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Abstract: The United Kingdom (UK) has a significant legacy of nuclear installations to be
decommissioned over the next 100 years and a thorough characterisation is required prior to the
development of a detailed decommissioning plan. Alpha radiation detection is notoriously time
consuming and difficult to carry out due to the short range of alpha particles in air. Long-range
detection of alpha particles is therefore highly desirable and this has been attempted through the
detection of secondary effects from alpha radiation, most notably the air-radioluminescence caused
by ionisation. This paper evaluates alpha induced air radioluminescence detectors developed to date
and looks at their potential to develop a stand-off, alpha radiation detector which can be used in the
nuclear decommissioning field in daylight conditions to detect alpha contaminated materials.

Keywords: alpha detection; alpha-induced air radioluminescence; alpha imaging; nuclear
decontamination and decommissioning

1. Introduction

Since its inception in the 1940s firstly as a means to produce plutonium for weapons and later
for energy generation, the UK nuclear industry has as a consequence of operations seen radioactive
contamination of its facilities across the UK. This is an unavoidable consequence of nuclear processes
and an anticipated phenomenon. At the end of their useful life, these facilities require decommissioning
and clean up to remove hazardous substances in order that the site can be repurposed or reused.
This produces significant quantities of waste, which is forecast to reach a total of 4.7 million tonnes
over the next 100 years [1]. This waste falls into several categories depending on the type, levels,
activity, half-life, etc. of radioactivity of the waste including: very short lived waste (VSLW); very low
level waste (VLLW), low level waste (LLW), intermediate level waste (ILW) or high level waste (HLW);
and waste which does not exhibit any radioactive contamination (EW—Exempt Waste) (see Figure 1).

How the different types of waste are collected and treated differs, from the personal protective
equipment (PPE) required by personnel, to the process of collection and processing, and the storage of
the waste, all of which have associated cost implications. In general HLW is much more costly to deal
with than LLW, which is in turn more costly than uncontaminated waste. This is due to the increasing
safety precautions required with increased activity: for example lower safe exposure times for staff
meaning shorter working times, increased amounts of PPE required, pre storage decontamination and
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other treatment, greater shielding required of storage receptacles and facilities, specialist equipment
e.g., robots in areas too active for human intervention.

Figure 1. The different delineated areas show nominal waste classification according to activity level
and half-life. Half-lives range from seconds to millions of years, with ‘short lived’ considered to be less
than approximately 30 years. Reproduction of the conceptual illustration of the waste classification
scheme diagram, from: International Atomic Energy Agency, Classification of Radioactive Waste, IAEA
Safety Standards Series, No. GSG-1, IAEA, Vienna, 2009 [2]. Reproduced with permission from IAEA.

It is therefore important for financial and safety reasons that plant and equipment is correctly
characterised prior to decommissioning taking place in order that a suitable, efficient and safe plan for
the removal and storage of waste can be drawn up and implemented. As part of this characterisation
process, the identification and location of alpha radiation emitting sources is an important element.
Plutonium contaminated materials which are almost exclusively alpha emitters are widespread in
nuclear reprocessing facilities, yet these are difficult to detect by non-destructive or passive detection
methods posing a problem for characterisation efforts.

This paper looks at existing alpha particle detection methods, particularly the detection of alpha
particles through alpha-induced air-radioluminescence. It attempts to draw together the existing
research on this subject and to lay out a path to progress the understanding and capability in this area
based on the foundation of work carried out to date. The work is primarily focused on the research into
and application of alpha detection technology for nuclear decommissioning, although it is possible
that there could be applications for other areas such as nuclear safeguards and security.

2. Alpha Radiation

Alpha particles are comprised of two protons and two neutrons. They have a relatively strong
positive charge and therefore interact strongly with molecules in the air as they are emitted from
a radioactive source, transferring their energy within a range of a few centimeters depending on their
initial energy. Their atomically large mass and charge also means that they are easily stopped in solid
matter, for example by a sheet of paper or skin. Although the least penetrating form of radiation,
if ingested alpha particles cause the most internal damage relative to absorbed dose due to their high
linear energy transfer, making them hazardous to humans. Despite the biological hazard increasing
from gamma to beta to alpha radiation, there are correspondingly less detectors available, and as
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some contamination isotopes may only be alpha emitters, this makes a new way to detect alpha
more important [3].

Actinides, to which group the main isotopes found in nuclear applications belong, are primarily
alpha emitters, giving off relatively weak beta and gamma radiation, which is also of low energy.
Figure 2 shows a comparison of alpha, beta and gamma emissions from two uranium isotopes
widely found in the nuclear industry [4]. The main isotopes found in nuclear applications, which are
predominantly alpha emitters, are uranium-235, uranium-238, plutonium-238, plutonium-239 and
americium-241 [5]. Alpha emissions are more likely from trans-uranic elements, those with a greater
atomic number than uranium, for example Pu and Am, where the high atomic mass makes the isotopes
unstable. Technology available at present is less effective for characterising actinides [6], which as the
primary isotopes in nuclear applications, has implications for the nuclear industry, making advances
in alpha detection highly desirable.

