteristics in a versatile way.

Both of these requirements (Generality and Coverage) guarantee the applicability of a failure
model to a broad set of systems and scenarios. However, for supporting its intended usage for safety
analysis within an integration step, a third requirement ensuring an unambiguous interpretation
of a failure model has to be fulfilled. A failure model transferred from an external sensor to an
application can only be correctly analyzed when its interpretation is clear. This means that the failure
characteristics described by the sensor’s manufacturer need to be extractable from the failure model
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unambiguously. Otherwise, an application could underestimate the severity of an external sensor’s
failure characteristics and compromise safety. A Clarity requirement for the representation of a failure
model is defined as follows.

Clarity: The means used in a failure model to represent failure characteristics must be such
that these characteristics will be interpreted unambiguously.

Fulfilling the previous requirements ensures that a semantically correct safety analysis of external
sensors is possible. However, being done at run-time in a specific integration step, a final requirement
related to its performance must be defined. In fact, this analysis may be subject to temporal restrictions
(e.g., in Car-2-Car [11] communication scenarios) or to computing resource restrictions (e.g., in the
context of embedded robotic systems). Depending on the application and its context, it should be
possible to perform the integration of external sensors in different ways, balancing the cost and
the detail of the safety analysis in a suitable manner. In other words, when comparing the failure
characteristics of an external sensor with the application needs, it should be possible to do this
comparison with different degrees of detail, and naturally also with different degrees of performance
and accuracy. A Comparability requirement is thus defined as follows.

Comparability: For the flexible use of a failure model when comparing failure
characteristics and application needs, the representation of failure characteristics must
allow for interpretations with various levels of granularity.

In summary, fulfilling the presented requirements ensures the applicability of a failure model to
the proposed safety analysis at run-time, in a specific integration step.

3. State of the Art on Sensor Failure Modeling

The previous section was dedicated to defining requirements on failure models ensuring their
applicability to maintain safety in dynamically composed systems. In this section, we seek to answer
the question on whether, and to which extent, existing failure models fulfill these requirements. In this
endeavor, we review approaches from the field of Fault Injection, Sensor Networks and Fault Detection
and Isolation. Additionally, we consider work from the field of Depth-Cameras to cover yet another
sensor type that is not considered in the other three fields. The results of our state-of-the-art review are
summarized in Table 1 and explained in detail along the following subsections.

Table 1. Overview on the fulfillment of the predefined requirements by individual approaches of the
state of the art on sensor failure modeling.

Research Area Reference Generality Coverage Clarity Comparability
Saraoğlu et al. [12]Fault Injection Reiter et al. [13]
Ni et al. [14]
Sharma et al. [15]
Elnahraway et al. [16]
Sheng et al. [17]

Sensor Networks

Urteaga et al. [18]
Dai et al. [19]
Balaban et al. [20]
Hereida et al. [21]

Fault Detection
and Isolation (FDI)

Zug et al. [4]
Foix et al. [22]
Koshelham et al. [23]Depth Cameras
Höbel et al. [24]

Legend: —not fulfilled, —partially fulfilled, —fulfilled.
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3.1. Failure Modeling for Fault Injection

The area of Fault Injection is mainly concerned with simulation-based analysis of a system’s
safety [13] or its dependability properties [12]. Due to its simulative approach, failure characteristics of
not only sensors, but of system components in general, have to be modeled as realistically as possible
to obtain reliable results.

One recently emerged tool in this area is called ErrorSim and was introduced by Saraoğlu et al. [12].
The tool is implemented and focused on MATLAB/Simulink (Software produced by Mathworks,
Natick, MA, USA) [25]. It enables engineers to mark components of their system model that are
either critical or can exhibit faulty behaviors. Individual failure models can be specified for these
components and used for fault injection at simulation-time. To support developers during this
specification, a number of failure types are predefined: Offset, Stuck-at, and Noise. These are motivated
by the IEC 61508 (Standard published by International Electrotechnical Commission (IEC), Geneva,
Switzerland) [26], which is a standard for developing safety-critical, electric components.

Although the approach of Saraoğlu et al. [12] allows engineers to define failure models
independently of specific applications, their tool ErrorSim is closely coupled with the MATLAB/
Simulink framework. Therefore, the Generality requirement is only partially fulfilled. The Coverage
requirement is partially fulfilled too, as the approach covers a wide range of sensor types, due to its
goal of analyzing all system components, but restricts the number of representable failure types to
three. On the other hand, this enables a clear interpretation of the specified model. As the failure types
are defined through mathematical parameters and distributions to facilitate fault injection, the Clarity
requirement is fulfilled. This also allows the Comparability requirement to be fulfilled, since the failure
model is represented by a set of mathematical parameters that allow a versatile comparison of failure
characteristics with application requirements.

Another approach, proposed by Reiter et al. [13], uses SystemC [27] and C/C++. These authors
argue for reusing already developed models of a system for a simulation-based safety analysis.
For that, an available SystemC model has to be extended with Fault Injectors and a Stressor. The Stressor
interprets an XML-based description of a failure model and coordinates the Fault Injectors that perform
the actual fault injection. In contrast with the work of Saraoğlu et al. [12], the failure model uses the
Behavioral Threat Model (BTM) [28], a Timed Automata extended with features to manipulate states and
variables of the simulated system. In this way, more complex failure characteristics can be represented
as engineers are not restricted to predefined failure types, and the Coverage requirement is fulfilled.
As a downside of this flexible approach, the interpretation of a failure model is not straightforward
due to requiring a parsing step, and the Clarity requirement is only partially fulfilled. This also causes
the Comparability requirement not to be fulfilled as the XML-based failure model prevents a direct
comparison with other failure models or with application requirements. Finally, and similarly to
Saraoğlu et al. [12], this framework is independent of a specific system or application, but is tightly
integrated with SystemC. Therefore, the Generality requirement is only partially fulfilled.

In summary, since Fault Injection aims at simulations, existing approaches are closely coupled
with simulation environments, leading to a partial fulfillment of the Generality requirement. Moreover,
the failure models are either complex and hence they fulfill the Coverage requirement but lack Clarity,
or are simple, thus satisfying Clarity but not Coverage.

3.2. Failure Modeling in Sensor Networks

Sensor Networks form another field of research requiring appropriate representations of sensor
failure characteristics. In general, a sensor network comprises a set of spatially distributed Sensor
Nodes, connected either wired or wireless, to observe certain phenomena [29]. Due to external
interferences, sensor measurements may be imprecise, leading to inaccurate observations.

Regarding such deviations, Ni et al. [14] distinguish eight categories of sensor failure types
commonly seen in sensor networks (e.g., Outlier, Drift, Noise). After providing a general, linguistic
description of these failure types, they suggest implementing corresponding detection and filtering
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algorithms using features. These might be signal properties, such as variance and mean, but also
analytic metrics, such as a signal’s gradient. Considering datasets from different chemical sensors
(ammonia, chlorophyll, CO2, chloride) and sensors observing humidity, temperature and light intensity,
Ni et al. [14] exemplarily model the listed sensor failures using the proposed features. While this
fulfills the Coverage requirement, as a wide range of sensor types and failure types are considered,
the approach lacks Clarity as no failure model is defined and, instead, individual failure types are
modeled. This also causes the Generality requirement to be partially fulfilled, since failure types are
described only in linguistic terms, while examples for modeling these are application dependent.
The Comparability requirement is also only partially fulfilled due to the lack of a definite failure model.

Sharma et al. [15] aim at analyzing the prevalence of sensor failures in datasets acquired by
real world deployments of sensor networks. They consider three failure types: Short, Noise and
Constant. Occurrences of each failure type are detected through four different failure detection
algorithms, whose effectiveness is evaluated through fault injection experiments. Due to this approach,
mathematical definitions for Noise and Short failures are presented, supporting the fulfillment
of the Clarity requirement. However, as the Constant failure type is defined solely linguistically,
the requirement is only partially fulfilled. This also causes the Comparability requirement to be
only partially fulfilled, given that only Noise and Short failure types are comparable through their
mathematical parameters. The Generality requirement is fulfilled because failure types are derived
from datasets of four different sensor networks. However, the Coverage requirement is only partially
fulfilled because only three failure types are defined.

Elnahrawy and Nath [16] are only concerned with the Noise failure type. They propose a filter
to clean noisy sensor readings of wireless sensor networks based on the Bayes’ theory. For this,
they assume that Noise is always distributed normally with zero mean and a certain variance. As this
approach aims at sensor networks in general, its failure model is application independent and thereby
fulfills the Generality requirement. However, as only Noise failures are represented and they are
restricted to a normal distribution, the Coverage requirement is not fulfilled. On the other hand,
restricting Noise to a Gaussian distribution renders the failure model interpretation fully clear and
supports its Comparability.

While Elnahrawy and Nath [16] only consider Noise failures, the approach of Sheng et al. [17]
is restricted to Outliers. For the detection of Outliers, Sheng et al. [17] provide two distance-based
definitions of Outliers. While these are general, supporting the Generality requirement, defining
the same failure type contradicts the Clarity requirement twice. Furthermore, as only Outliers are
considered, the Coverage requirement is not fulfilled. Finally, and despite the provided definitions
being mathematical, the definition of an Outlier depends on the used dataset and hence Comparability
is not fulfilled.

