Supporting Information

Direct Printing of Stretchable Conductive Elastomers for Capacitive Pressure Sensors

Wenguang Liu ${ }^{1}$, and Chaoyi Yan ${ }^{1,2^{*}}$
1. School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518005, P. R. China
2. College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
*E-mail: yancy@pkusz.edu.cn

Figure S1. Schematic illustration of the manufacturing process of our capillary pressure sensor. (a) Printing 1st and (b) 5th layer directly on temper glass substrate; (c) Seal the top and bottom of the adjacent conductive electrodes to form the capillary conduction channel; (d) Attach solution pool and injection tube to complete the pressure sensor structure.

Figure S2. (a) Overview of the home-build 3D printer; (b) Close-up view of printing nozzle for extrusion of conductive CNT/PDMS ink; (c) Photograph of a complete pressure sensor with solution pool and injection tube; (d-e) Photographs of printing 1st layer and 5th layer of the elastomer electrode directly on temper glass substrate; (f) Photograph of the capillary electrodes made of conductive elastomer upon stretching.

Figure S3. Photographs of the pressure sensor (a-b) without and (c-d) with external pressure. The liquid medium levels can be clearly viewed in the enlarged views.

Figure S4. The relationship between capacitance and frequency at applied pressure of $0 \mathrm{~Pa}, 30$ $\mathrm{Pa}, 90 \mathrm{~Pa}$ and 120 Pa within $1 \mathrm{KHz}-1 \mathrm{MHz}$ frequency range: (a) linear scale and (b) logarithm scale plot.
a

b

Figure S5. Bi-spiral capillary patterns as more compact designs than the serpentine capillary tubes. The overall length of the capillary tube can be extended within a limited space thus enable the detection over a larger pressure range.