Figure 2. Average decay energies of U-238 and U-235 series. Source: WISE Uranium Project [7].

Due to the short range of alpha particles, traditional detectors which require direct interaction
with the alpha particles must be used in very close proximity to a contaminated surface, around
1 cm [4]. This makes detecting alpha radiation time consuming, taking in the order of hours for
one room [8]. It also requires the use of PPE to prevent ingestion by personnel in close proximity
to alpha sources, including the danger of inhalation if disturbed, contaminated material becomes
airborne. It may also be necessary to protect against exposure to other types of radiation which may
also be present. Samples are taken from suspected areas and analyzed in a vacuum for complete
characterisation [4] which can take significant time and cost [9].

Due to these difficulties, and those in the development of direct alpha particle detectors, a new
way to detect alpha radiation is being sought which can be accomplished at a distance using
secondary effects, for example alpha-induced air-radioluminescence. In this paper the authors
review such alpha detection techniques and discuss further improvements and prospects for nuclear
decommissioning applications.

3. Alpha-Induced Air-Radioluminescence

The most prevalent method of detecting alpha radiation at a distance is through the detection
of the UV photons emitted by nitrogen after receiving energy from alpha particle emissions. After
emission from a source, an alpha particle’s energy is transferred directly and via secondary electrons,
to molecules with which they interact. When these molecules relax they may emit an Ultraviolet (UV)
photon. Although the alpha particle and the secondary electrons they generate through ionisation have
a range of only a few centimeters (depending on their energy), UV photons have a much longer mean
free path (MFP) in air than alpha particles and therefore can be detected at a much greater distance
from the source than a traditional detector would allow.

Researchers found the range of alpha particles with energy of 5.1 MeV to be 38 mm in air,
with the area of highest intensity of radioluminescence scintillation within a radius of 10 mm from the
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source [10]. Others found by simulation that the range within which the energy of the alpha particle
was transferred was approximately 5 cm for a 6.1 MeV source [8]. For a point source in space the
zone of alpha particles would be a sphere with a radius of the range of the alpha particle emissions.
For a point source on a surface this would be a hemisphere with the same radius, see Figure 3, [11,12].

Figure 3. Model of: (a) Radioluminescence photons induced by alpha particles showing the hemisphere
in which they are initially created by the alpha particles; (b) Showing the random directions in which
the photons are emitted from the hemisphere in (a) and their longer path length—Using FRED Optical
Engineering Software (Photon Engineering LLC) [11]. Reprinted with permission from the author.

The photons generated, similarly to the alpha particles themselves, form a hemispherical zone
for a point source on a surface. This has a radius of many meters due to the longer travel of photons.
The intensity of the radioluminescence decreases with an inverse square relationship to the distance
from the source (see Figure 3) [5].

Although other gasses present in air may also emit UV photons, nitrogen which is the main
constituent of air, has been proven to be the main emitter in the 300 to 400 nm wavelength range,
in which 95 percent of the radioluminescence intensity occurs [3,13]. Hence, research has been focused
on this gas in particular. The radioluminescence has a discrete spectrum as can be seen in Figure 4,
which shows the main intensity peaks of nitrogen radioluminescence and their relationship to the
2P and 1N energy states from which they arise. Some gloveboxes may be nitrogen or argon filled as
an alternative to air for operational purposes. An increase in the nitrogen concentration has been
shown to provide an increase in radioluminescence intensity, likely due to the reduction in oxygen
which quenches radioluminescence [14]. Argon may also provide a more intense radioluminescence,
though this requires further experimentation and verification.

Much of the radioluminescence seen in air and nitrogen atmospheres is within the range of solar
radiation wavelengths (see Figure 5). The intensity of daylight above approximately 300 nm is far
greater than the intensity of radioluminescence due to the presence of an alpha source. Sunlight
irradiance in 300 to 400 nm wavelength range reaches (2–8) × 10−2 W cm−2 nm−1, whereas the
brightness of the peaks of nitrogen radioluminescence are in the order of 10−10 to 10−7 W cm−2 nm−1

for sources within the 3.7 × 107 Bq activity range, and even at night the ambient light will be greater
than the radioluminescence signal [3]. This provides a challenge to the detection of alpha-induced
radioluminescence where a large background signal is present which must be removed by filtering,
working in darkness or avoiding the range of sunlight by working in the UVC wavelength range
(180–280 nm).
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Figure 4. (a) Scheme of energy states of the 2P and 1N electronic-vibration band system of N2 and N+
2 ;

(b) Nitrogen radioluminescence spectrum between 300 nm and 400 nm in dry air. The same colours are
used in (a,b) for the corresponding spectral bands. Reprinted from [13] with permission from Elsevier.