In contrast to both previous works, the approach of Urteaga et al. [18] aims at providing a
distributed scheme for detecting multiple failure types in data of wireless sensor networks, like Noisy
Readings, Readings Not in the sensor’s Linear Detection Range (NLDR) (i.e., outside its calibration
range), Out of Range Readings (beyond the total detection range of the sensor) or Stuck Readings.
To detect these failures, the mean and variance of a series of sensor readings are calculated and
checked with adjustable thresholds. The Generality and Coverage requirements are only partially
fulfilled because the description of sensor failures is strongly determined by the considered failure
detection scheme and because they are modeled in relation to only mean and variance values, which is
limitative. Furthermore, the failure types are defined only linguistically or implicitly through the
parameterization of the failure detection scheme. Both do not enable a clear interpretation, leaving the
Clarity requirement unfulfilled. Finally, due to the unclear definition of the failure types, Comparability
is not provided either.

In summary, since failure models considered in the field of Sensor Networks are commonly
defined in relation to specific datasets, they tend to support the Generality requirement but not the
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Coverage one. In addition, whenever linguistic definitions are used, both Clarity and Comparability are
not fulfilled.

3.3. Failure Modeling for Fault Detection and Isolation

The field of failure modeling for Fault Detection and Isolation (FDI) targets automated
and robotic systems. In this context, failure modeling facilitates the design of processing chains
encompassing specialized failure detectors and filters [3] to mitigate sensor failures and countervail
their negative effects.

A prominent approach for detecting and filtering sensor failures is generating so-called
residual-signals as the difference between observed and predicted sensor values [3]. When no failure
is present, this signal is (close to) zero. Deviations from zero indicate sensor failures. Dai et al. [19]
use this methodology to define an FDI system for a Pick-and-Place robot, while also defining the
failure types Bias, Drift and Complete Failure. For Bias and Drift, Dai et al. [19] provide mathematical
equations representing the failure types by specific parameters. However, since they consider Noise as
a separate and superimposing failure type, described through a Gaussian distribution, the Generality
of their approach is reduced. In fact, this is also why the approach proposed by Balaban et al. [20] is
considered to only partially fulfill Generality. Concerning the Coverage requirement, while Dai et al. [19]
use specific equations for each failure type, thus limiting representable failure characteristics,
Balaban et al. [20] consider a wide range of sensor types (e.g., thermocouples, resistance temperature
detectors, piezoelectric sensors) and thus fully satisfy the Coverage requirement. In contrast to this,
the mathematical definition of failure types in [19] supports the Clarity as well as the Comparability of
the failure model, while the linguistic definitions used in [20] prevent these requirements to be fulfilled.

Heredia et al. [21] present an FDI system for an autonomous helicopter, defining a sensor
failure model covering five failure types: Total sensor failure, Stuck with constant bias sensor failure,
Drift, Multiplicative-type sensor failure and Outlier. These failure types were defined based on
an examination of observations of different types of sensors, namely gyroscopes, accelerometers,
magnetic sensors and GPS sensors. Therefore, the Coverage requirement is fulfilled. In addition, since
the description of the failure model does not depend on the application to an autonomous helicopter or
to an FDI system, the Generality requirement is also fulfilled. However, the failure types are described
only linguistically leaving the Clarity requirement unfulfilled. Similarly, as the approach lacks a clear
definition of the failure model, Comparability is not provided.

Zug et al. [4] provide a detailed failure model in which 14 different failure types are defined (see
Figure 3) and categorized into Delay, Offset and Stuck-at failures. In contrast to previously presented
failure models, Zug et al. [4] define failure types that may exhibit time- and/or value-correlated
failures. The failure amplitude of such failure types might vary depending on the actual sensor value
or the operation time. Due to this detailed definition of failure types, the Coverage requirement is
fulfilled. Likewise, the failure model is defined independently of a certain application, providing
general failure types and thereby fulfilling the Generality requirement. In contrast to this, the definition
itself is linguistic, leaving the Clarity and the Comparability requirements unfulfilled.

By summarizing the approaches from the field of Fault Detection and Isolation, it becomes
apparent that a wide range of sensors and sensor failures are respected when defining failure models
(the Coverage requirement is fulfilled in most cases, see Table 1), but their definition is either implicit or
linguistic, which contradicts the Clarity requirement and prevents the Comparability requirement from
being fulfilled too.
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Figure 3. Sensor failure model defined by Zug et al. [4].

3.4. Failure Modeling for Depth Cameras

Although a wide range of sensor types is covered by the approaches that were mentioned so far,
none of them considered depth cameras. They are used in state-of-the-art robotic and autonomous
systems as they enable observing a broad area of a system’s vicinity [30]. Depending on their working
principle, depth cameras are categorized as Time-of-Flight (ToF) cameras and triangulation-based
cameras [24]. Regardless of their working principle, their measurements are impaired by sensor
failures too.

Foix et al. [22] survey ToF cameras and map sources of errors to the common failure types
Noise, Offset, and, specific to depth cameras, Illumination Artifacts [24]. In contrast to (most of) the
aforementioned approaches, the authors describe the amplitudes of failures of depth cameras to be
distance related. For instance, Offset failures caused by depth distortion or Noise failures caused by
non-uniform illumination of the scene depend on the actual distance. To represent these, Foix et al. [22]
propose multiple modeling strategies. For Offset failures, B-splines are proposed as the actual failure
magnitude follows a sinusoidal curve. Furthermore, Look-up Tables as well as polynomials with three
to six degrees are proposed. Finally, Illumination Artifacts are described to be caused, for instance,
by multiple light reception. Although the work of Foix et al. [22] aims at ToF cameras, which limits the
fulfillment of the Generality requirement, failure types common to other sensors are listed. Therefore,
Generality is partially fulfilled. Similarly, the Coverage requirement is partially fulfilled because the
overall set of considered failure types is limited. Furthermore, the failure types are solely linguistically
defined, leaving both the Clarity and the Comparability requirements unfulfilled.

In contrast to the work of Foix et al. [22], Khoshelham and Elberink [23] aim at triangulation-based
depth cameras, specifically Microsoft’s Kinect camera. They found that the camera exhibits Outlier and
Gap (invalid or missing depth measurements) failures, which can be caused by problematic lighting
conditions. In the case of Outlier failures, occlusions or shadows are possible sources too. As done
in [22], Khoshelham and Elberink [23] describe a distance related Noise in the depth measurements.
However, as a Gaussian distribution is assumed for the Noise failure, its contribution to the Coverage
requirement is limited. Furthermore, as the set of considered failure types is limited, this requirement
is only partially fulfilled. The Generality requirement is also partially fulfilled because a single
triangulation-based RGB-D camera is targeted. As the model itself is described linguistically, with the
exception of Noise, the approach lacks Clarity and Comparability.

Considering not only a specific type of depth cameras, but the most commonly used types
(triangulation- based using structured light, triangulation-based using stereo vision, time-of-flight),
Höbel et al. [24] aim not only at defining a general failure model for depth cameras, but also at using it
to apply the Validity Concept [31] to this sensor type. With this motivation, works on error sources
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of depth cameras are reviewed in order to define a failure model comprising Noise, Outlier, Offset,
Illumination Artifact and Gap failure types. On the one hand, defining the failure model with respect
to a wider range of sensor types allows the Coverage requirement to be partially fulfilled. On the other
hand, as the failure model is defined for application within the Validity Concept, it lacks Generality.
Furthermore, as the Gap and Offset failure types are solely linguistically defined, Clarity as well as
Comparability are not provided.

In summary, although the field of Depth Cameras address a specific type of sensors, defined
failure types, e.g., Noise and Offset, are common to other fields. However, most approaches of this
field take only a limited number of failure types into account. This renders the Coverage requirement
to be only partially fulfilled by all reviewed approaches. Furthermore, failure models are defined
linguistically, causing the Clarity as well as the Comparability requirement to be unfulfilled.

3.5. Outstanding Conclusions from the State-of-the-Art Review

From the presented analysis of the state of the art in sensor failure modeling, the following
outstanding conclusions can be drawn:

1. No failure model fulfilling all previously identified requirements could be found. The definition
of a failure model that fulfills all the requirements, which is done in this paper, is hence a novel
and relevant contribution for safety analysis in dynamically composed systems.

2. The Clarity requirement is only fully satisfied by a mathematically defined failure model.
In fact, as it stands out from Table 1, this requirement is fulfilled only in three cases [12,16,19],
whose common denominator is a mathematically defined failure model. Moreover, when the
Clarity requirement is fulfilled, the Comparability requirement is also fulfilled. This is because
Clarity enables the correct interpretation of a failure model, which facilitates the flexible use of a
failure model when comparing failure characteristics with application needs. As a corollary of this
conclusion, it is possible to say that, for the purpose of defining a suitable failure model for safety
analysis in dynamically composed systems, this failure model must be mathematically defined.

3. Complexity of a failure model enables Coverage but may jeopardize Clarity and Comparability. This is
observed in five cases [4,14,20,21,28], in which Coverage is achieved due to considering a complex
approach, but Clarity and Comparability are not fulfilled. Therefore, the complexity of a failure
model has to be balanced between Coverage and the requirements of Clarity and Comparability.

4. Introducing a Generic Sensor Failure Model

As observed in the previous section, no failure model fulfilling all predefined requirements
could be found in literature. Therefore, in this section, we address the need for such a failure model.
We introduce a generic failure model following the conclusions drawn from the state-of-the-art review
and aiming at fulfilling the previously defined requirements.

Figure 4 illustrates the structure of the failure model, indicating the subsections that address the
corresponding components. We start by deriving the general structure of the failure model, using the
concept of failure types to decompose a sensor’s failure characteristics (Section 4.1). A consequence is
that a failure model is nothing but a set of failure types, each represented through a set of mathematical
functions. These are introduced and discussed in detail in Section 4.2. Section 4.3 presents our approach
for representing the defined functions and Section 4.4 highlights the reasons why the proposed generic
failure model fulfills the requirements identified in Section 2.
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Figure 4. Hierarchical overview on the generic failure model.

4.1. Modeling Failure Amplitudes by Failure Types—A Decomposition

Sensors observe a continuous phenomenon eptq P R with a sampling period of Ts to produce a
discrete time series ok “ epk ¨ Tsq, where k P N0 is the discrete time index [19,20,32,33]. Accordingly,
a sensor maps the magnitude of eptq to a digital representation ok. However, disturbances interfere
with the mapping process and cause the sensor to produce impaired sensor observations ôk instead of
the theoretically correct observations ok. The differences between these values form a series of sensor
failure amplitudes f pk, okq:

f pk, okq “ ôk ´ ok. (1)

In general, a series of failure amplitudes represents a sensor’s behavior in case of a failure
and thereby is an instantiation of its failure characteristics. As this behavior can be time- or
value-correlated [4,19,32], the function value of f pk, okq depends on the sensor’s operation time k
as well as on the magnitude of the observed phenomenon ok.

The purpose of a failure model is to represent the failure characteristics of a sensor. A common
approach to that is to utilize the concept of failure types [3,4,33–35]. By applying this concept, failure
characteristics are decomposed into a set of N independent failure types, each representing a distinct
property of the overall failure characteristics. As the failure amplitudes f pk, okq are instantiations of
such failure characteristics, they can be decomposed into N failure types too:

f pk, okq “

N
ÿ

n“1

snpk, okq ¨ fnpk, okq
loooooooooomoooooooooon

n-th Failure Type (Fn).

(2)

For this decomposition, we assume that a failure type consists of two basic elements: fnpk, okq

and snpk, okq.

fnpk, okq P R: This function models the aspect of the overall failure characteristics that the
n-th failure type represents. In other words, as we decompose the initial failure amplitudes
f pk, okq into N failure types, each failure type has to contribute a series of failure amplitudes
fnpk, okq of its own. This series, however, contains only the aspect of the overall failure
characteristics that the n-th failure type represents.

snpk, okq P t0, 1u: Given that a failure type does not always contribute to the failure
amplitude, this state-function models the activity and inactivity of the failure type.
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Its value-range is limited to the set t0, 1u, where 0 indicates inactivity and 1 indicates
activity of the n-th failure type.

In summary, Equation (2) states the basic structure of our generic failure model. A sensor’s failure
characteristics, represented by its failure amplitudes f pk, okq, is modeled by a set of failure types
tF1, . . . , FNu, where N is the total number of different characteristics. Each failure type is represented
by its state-function snpk, okq P t0, 1u, describing whether the n-th failure type is active (snpk, okq “ 1)
or inactive (snpk, okq “ 0) at time k, and its failure amplitudes fnpk, okq P R, describing a distinct aspect
of a sensor’s failure characteristics. Thus, while the state-function snpk, okqmodels when the failure
type contributes to the overall failure amplitude, its failure amplitudes fnpk, okqmodels how the failure
type contributes to the overall failure amplitude.

4.2. Elements of a Failure Type

This section provides concrete solutions for constructing the two functions that represent
each failure type, fnpk, okq and snpk, okq. We firstly introduce a scheme for representing time- and
value-correlated random distributions, as this is required for both functions. Then, we focus on a
failure type’s failure amplitudes (Section 4.2.2) and, finally, we address a failure type’s state function
(Section 4.2.3).

4.2.1. Representing a Time- and Value-Correlated Random Distribution

Due to the stochastic nature of failure amplitudes and their possible time- and value-correlated
magnitudes [4,19,32], a general methodology for representing time- and value-correlated random
distributions is required.

In this endeavor, we presume that the time- and value-correlations of a random variable Y
affect only the mean µY and standard deviation σY of its underlying random distribution. Therefore,
µYpk, okq P R and σYpk, okq P R are functions of time k and value ok while the uncorrelated random
distribution is given by D´1

Y pxq, x P Up0, 1q, which is the inverse cumulative distribution function
(ICDF), also called quantile function [36]. By applying the inverse of the well-known Z-score
normalization [37], these three elements resemble a time- and value-correlated random distribution as:

ypk, okq “ σYpk, okq ¨D
´1
Y pxq ` µYpk, okq. (3)

The ICDF maps a probability x to a distribution value D´1
Y pxq for arbitrary distributions [36].

Consequently, it enables sampling the represented distribution by providing uniformly distributed
random numbers x P Up0, 1q. This property is utilized in Equation (3) to firstly sample a random
value from D´1

Y pxq and then multiply it by the time- and value-correlated standard deviation
σYpk, okq. By shifting the value using the also time- and value-correlated mean µYpk, okq, the resulting
random value ypk, okq follows a time- and value-correlated random distribution. In other words,
while the underlying random distribution is modeled by D´1

Y pxq using an ICDF, the time- and
value-correlations are captured by µYpk, okq and σYpk, okq. It should be noted that using the inverse
cumulative distribution function to represent the normalized distribution turns the model into a
generative model [38].

4.2.2. A Failure Type’s Failure Amplitudes Function

With a concept for representing time- and value-correlated random distributions in place, we now
discuss the failure amplitudes function fnpk, okq in detail.

The purpose of fnpk, okq is to represent the contribution that a failure type has on a sensor’s
failure characteristics. As mentioned before, a failure type is intended to represent only a specific,
deterministic aspect of the overall characteristics. On the other hand, failure characteristics are subject
to randomness. To account for both properties, fnpk, okq encompasses two parts: a deterministic, called
the failure pattern pnptnq [3,33,35], and a stochastic part mnpk, okq. While the deterministic part models
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the specific aspect of the failure characteristics, the stochastic part represents the randomness with
which the aspect may occur. Considering both parts, the function fnpk, okq is defined as follows:

fnpk, okq “ mnpk, okq
loooomoooon

stochastic

¨ pnptnq
loomoon

deterministic

. (4)

To illustrate how a failure type is composed of a failure pattern pnptnq and a stochastic part
mnpk, okq, we present in Figure 5 a concrete example of how the failure amplitudes function of a single
failure type can look. In this example, we ignore the state-function that models the activation and
deactivation of the failure pattern.
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Figure 5. Example of a Spike failure type with two occurrences, modeled through a failure pattern and
a stochastic function.

For the sake of the example, we name the failure type FSpike. A generic failure pattern
pnptnq P r´1, 1swith tn P r0, 1smodels a normalized shape of the failure amplitude. Consequently,
and considering the example in Figure 5, only the failure amplitudes fSpikepk, okq ‰ 0 are considered
to form pSpikeptSpikeq depicted in the bottom graph. To address the Coverage requirement, a failure
pattern is normalized in two ways. Firstly, the magnitude of the failure pattern is restricted to the
range of r´1, 1s. Therefore, pnptnq only describes the shape of the failure pattern, but not its actual
instantiations. Secondly, the length in the time domain of the pattern is expressed within the range
r0, 1s. This decouples the failure pattern’s time index tn from the overall time index k and thereby
enables modeling the length of different instantiations of this failure type separately, namely by the
state-function snpk, okq (see the next section). While pSpikeptSpikeq represents a spike-like failure pattern
in the example of Figure 5, arbitrary curves are possible in general. In the literature, a failure pattern
enables a categorization of failure types like, for instance, Outlier, Spike, Offset or Drift [4,14].

Due to its normalized representation, a failure pattern pnptnq does not directly form the failure
type’s failure amplitudes fnpk, okq but is scaled by the stochastic part mnpk, okq (see Equation (4)).
Since the scaling might be time- or value-correlated, we apply the previously introduced concept of
time- and value-correlated random distributions to represent this part. Therefore, using Equation (3) to
represent mnpk, okq and replacing it in Equation (4) yields the final definition of a failure type’s failure
amplitudes function:

fnpk, okq “
”

σnpk, okq ¨D´1
n pxq ` µnpk, okq

ı

loooooooooooooooooooomoooooooooooooooooooon

stochastic

¨ pnptnq
loomoon

deterministic

. (5)
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Considering again the example in Figure 5, the stochastic part mSpikepk, okq must allow the
representation of the two instances in the failure type. This is facilitated by the concept of
Section 4.2.1 in different ways: on the one hand, the ICDF facilitates representing a random
distribution specific to the Spike failure type (D´1

Spikepxq), which accounts for varying scaling values
in general. Therefore, the scaling value of the first occurrence is mpk, okq “ 3.0,@k P r18, 35q while
the second is mpk, okq “ 1.5,@k P r51, 75q. On the other hand, this variation could also be represented
explicitly by specifying time- and value-correlated functions for the mean µSpikepk, okq and standard
deviation σSpikepk, okq.

4.2.3. A Failure Type’s State-Function

While Equation (5) describes the failure amplitudes of a failure type when fnpk, okq ‰ 0, it is
necessary to model when the failure type is active (snpk, okq “ 1) or inactive (snpk, okq “ 0). For each
new activation of a failure type, we say that there is a new occurrence or instance of the failure
type. Commonly, the occurrence of a failure type is modeled by a static occurrence probability [12].
However, such a probability accounts only for the activation of a failure type, that is, when a failure
type’s state-function switches from 0 to 1 (snpk, okq “ 0, snpk ` 1, ok`1q “ 1). The deactivation of
a failure type is defined either statically, which contradicts the Coverage requirement, or implicitly,
which contradicts the Clarity requirement. Therefore, to fulfill both requirements, we directly model
the activation and deactivation of a failure type.

For that, we utilize the concept of (Mean) Time Between Failures (TBF) and (Mean) Time to Repair
(TtR) [39]. Traditionally, these are parameters specifying the reliability of a system. The Mean Time
Between Failures states the average time between two successive breakdowns of the system while
the Mean Time to Repair states the average time it will take to repair a system after a breakdown.
However, by deeming a sensor as a system, these concepts can be applied too. In this manner, the Time
Between Failures denotes the time between two successive occurrences of a failure type and thereby
is a measure of when it becomes active. Complementary to this, the Time to Repair translates to the
length of a single occurrence of a failure type and thereby is a measure of when it becomes deactivated.

To illustrate these concepts, we consider once again the example of the Spike failure type,
extending it in Figure 6 to show the time intervals during which the failure type is active and inactive.
In the example, the first occurrence of the failure type lasts for 17 time units, corresponding to
sSpikepk, okq “ 1,@k P r18, 35q, while the second occurrence lasts for 24 time units (k P r51, 75q).
These time intervals represent two instances of the TtR. The time intervals during which the failure
type is not active constitute instances of the TBF, in this case with lengths of 18 time units (k P r0, 18q)
and 16 time units (k P r35, 51q).
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Figure 6. State function for modeling an exemplary Spike failure type with two occurrences.

In summary, the time between two occurrences as well as the length of different occurrences
of a failure type may vary stochastically. Therefore, we utilize time- and value-correlated random
distributions (see Section 4.2.1) to represent these. In this manner, anpk, okq is defined to represent
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the TBF, that is, the activation of the n-th failure type. Likewise, dnpk, okq represents its TtR, that is,
the deactivation of the n-th failure type. Using Equation (3), they are represented as:

anpk, okq “ σapk, okq ¨D´1
a pxq ` µapk, okq, (6)

dnpk, okq “ σdpk, okq ¨D
´1
d pxq ` µdpk, okq. (7)

To define the state function snpk, okq using Equations (6) and (7), we leverage the fact that both
anpk, okq and dnpk, okq define intervals that are disjoint to each other:

snpk, okq “

#

0, k P rk2i, k2i`1q, @i P N0,
1, k P rk2i`1, k2i`2q, @i P N0,

(8)

with the starting condition of k0 “ 0 and

k j “

#

k j´1 ` anpk j´1, okj´1
q, j “ 1, 3, 5, ...,

k j´1 ` dnpk j´1, okj´1
q, j “ 2, 4, 6, ...

(9)

The subscripted time steps k j recursively define the border of the intervals in which the n-th
failure type is active or inactive. Regarding the exemplary failure type FSpike, Figure 6 depicts the
output of the state function sSpikepk, okq together with the intervals correspondingly defined by the
activation function aSpikepk, okq and deactivation function dSpikepk, okq.

4.3. Representing Failure Types by Radial Basis Function Networks

The mathematical functions introduced in the previous sections allow describing a failure type
in detail. However, representing its functions in terms of actual parameters requires the application
of an appropriate function approximation scheme. To address this problem while trying to address
the Coverage, Comparability and Clarity requirements, we propose using artificial neural networks,
specifically radial basis function networks (RBF networks) [40]. In essence, RBF networks are
mathematical functions that provide a deterministic output value for a given input value (e.g.,
y “ rb f pxq, where x and y can be vectors). Internally, matrices of parameters (associated to so-called
neurons) determine the represented functions. Given an appropriate number of neurons, RBF networks
are proven to be capable of approximating arbitrary functions with arbitrary precision on a closed
interval [41], which satisfies the Coverage requirement. The parameters encoding a desired function
within an RBF network are determined during a process called training. Moreover, the proof implies
that the level of granularity with which not only a function, but a failure type in general, is represented
can be adapted by adapting the number of neurons. In this manner, the Comparability is addressed
as well. Finally, the matrices of RBF networks can be extracted to reduce the representation of
each failure type to three parameter sets: PSA holding the parameters relevant for a failure type’s
activation function, PSD holding the parameters relevant for a failure type’s deactivation function,
and PSF holding the parameters relevant for a failure type’s failure amplitudes function. As each of
these parameters is associated with an RBF network, representing a defined function with a defined
interpretation, Clarity is supported too.

4.4. Generic Failure Model Properties

During the definition of the generic failure model, we considered the requirements identified in
Section 2. To check whether these are fulfilled, we review each of them with respect to the generic
failure model:

Generality: Asking for an application independent failure model, the Generality
requirement is fulfilled as we did not consider a specific application rather then dynamically
composed systems in general while defining the failure model.
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Clarity: To fulfill this requirement, the generic failure model represents each failure
type through a set of defined, mathematical functions, each fully described by specific
parameters. As these functions are interpretable in only one way, misinterpretation and
ambiguity is prevented.

Coverage: This requirement is fulfilled for two reasons: first, the failure model does not
limit the number of possible failure types. Thus, even complex failure characteristics can
be decomposed into several failure types. Second, the functions for representing a failure
type are approximated by RBF networks that are capable of universally approximating
functions, even in higher dimensions [41]. As a consequence, all failure characteristics
are supported.

Comparability: An observation from the state-of-the-art review in Section 3 is the close
relation between Clarity and Comparability. Due to the fulfillment of the former requirement,
the generic failure model supports the Comparability requirement in general. Furthermore,
versatile evaluation strategies of the failure model are possible. The minimal and maximal
failure amplitude represented by the model are extractable efficiently, while detailed
analyses are supported as well. Finally, the failure model can be efficiently evaluated, in
general, through the use of RBF networks. Therefore, this requirement is also fulfilled.

We note that the ability to fulfill all the previously identified requirements is also due to
an appropriate balance between the needs of individual requirements. As concluded from the
state-of-the-art review in Section 3, the complexity of a failure model may jeopardize one requirement
in favor of another. Within the generic failure model, complexity is increased by utilizing the concept of
failure types and enabling the representation of their time- and value-correlated occurrences to address
Coverage. In contrast, each of the defined functions for representing a failure type has a dedicated
meaning, improving Clarity as well as Comparability. Therefore, the complexity of the failure model is
balanced between the needs of each requirement.

5. Automatic Designation of a Failure Model from Raw Sensor Data

Modeling failure characteristics of real sensors requires finding appropriate failure types by
examining empirical observations of the sensor in question. Therefore, in this section, we propose
a processing chain for converting a series of failure amplitudes into a parameterized failure model,
doing this in an automated manner. An overview on the phases of the processing chain is given in
Figure 7.

Identifying
FailureTypes

Generalizing
Failure Types

Parameterizing
Failure Types

f pk, okq

ok

F1 F2 F

Figure 7. Processing chain for automated failure model generation.

The processing chain receives as input a series of failure amplitudes f pk, okq, calculated by
applying Equation (1) to sensor observations and the corresponding reference values ok (ground
truth). The reference values ok are also used in the processing chain. These inputs are converted
by the processing chain into a set of failure types F “ tF1, F2, . . . , FNu constituting the generated
failure model. The processing chain involves three phases. Identifying Failure Types is the first phase,
which identifies an intermediate set F1 of failure types representing the failure amplitudes f pk, okq.
We discuss this phase in Section 5.1. Then, Section 5.2 details the second phase, Generalizing Failure
Types, in which pairs of failure types in F1 that are similar to each other are identified and combined
into a single failure type. The output of this phase is the set F2, which holds all relevant failure types.
Finally, Section 5.3 discusses the last phase, Parameterizing Failure Types, which uses the gathered
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information about each failure type in F2 to train RBF networks representing each failure types’
functions, as defined in Section 4.2. In this manner, the final set of failure types F is determined.

5.1. Identifying Failure Patterns

The first phase of the processing chain exploits Equations (2) and (4), to decompose the failure
amplitudes f pk, okq received as input into a set of N1 “ |F1| failure types, as follows:

f pk, okq “

N1
ÿ

n“1

snpk, okq ¨mnpk, okq ¨ pnptnq. (10)

For each failure type, it is necessary to identify information about its occurrences (time steps at
which snpk, okq “ 1), the magnitude of each occurrence (value of mnpk, okq) and the failure type’s failure
pattern (pnptnq). This information will be passed to the next phase, along with the initial inputs of the
processing chain.

In order to obtain this information from the given failure amplitudes, we firstly make two
assumptions on the failure types to identify. The first assumption is that all occurrences of a single
failure type have the same duration, that is, the same Time to Repair. Although it is known that the
Time to Repair of a failure type may vary following a time- and value-correlated random distribution,
this assumption simplifies the process of identifying appropriate failure patterns. If two occurrences of
a failure type exist with different lengths of duration, in this phase, they will be classified as occurrences
of different failure types. The second assumption is that failure patterns are defined only in the range
of pnptnq P r0, 1sm, @tn P r0, 1s. This also simplifies identifying suitable failure patterns by restricting
the search space to a positive range.

With these assumptions in place, we propose an iterative approach that, in each iteration, does the
following:

1. Generates a pseudo random failure pattern with a duration KO;
2. Looks for occurrences of that failure pattern in the entire series of failure amplitudes, whatever

the scale of the occurrence;
3. If some occurrences are found, then a new failure type is identified and the occurrences are

associated with it;
4. The observations in each failure pattern occurrence are removed from the set of failure amplitudes,

that is, the initial failure amplitudes are reduced according to the identified occurrences of the
failure pattern;

5. The duration KO is decreased and a new iteration takes place;
6. If KO “ 1, that is, if the pattern being searched corresponds to a single observation, then it will

match all the remaining failure amplitudes, which will be grouped in a single failure type and
interpreted as Noise.

While this brief enumeration of the iteration steps provides a global perspective of the approach,
we now explain these steps in more detail.

In the first step, we generate a pseudo-random failure pattern pnptnq of a fixed duration KO.
The initial value of KO has to be provided by the user, who knows the application context and hence
the possible maximum duration of a failure pattern. Failure patterns are generated from a set of more
usually observed patterns, and they are reshaped using an evolutionary algorithm [40] while the series
of failure amplitudes is being searched (in the second step) and similar patterns are found.

To search for a pattern in the second step, the whole series of failure amplitudes is sequentially
parsed, shifting the pattern matching window of KO observations (time steps) one observation at a
time. This is illustrated in Figure 8b, where the pattern matching window with size KO (noted with
À) is shifted to the right (noted with Á). Therefore, at each step, KO observations are compared with
the failure pattern, which is scaled (the value of mnpk, okq is determined) positively and negatively to
match the corresponding failure amplitudes. This scaling, illustrated by vertical arrows, is also shown
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in Figure 8b at position À. Only if the pattern matches the failure amplitudes sufficiently, an occurrence
of the failure type (time steps at which snpk, okq “ 1) is identified. Since the pattern is shifted through
the time steps of f pk, okq, if some occurrences exist, they will be found.
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Figure 8. Steps for identifying failure types within the first phase of the processing chain. (a) initial
failure amplitudes f pk, okq; (b) step 2 for identifying failure types; (c) step 4 for identifying failure types.

If some occurrences are found, then, in the third step of the iterative approach, the information
relative to all these occurrences will be associated to a failure type so that it will be used in the second
phase of the processing chain.

In the fourth step of the iterative approach, the idea is to remove the amplitudes corresponding to
the occurrences of the failure pattern from the initial series of failure amplitudes. This way, in the next
iteration, different failure types may be identified, contributing to the remaining failure amplitudes.
However, it may be the case that the identified failure type is not significant. This happens if it includes
a very small number of occurrences or if these occurrences have a very small scaling. In this case, the
failure type is ignored and the respective occurrences are not removed from the initial series of failure
amplitudes. Figure 8c also illustrates this step. The failure patterns noted with Â in Figure 8b are
removed from the series of failure amplitudes, which becomes as shown in Figure 8c.

At the end of each iteration, the fixed duration KO, with which the evolutionary algorithm searches
for occurrences of a suitable failure type, is decreased. On the one hand, this limits the number of
iterations the algorithm is required to finish. On the other hand, the last duration, with which the
evolutionary algorithm is applied, is KO “ 1. At this point, a failure pattern pnptnq “ 1 is assumed.
As a consequence, the pattern can be scaled to match each of the remaining failure amplitudes by
setting mnpk, okq “ f pk, okq. Essentially, this means that the remaining failure amplitudes constitute
occurrences of a failure type that may be interpreted as Noise.

5.2. Generalizing Failure Types

The output of the iterative algorithm of the previous phase is F1, a set of |F1| “ N1 failure types,
each described by a failure pattern pnptnq, its occurrences (time steps k) in f pk, okq, and the scaling
value mnpk, okq of each occurrence. Given the initial assumption that the lengths of duration of all
occurrences of a single failure type are fixed to a constant value KO, some information in F1 might
be redundant. This is the case when two failure types represented separately in F1 have similar
failure patterns and only differ in the duration of their occurrences. In this case, a single failure type
could represent both by exploiting the fact that the Time to Repair may vary following a time- and
value-correlated random distribution.

Therefore, in this section, we introduce the second phase of the processing chain, Generalizing
Failure Types. It aims at identifying pairs of failure types (pFy, Fzq) that are representable by a single,
combined failure type (Fty,zu). By replacing the original failure types Fy and Fz with the combined
failure type Fty,zu, redundancy is reduced and the failure types are generalized. This generalization
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also means that the simplifying assumptions made in the first phase no longer have any significance
or impact.

In brief, an iterative approach is proposed that consists of the following. In each iteration,
every pair of failure types is combined, forming a new tentative failure type. Then, since the
combination of two failure types leads to some intrinsic loss of information, this loss is measured for
all pairs. Finally, if some combination is found implying an acceptably small loss, the original failure
types are replaced by the new one.

To combine two failure types, the occurrences of the original failure types Fy and Fz are
superimposed to determine the occurrences of the combined failure type Fty,zu. As explained in
Section 4.2, the occurrences of a failure type may vary regarding their scaling mnpk, okq, but the failure
pattern pnptnqmust be the same. Therefore, given that the failure patterns of Fy and Fz may be different,
or they may lead to different patterns when being superimposed, it is necessary to determine a new
failure pattern that resembles, as much as possible, the superimposed pattern. For this, an RBF network
is trained with all occurrences of the combined failure type Fty,zu, thus representing this new pattern.

Given the input set F1 of failure types, the generalization starts with assuming that the output set
is the same as the input one, F2 “ F1. The described combination is thus applied to all the pairs in F2.
After that, it is then necessary to measure the information loss induced by each combination, for which
we introduce εty,zu:

εty,zu “

K
ÿ

k“1

| fFty,zu ´ ftFy ,Fzu|. (11)

Here, ftFy ,Fzu denotes a series of failure amplitudes, similar to the initial series, but containing
solely the occurrences of the failure types Fy and Fz. On the other hand, the series fFty,zu is constructed
from the combined failure type, represented by the RBF network. For each time step in the series,
a value for fFty,zu is calculated from the RBF network if the pattern is active in that time step.
The resulting εty,zu will be zero if the combined failure type faithfully represents the initial pair
of failure types, that is, without loss of information. Otherwise, εty,zu will be greater than zero.

Using εty,zu, we define a stopping criteria for generalizing failure types by restricting the loss
of information to εty,zu ď E . In that manner, E is nothing but a threshold for restricting the loss
of information.

With this criteria, it is then possible to replace the original failure types by the combined failure
type. For that, the minimal assessment value minεty,zu over all pairs of failure types is determined.
In case the loss of information is acceptable, that is, minεty,zu ď E , the original failure types Fy and Fz

are removed from F2 while their combined failure type Fty,zu is appended to F2.
In summary, by applying this iterative process, the number of failure types |F2| “ N2 is reduced

by one in each iteration. Furthermore, by accepting the combined failure type only if the caused loss of
information is less than a threshold E (minεty,zu ď E ), the maximal loss of information is limited. As a
result of the generalization, the intermediate set F1 is transformed into the second intermediate set F2

with a reduced number of failure types (N2 ď N1).
It must also be noted that, after this generalization phase, the failure patterns pnptnq for each

failure type in F2 are already represented by an RBF network. Furthermore, the pattern pnptnq is now
defined in the range pnptnq P r´1, 1s, tn P r0, 1s and, as the superimposed occurrences may vary in
their duration, dnpk, okq of the combined failure type may vary too.

5.3. Parameterizing Failure Types

The previous phase produced the set F2 containing all failure types comprising the final failure
model. However, the failure types in this set are not yet fully represented by RBF networks (except
for the failure patterns pnptnq), but in terms of individual occurrences relative to each failure type.
Therefore, this phase aims at completing the parameterization of the failure types regarding their
activation (anpk, okq), deactivation (dnpk, okq) and the scaling (mnpk, okq).
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All three of these functions are represented by time- and value-correlated random distributions
(see Section 4.2.1) and each of these random distributions is modeled using an ICDF and time- and
value-correlated mean and standard deviation functions (i.e., three functions). Therefore, a total of
nine RBF networks must be trained to represent the activation, deactivation and the scaling functions.

To briefly explain which training data is necessary and how it is obtained, we consider the specific
case of the RBF network representing the standard deviation σapk, okq of the activation function anpk, okq.
In this case, the basic measure of interest is the Time Between Failures (TBF) for the failure type under
consideration. While it is possible to obtain measures of the TBF from the failure type occurrences
and calculate an overall standard deviation relative to those measures, simply doing that does not
inform us about how the standard deviation is correlated with the time k and with the value ok. What
needs to be done is to partition the time and the value space into small ranges and obtain measures
of interest (in this case the standard deviation of the TBF) within those ranges. Then, for training
the RBF network, pk, okq pairs (corresponding to the center of the considered ranges) will be used as
input, while the corresponding value of interest (the standard deviation in that range) will be used as
the output.

This reasoning has to be applied to all the time- and value-correlated functions to be represented
by RBF networks. Concerning the representation of the random distribution using an ICDF, which is
not time- or value-correlated, this can be done by considering the normalized values of interest in all
ranges and determining the corresponding inverse cumulative distribution function.

In a more generic way, the idea is to use a sliding window approach, with each window
corresponding to the mentioned time and value range. This sliding window approach is illustrated in
Figure 9 and is detailed ahead.
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Figure 9. Sliding window approach for identifying time- and value-correlations for a failure
type Fn P F2.

The approach starts by associating the occurrences of a single failure type (depicted by the black
dots in Figure 9) to the series of reference values ok (blue curve) obtained as an input to the processing
chain. From this representation, we start the sliding window approach. For that, a window is defined
as a range of Kw time steps as well as a range of Ow sensor values, corresponding to the red rectangles
in Figure 9. By shifting the window along the time axis with a step width of Ks and along the value
axis with a step width of Os, multiple subsets of the failure type’s occurrences are generated.
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The generated subsets form the base on which the training data for parameterizing the RBF
networks is calculated. Training data for supervised learning, as it is the case with RBF networks,
consists of pairs of input and target values. The input values required for the time- and value-correlated
functions (mean and standard deviation of the scaling function mnpk, okq, activation function anpk, okq

and deactivation function dnpk, okq) are already given by the sliding window approach, since the
subsets are associated with a time step k and a sensor value ok for the corresponding window.

However, the target values, that is, the intended outputs of the functions, need to be determined.
These values are dictated by the definition of a time- and value-correlated random distribution.
According to this definition, the values of the mean (µYpk, okq) and standard deviation (σYpk, okq)
are calculated using the Z-score normalization. Consequently, for the mean µapk, okq and standard
deviation σapk, okq of the activation function anpk, okq, we calculate the mean and standard deviation of
the time between two occurrences of the failure type within each subset. Likewise, the target values
of the functions µdpk, okq and σdpk, okq are calculated by considering the duration of the occurrences
within each subset, while the target values of µnpk, okq and σnpk, okq are calculated by considering the
scaling values of the occurrences within each subset (also illustrated in Figure 9).

Finally, as explained in Section 4.2.1, the remaining functions (D´1
a pxq, D´1

d pxq, D´1
n pxq)

representing the normalized random distributions are not correlated to the time k or value ok. Therefore,
training data for these functions is generated by considering the normalized values of all subsets and
determining the corresponding inverse cumulative distribution function.

By extracting this data, we can train the RBF networks to represent the individual functions of a
failure type Fn P F2. In that way, the parameter matrices of all RBF networks are determined and the
parameter sets PSA, PSD and PSF for each failure type are generated. As these form the final failure
model, the output of the processing chain is constructed.

6. Evaluation Using an Infra-Red Distance Sensor

To evaluate the introduced approach for generic failure modeling of sensor failures, and also
to evaluate the proposed processing chain for automatically generating a failure model, in this
section, we consider a real infra-red distance sensor and we conduct an extensive experimental
analysis to show the following: firstly, that the processing chain is able to extract appropriate failure
models and hence can be used as a valuable tool for automating the process of obtaining failure
characteristics of any one-dimensional sensor; secondly, that the generated failure models are able to
capture particular failure characteristics in a better way than any other approach that we know of,
fulfilling the requirements for being used in cooperative sensor-based systems.

Section 6.1 discusses the experimental setup and the generation of the failure model.
For comparison, we additionally parameterize a normal distribution, uniform distribution, inverse
cumulative distribution function, and a neural network to represent the sensor’s failure characteristics.
To assess the performance of the generated failure models and to compare them with each other,
Section 6.2 introduces two assessment measures. While both are based on the statistic of the
Kolmogorov–Smirnov (KS) hypothesis test [42], each focuses on a different aspect. The first assesses
the overall fit of a failure model with the sensor’s failure characteristics, while the second focuses on
the representation of failure amplitudes with high magnitudes. In particular, the second aspect is of
special interest when it comes to safety. We discuss the results of applying the assessment measures to
the designed failure models in subsection 6.3.

6.1. Experimental Setup

To apply our methodology to real sensor data, an appropriate data acquisition is required.
In this endeavor, we firstly describe the experimental setup using a Sharp GP2D12 [7,8] infra-red
distance sensor, for acquiring sensor observations ôk relative to reference values ok. Then, we provide
details on using the obtained data for designing the envisioned failure models. Finally, to facilitate a



Sensors 2018, 18, 925 21 of 31

subsequent comparison (in Section 6.2) between the designed failure models, we generate series of
failure amplitudes by performing Monte Carlo simulations.

6.1.1. Data Acquisition

For the envisioned evaluation, real sensor observations ôk of a Sharp GP2D12 infra-red distance
sensor and corresponding reference values ok are obtained by mounting the distance sensor on a
robotic arm and bringing it into defined distances to a wall, as illustrated in Figure 10.

Wall

Robotic Arm

ok / ôk

Sensor

Figure 10. Evaluation setup to acquire real sensor data from a Sharp GP2D12 infra-red distance sensor.

The arm was moved into five different distances (ok P t56.5, 51.5, 43, 31.5, 21u in cm), which are
measured manually to obtain the ground truth. In each of them, 50,000 observations are acquired with
a periodicity of 39 ms while not changing the sensor’s distance to the wall.

To furthermore facilitate designing and validating failure models, we use the first half of the
observations for training data (on which we can apply the processing chain) and the second half
for validation data. Therefore, a total of 125,000 observations for each, training and validation data,
are obtained.

By calculating the difference between each observation and the reference value (ground truth),
as stated in Equation (1) to the data, the failure amplitudes shown exemplarily in Figure 11 are obtained.
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Figure 11. Failure amplitudes from the Sharp GP2D12 infra-red distance sensor. (a) complete series of
failure amplitudes; (b) segment of the failure amplitudes for reference distance ok “ 31.5 cm.

While Figure 11a provides an overview on the failure amplitudes of the sensor for all the
considered reference distances (data for each distance is shown in temporal sequence but were
acquired as independent runs), Figure 11b provides a segment of failure amplitudes for the distance of
ok “ 43 cm.
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6.1.2. Designing Failure Models

The obtained failure amplitudes and reference values enable us to design the envisioned failure
models. We firstly apply the processing chain to extract a generic failure model before we discuss
the parameterization of the traditional techniques (normal distribution, uniform distribution, ICDF).
Finally, we provide details on the training of a feed-forward neural network [40]. By training it to
represent a time- and value-correlated ICDF, we enable the comparison of the generic failure model
with another approach capable of representing such correlations.

For extracting a generic failure model from the obtained training data, we configure the processing
chain as follows:

Identifying Failure Types: This phase is applied twice to facilitate identifying failure types
with different failure patterns. At first, we apply the phase on the failure amplitudes
f 1pk, okq smoothed by a median filter with a window size of Kw “ 25:

f 1pk, okq “ medianpt f pk0, ok0q|k0 P rk´
Kw

2
, k`

Kw

2
suq. (12)

In this way, constant failure patterns, exemplarily shown in Figure 11b around time step
k “ 14,463, can be identified. However, due to the smoothing constant, failure patterns in
f 1pk, okq that endure less than 50 time steps may deviate inappropriately from the actual
failure amplitudes in f pk, okq. Consequently, we fix the pattern length KO to be in the range
of r50, 180s, which means that the search will start for patterns with length KO “ 180,
down to patterns with length KO “ 50. This search results in 21 failure types being
identified, explaining 12.4% of all the failure amplitudes.

When applying this phase for the second time, we consider the unfiltered failure amplitudes
f pk, okq, from which we remove the occurrences of the failure types identified in the first
application. Furthermore, we configure the pattern length KO to be in the range of r1, 60s.
The appropriateness of this choice was confirmed later, as only failure types with KO ď 44
could be found within the second search. From this search, 25 additional failure types
with KO ą 1 were identified, explaining 63.9% of the failure amplitudes. One last failure
type, corresponding to KO “ 1, accounts for the remaining failure amplitudes (23.7%).
In summary, a total of 47 failure types were identified, which are passed to the next phase.

Generalizing Failure Types: The first parameter of this phase is the number of neurons
of the RBF networks used to model the failure pattern pnptnq. We set this parameter to 15
as the correspondingly trained networks yield acceptable error values while restricting
the complexity of the training process. The second parameter is the stopping criteria E ,
which we set to 250 cm. This limits the loss of information caused by a single combination
of failure types to 0.2% of the failure amplitudes of its corresponding original failure types.
Therefore, the combined failure type represents the original failure types almost perfectly.
With this parameterization, 29 of 47 failure types were combined, effectively reducing the
number of failure types to 18. These were evaluated to explain 98.8% of the initial failure
amplitudes, which means that the generalization caused an overall loss of information
of 1.2%.

Parameterizing Failure Types: We configure the sliding window approach used within
this phase with a window size of Kw “ 2000 and a step size of Ks “ 100. As we
have 12,500 observations available for each reference value ok, this configuration enables
identifying potential time-correlations. Likewise, to facilitate the identification of
value-correlations, we set the window size in the value domain to Ow “ 4 cm and the step
size to Os “ 1 cm. Given the measurement range of the distance sensor (ok P [10 cm, 80 cm]),
this configurations enables the identification of value-correlations in fine granularity.
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Using this configuration, the processing chain extracts from the training data a parameterized
generic failure model comprising 18 failure types.

For comparison, we parameterize a normal distribution Npµ, σq to represent the same failure
characteristics, as this is a frequently reported approach for failure characterization [12,15,16]. Using the
training data, its mean µ and standard deviation σ is calculated over all time steps k.

A more restrictive approach is to solely state the minimal and maximal failure amplitudes [43,44].
Given that in this case there is no information about the distribution of failure amplitudes (within
the minimal and maximal amplitudes), we assume a uniform distribution Upa, bq and calculate
a “ minp f pk, okqq and b “ maxp f pk, okqq using the failure amplitudes of the training data.

Similarly to both previous approaches, one can model the failure amplitudes using an inverse
cumulative distribution function (ICDF) [45]. We obtain its parameterization by integrating the
distribution function of the failure amplitudes in the training data and by inverting the result.

In contrast to our proposed approach, these approaches are established means for stochastic
modeling, but are not capable of explicitly representing time- or value-correlations. Therefore,
to provide a more fair comparison and evaluation of our approach, we train a traditional feed-forward
neural network [40] to represent a time- and value-correlated inverse cumulative distribution
function. In this endeavor, we calculate the inverse cumulative distribution function for each distance
(ok P t56.5, 51.5, 43, 31.5, 21u in cm) within the training data and associate it with the corresponding
reference value ok and the time k. By sampling the obtained ICDFs to generate training data for the
neural network, it learns not a static ICDF, but adjusts it corresponding to the provided time k and
reference value ok.

6.1.3. Monte Carlo Simulation of Failure Models

The several failure models that we constructed in the previous section are not directly comparable
with each other, that is, it is not possible to know how much better or worse they represent the failure
characteristics of the distance sensor just by comparing the parameters describing them. Therefore,
to support a comparison, in this section we sample the previously obtained failure models using Monte
Carlo simulations. The obtained series of failure amplitudes, one for each failure model, constitute
expressions of what the failure model actually represents. Therefore, they allow their comparison by
observing how closely the respective failure amplitudes resemble the ones originally obtained from the
distance sensor. They also facilitate a comparison with the validation data (i.e., the originally obtained
failure amplitudes that were not used for obtaining the failure models), which is done in Section 6.3
using the assessment measures introduced in Section 6.2.

The generation of a series of failure amplitudes using a Monte Carlo simulation is directly
supported by the generic failure model as a consequence of using inverse cumulative distribution
functions within time- and value-correlated random distributions, as expressed in Equation (3).
Three arguments are required to evaluate this equation: a uniformly distributed random value
x P Up0, 1q to evaluate the ICDF (D´1

Y pxq), a time step k, and a value ok to evaluate the mean µYpk, okq

and standard deviation σYpk, okq. While x is generated by a random number generator, time k as well
as the reference value ok can be taken from the series of validation data obtained in Section 6.1.1.
The same inputs are required for the Monte Carlo simulation of the feed-forward neural network as it
is trained to represent a time- and value-correlated ICDF.

On the other hand, since the approach representing the exact ICDF does not model the time- and
value-correlations, a Monte Carlo simulation of this approach requires only uniformly distributed
random numbers x P Up0, 1q. In a similar way, Monte Carlo simulations for the normal distribution and
the uniform distribution are facilitated by drawing random numbers from their respective standard
distributions and scaling them afterwards. In the case of the normal distributions, a random number
xn P Np0, 1q is scaled according to fNpkq “ xn ¨ σ` µ while a random number x P Up0, 1q is scaled
according to fUpkq “ x ¨ pb´ aq ` a for sampling the uniform distributions.
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The generated failure amplitudes of different failure models are shown in Figure 12 along with
the validation data (Figure 12a).
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(a) Sharp GP2D12
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(b) Generic Failure Model
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(c) Normal Distribution
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(d) Uniform Distribution
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(e) ICDF
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(f) Neural Network

Figure 12. Failure amplitudes generated by different failure models to represent the failure
characteristics of the Sharp GP2D12 infra-red distance sensor.

6.2. Introducing Assessment Measures Based on the Kolmogorov–Smirnov Statistic

For comparing the series of failure amplitudes generated in the previous section with the failure
amplitudes of the distance sensor, we introduce two assessment measures. The first one considers
the the overall match between the validation data and a failure model, in order to evaluate its
appropriateness in general. The second is defined to specifically assess the appropriateness of the
failure models with respect to safety concerns. Given that in this respect is is fundamental to ensure
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that worst case characteristics are well represented, the second measure focuses on the representation
of failure amplitudes with high magnitudes.

6.2.1. Assessing the Goodness of Fit on Average

Due to their nature, failure amplitudes are subject to randomness, which prohibits comparing two
series of failure amplitudes directly, time step by time step. Instead, we apply a stochastic approach,
the Kolmogorov–Smirnov (KS) statistic [42]. The statistic is used as a basis for the KS hypothesis test
that is commonly applied to test whether or not two random variables H and G are following the same
distribution. In that endeavor, the KS statistic compares their cumulative distribution functions DHpxq
and DGpxq by calculating the maximal differences between them:

dks “ maxx|DHpxq ´DGpxq|. (13)

As this statistic does not restrict the underlaying distributions of H or G and can be applied to
empirical data sets, it is well-suited for comparing the series of failure amplitudes in this evaluation.
However, as it considers only the maximal difference between two cumulative distribution functions,
only a global statement about the considered series of failure amplitudes is provided. In contrast,
the failure amplitudes of the distance sensor exhibit time- and value-correlations, as visible in
Figure 12a. To assess whether or not these are represented by the individual failure models, we need to
adapt the measure to generate a more local statement.

We thus apply a sliding window approach similar to the one described in Section 5.3 so that,
instead of comparing all failure amplitudes of H and G at once, we consider only failure amplitudes
within a local interval covering Kw time steps. By calculating the value of dks over the failure amplitudes
in this window, a local statement about the goodness of fit is obtained and time- or value-correlations
are considered. To successively cover all failure amplitudes, the window is shifted through time by a
step width of Ks. As this generates a value of dks for each window, another series of assessment values
is calculated. For the sake of simplicity, we sacrifice some of the locality of the statement by averaging
over all calculated values of dks. In this way, a scalar value dks1 assessing the fit of a failure model with
the validation data is calculated.

6.2.2. Assessing the Goodness of Fit for Failure Amplitudes with High Magnitudes

The previously introduced measure assesses the goodness of fit considering all failure amplitudes
within a certain time range. It therefore assesses to which degree a failure model matches the
time- and value-correlations of failure characteristics in general. However, when it comes to safety,
the representation of failure amplitudes with high magnitudes by a failure model is even more
important. To explicitly assess this property, we adapt the first measure to consider only failure
amplitudes with high magnitudes.

The idea is to filter the failure amplitudes for each window within the sliding window approach,
for which we utilize the Three Sigma Rule [46]. This rule states that 99.74% of a normally distributed
random variable’s values are within the range of rµ´ 3 ¨ σ, µ` 3 ¨ σs. Consequently, values outside this
range can be considered to have a high magnitude. Although the failure amplitudes of the considered
Sharp sensor are not normally distributed, this rule still provides appropriate criteria for deciding
whether or not failure amplitudes have a high magnitude, at least for the purpose of the intended
evaluation. Nevertheless, we relax this criteria by a factor of 2, meaning that a higher number of
high failure amplitudes will be considered for the KS statistic and hence the assessment will be more
encompassing with respect to the intended safety-related purpose. We also use the sliding window
approach to produce a series of assessment values, which we average to obtain the final value of dks2 .

With both measures in place, we can assess the goodness of fit of the designed failure models
regarding the validation data. Furthermore, by comparing the assessment values between the different
failure models, a comparison between them is facilitated.
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6.3. Results

To calculate the proposed assessment values for the designed failure models, the underlying
sliding window approach needs to be parameterized regarding its window size Kw and step size
Ks. As the validation data comprises 12,500 observations for each reference value ok, a window
size of Kw “ 12,500 is appropriate. However, to show that the effect of varying window sizes is
limited and the conclusions drawn from the assessment values are therefore robust to it, we vary
the values of Kw P t1562, 3125, 6250, 12,500}. Furthermore, we set the step size to Ks “ 500,
which ensures overlapping windows while maintaining significant changes between subsequent
windows. The obtained assessment values dks1 and dks2 are listed in Table 2.

Table 2. Values of dks1
and dks2 for failure amplitudes of the Sharp sensor with varying window

sizes Kw.

Failure Model
Kw 1562 3125 6250 12,500 1562 3125 6250 12,500

Training Data 0.086 0.070 0.057 0.045 0.463 0.488 0.492 0.496
Generic 0.291 0.283 0.274 0.258 0.498 0.498 0.500 0.500
Upa, bq 0.840 0.839 0.836 0.832 0.605 0.600 0.594 0.582
Npµ, σq 0.286 0.281 0.277 0.268 0.738 0.733 0.732 0.739
ICDF 0.201 0.194 0.183 0.162 0.589 0.575 0.567 0.533

Neural Network 0.291 0.274 0.254 0.232 0.520 0.531 0.548 0.606

dks1
dks2

The considered failure models are listed row-wise while the varying window sizes Kw are listed
column-wise. Each cell holds either the assessment value dks1 (for the first four columns) or dks2 (for the
last four columns). Values close to zero indicate well-fitting failure models while higher values imply
the opposite. For reference, we also list the assessment values obtained by comparing the training data
with the validation data in the first row (white cells). Furthermore, for a visual comparison, we colored
the cells as follows. The cells associated with the generic failure model are colored blue. Cells holding
assessment values better (lower) than the corresponding value of the generic failure model are colored
green, while cells with worse (higher) assessment values are colored red. In the single case of equality,
the cell is colored yellow.

To compare the proposed generic failure model approach with the remaining ones, the failure
amplitudes presented in Figure 12 provide an important visual complement to the assessment values
dks1 and dks2 listed in Table 2. Therefore, we often refer to this figure in the following discussion.

The approach using the uniform distribution is clearly the worst one. This is because only the
minimal and maximal possible failure amplitudes are considered and hence the distribution of failure
amplitudes in between is not represented. Therefore, the distribution of the validation data is not met,
which is also shown in Figure 12d. Furthermore, in this case, no value-correlations are represented,
which can also be seen in Figure 12d. Concretely, neither the value-correlated increase of the variance
of frequently occurring failure amplitudes nor the value-correlated increase of high magnitudes of
infrequently occurring failure amplitudes are represented by the uniform distribution approach.

When comparing the generic failure model and the normal distribution approaches, dks1 values
show that they provide similar performances. However, this is only with respect to the representation
of frequently occurring failure amplitudes. In this case, the normal distribution’s mean µ and standard
deviation σ are calculated to match failure amplitudes on average, thus leading to good results. On the
other hand, the bad performance of the normal distribution approach to represent rarely occurring
failure amplitudes with high magnitudes is not only made evident by the assessment values of dks2 ,
but also by Figure 12c.

In contrast to the normal distribution approach, the approach using an ICDF represents the exact
distribution of failure amplitudes of the training data. Therefore, it achieves better assessment values
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compared to the generic failure model for the first assessment measure dks1 . However, the results
compare worse when considering the second assessment measure dks2 . This means that this approach
is not as good in representing high (and rare) failure amplitudes, which is particularly visible when
considering the smallest window size (Kw “ 1562), for which inability to represent the value-correlation
of higher failure amplitudes is exacerbated. This inability becomes apparent in Figure 12b, where it is
possible to see that failure amplitudes with high magnitudes occur unrelated to the reference value ok.

It is interesting to observe the results relative to the neural network approach, which, differently
from the ICDF approach, are supposedly able to correctly represent time- and value-correlations.
However, the values of dks2 for the neural network underline that failure amplitudes with high
magnitudes are still not represented as well as by the generic failure model. Furthermore, increasing
the window size Kw plays favorably to our approach, whose performance is almost not affected.
The performance degradation of the neural network approach for higher window sizes may be
explained by uncertainties and artifacts introduced during the training of the network, also with
relevance when considering high failure amplitudes. For instance, some deviations towards the positive
range of failure amplitudes in the beginning of ok “ 31.5, visible in Figure 12c, end up degrading
the assessment values for windows including this range. If few large windows are considered for
calculating the final assessment value (which is averaged over all windows), then a single artifact will
have a more significant impact.

When considering dks1 values, the neural network approach performs sightly better than our
approach. This indicates a better fit of frequently occurring failure amplitudes, which is underlined by
Figure 12c. Still, from a safety perspective, we believe that out approach is better as it provides almost
the same performance as the neural network with respect to dks1 assessment values, while it performs
significantly better when it comes to represent failures with high amplitudes.

Nevertheless, in both cases, it is likely that optimizing the training procedure for designing a
neural network, as well as optimizing the configuration and usage of the processing chain for extracting
a generic failure model, enables better results.

A more fundamental difference between both approaches becomes apparent when comparing
their generated series of failure amplitudes with the validation data at a detailed level, which are
shown in Figure 13.
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Figure 13. Comparing 140 time steps of failure amplitudes from the Sharp GP2D12 sensor, the generic
failure model, and the neural network. (a) validation data; (b) generic failure model; (c) neural network.

At about time step 56,690, the validation data show a small plateau before decreasing severely and
thereby forming an Outlier. A similar shape can be found within the failure amplitudes of the generic
failure model, near time step 56,770. Contrarily, the failure amplitudes of the neural network are
exhibiting Outliers, but lack the plateau before. Furthermore, while the validation data and the generic
failure model show two Outliers in sequence, as illustrated in Figure 13d,e, a similar pattern can not
be found in the data of the neural network. Although these are very particular examples, they clarify
that the generic failure model is capable of representing the time behavior of failure amplitudes using
failure pattern pnptnq, whereas the neural network solely represents their distribution.
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Finally, we can compare both approaches with respect to the requirements defined in Section 2.
As the Generality, Clarity, and Coverage requirements are fulfilled by both approaches due to their use
of neural networks and mathematical expressions, the Comparability requirement is of most interest.
With respect to the neural network, this requirement is only partially fulfilled. For comparing a failure
model, the neural network has to be sampled to either obtain an application specific representation
of the ICDF or a Monte Carlo simulation has to be performed. To obtain any further information,
an application has to apply corresponding calculations. On the other hand, the generic failure model
supports more flexible evaluations. For instance, for calculating the maximal duration of a failure type,
only the deactivation function has to be evaluated. Similarly, to determine the average scaling of a
failure type, only the mean function µpk, okq has to be evaluated. Finally, when performing a Monte
Carlo simulation on the generic failure model, not only a series of failure amplitudes is obtained,
but also detailed information about the activation, deactivation and failure amplitudes of individual
failure types is acquired. This flexibility renders the Comparability requirement to be fulfilled by the
generic failure model.

7. Conclusions

The work presented in this paper is motivated by the question on how to maintain safety in
dynamically composed systems. As an answer, we proposed an integration step to take place in the
application context, for analyzing at run-time the failure model of an external sensor with respect to the
application’s fault tolerance capacities. By rejecting or integrating the external sensor’s observations
depending on the outcome of this run-time safety analysis, the safety of dynamically composed systems
is maintained.

For applying this concept, we identified four requirements (Generality, Coverage, Clarity and
Comparability) that have to be fulfilled by appropriate failure models of external sensors. In addition,
by reviewing the state of the art on sensor failure modeling in different research areas, we showed that
no current approach meets the listed requirements.

Then, as a fundamental novel contribution of this paper, we introduced a mathematically defined,
generic failure model. It utilizes not only the concept of failure types, but also explicitly supports
representing time- and value-correlated random distributions. As the second major contribution,
we introduced a processing chain capable of automatically extracting appropriate failure models from
a series of failure amplitudes.

To validate both contributions, we used the processing chain to extract a generic failure model for
representing the failure characteristics of a Sharp GP2D12 infra-red distance sensor, which we then used
to perform a detailed comparative analysis with a set of other approaches. This comparative analysis
underlined the applicability of the approach as well as the fulfillment of the predefined requirements.

Nevertheless, the generic failure model was evaluated solely with respect to one-dimensional
failure characteristics. To confirm the fulfillment of the Coverage requirement and simultaneously
facilitate the adoption of the generic failure model, representing failure characteristics of
multidimensional sensors is required in future work. Similarly, while Comparability is given due
to the structure and composition of the proposed failure model, an empirical evaluation with respect to
a real dynamically composed system is planned. In this manner, the representation of an application’s
fault tolerance using the same methodology shall be investigated and an approach for matching it with
a failure model shall be determined. This will underline not only the fulfillment of this requirement,
but also the applicability of the proposed integration step.

Furthermore, to increase the applicability of the generic failure model to safety-critical systems in
general, the processing chain shall be extended in such a way that certain properties (e.g., completeness,
no under-estimation of failure characteristics) for extracted failure models can be guaranteed.

Besides dynamically composed systems, versatile applications of the generic failure model are
feasible. Due to its mathematical and structural definition, its interpretation is not only clear, but can
be automated too. Therefore, using it for automatically parameterizing appropriate failure detectors
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and filters facilitates a promising research direction too. This idea can be extended to the usage of the
generic failure model within approaches for online monitoring of the quality of sensor observations,
e.g., the validity concept [47].

Acknowledgments: This work was partially supported by the FCT, through the LASIGE Research Unit,
Ref. UID/CEC/00408/2013. Additionally, we thank our colleague Tino Brade who acquired and provided the
data of the Sharp GP2D12 sensor as well as Christian Speich who assisted in implementing the processing chain.

Author Contributions: Georg Jäger and Sebastian Zug conceived and designed the experiments; Georg Jäger
implemented the presented tools and carried out the data analysis; Georg Jäger, António Casimiro,
and Sebastian Zug wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Birolini, A. Reliability Engineering; Springer: Berlin, Germany, 2017.
2. Ruijters, E.; Stoelinga, M. Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools.

Comput. Sci. Rev. 2015, 15, 29–62.
3. Isermann, R. Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance; Springer Science

& Business Media: Berlin, Germany, 2006.
4. Zug, S.; Dietrich, A.; Kaiser, J. Fault Diagnosis in Robotic and Industrial Systems; St. Concept Press Ltd.:

Franklin, Australia, 2012; Chapter Fault-Handling in Networked Sensor Systems.
5. Lee, J.; Bagheri, B.; Kao, H.A. A cyber-physical systems architecture for industry 4.0-based manufacturing

systems. Manuf. Lett. 2015, 3, 18–23.
6. Whitmore, A.; Agarwal, A.; Da Xu, L. The Internet of Things—A survey of topics and trends. Inf. Syst. Front.

2015, 17, 261–274.
7. SHARP Cooperation. GP2D12 Data Sheet, 2005. Available online: http://www.sharpsma.com/webfm_

send/1203 (accessed on 5 March 2016).
8. SHARP Cooperation. GP2D12 Optoelectronic Device. Available online: https://engineering.purdue.edu/

ME588/SpecSheets/sharp_gp2d12.pdf (accessed on 12 March 2018).
9. Kabadayi, S.; Pridgen, A.; Julien, C. Virtual Sensors: Abstracting Data from Physical Sensors. In Proceedings

of the 2006 International Symposium on on World of Wireless, Mobile and Multimedia Networks,
Buffalo-Niagara Falls, NY, USA, 26–29 June 2006; IEEE Computer Society: Washington, DC, USA, 2006;
pp. 587–592.

10. Frank, R. Understanding Smart Sensors; IOP Publishing: Bristol, UK, 2000; Volume 11, p. 1830.
11. Willke, T.L.; Tientrakool, P.; Maxemchuk, N.F. A survey of inter-vehicle communication protocols and their

applications. IEEE Commun. Surv. Tutor. 2009, 11, 3–20.
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