Figure 5. Comparison of the spectrum of alpha-induced photon wavelength in comparison with
the spectrum of sunlight at the surface of the earth [15,16]. Image (a) produced using data with the
permission of the author [15]; Image (b) reprinted from [16] by permission from Springer Customer
Service Centre GmbH.

Kerst et al. investigated the effect of nitrogen on radioluminescence in the UVC wavelength
range [17]. They note that although molecules in air can potentially emit light of below 300 nm, only
N2 can produce an amount which is detectable. They therefore tested a 210Po source in a N2 purged
atmosphere and found increased radioluminescence in the sub 300 nm wavelength range due to
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an increase in NO luminescence, see Figure 6. This increase in radioluminescence in the solar blind
region has implications in detection without the interference of background light if replicable in field
conditions. However, little effect has been found on the cps recorded by a UVC detector (UVTron,
Hamamatsu) when N2 was flowed over a 210Po source [18]. This may have been due to using a flow
rather than a purge.

Figure 6. Increase in radioluminescence in the 200–400 nm wavelength range using an N2 purge.
Reprinted from [17] with permission from IEEE.

In calculating the number of UV photons produced in the process of radioluminescence, several
results have been put forward, with values ranging from 20 to 400 depending on the number of
alpha particles and the energy [3,11,12,19]. Two more recent pieces of work specifically looking at
the radioluminescence yield of alpha particles, Sand et al. and Thompson et al. [19,20], were able to
correlate their findings with previous cosmic ray analysis of secondary electron radioluminescence,
which would seem to verify their results. Sand et al. concluded that there are 19 ± 3 photons per MeV
of energy released from the source. This remains linear between 0.3 MeV and 5.1 MeV. Therefore
a 5.1 MeV alpha particle would cause the emission of on average 97 photons. From their measurements
Sand et al. found the efficiency for conversion to luminescence from kinetic energy was 6.7 × 10−5

using 350 nm as a representative wavelength for all photons [19].
Thompson et al. have developed a model which as part of the Geant4 simulation software

framework is able to predict the yield of air-radioluminescence photons produced by ionising radiation
from alpha and beta radiation sources in the first negative and second positive exited states of
N2 [20]. Their results are sufficiently close to those found in experimental methods, for example
Sand et al. [19], for confidence in the predictive capabilities of the model. Thompson’s model predicted
18.9 ± 2.5 photons per MeV, whereas Sand at al detected 19 ± 3 photons per MeV, showing a strong
correlation between results from the simulation and results from observation. Thompson et al. found
that a linear correlation existed between alpha energy from sources below 5 MeV and the number of
photons produced, also in agreement with existing observations.

It can therefore be asserted with some confidence that there are approximately 19 photons
produced per MeV of alpha energy released from the source.

The energy of the photons produced is linked to their wavelengths which are in turn dependent
on the gas in which the ionisation takes place. In nitrogen this is well known and Figure 6 shows the
peaks for a nitrogen atmosphere. This is similar to air, where nitrogen is the main component, although
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oxygen quenches some of the nitrogen radioluminescence, as can be seen by the difference between air
and an N2 flush.

Other atmospheres have also been tested. For example Grum et al. in research into corona
discharge devices identified the emission spectra of corona discharges in nitrogen, helium and air [21].
In a nitrogen atmosphere, they found that in the UVC range it is:

h′∑u +n → X, (1)

Mechanism that is responsible for the emissions, rather than:

C3πu → B3πg, (2)

which is the primary mechanism above 300 nm. Below 300 nm they also identified additional lines in
the air spectrum that are not in the N2 spectrum, possibly from contaminants or CO2. In helium the
spectrum below 300 nm shows only a weak emission at a wavelength of 249 nm. However, it shows
a strong signal at 389 nm, whereas nitrogen shows strong signals at 358 and 337 nm, and medium
strong at 316 nm. If a gaseous atmosphere is to be used to enhance the radioluminescence signal,
it would therefore appear that N2 would be more beneficial than helium.

Thompson et al., alongside developing a model of radioluminescence yield, also investigated
the distribution of photons from alpha and beta sources using their simulation [20]. They assert
that an alpha source would be easier to locate due to the increased intensity of photons closer to
the alpha source. Figures 7–9 show how the intensity of photons vary for three different sources,
the first (Figure 7) being a 5.48 MeV 241Am alpha source of simulated 1 kBq, the other two being
primarily beta sources. Although in isolation it would appear that each provide a clear indication of the
source location, if considered in a mixed radiation environment where there may be several ionising
radiation emitters due to contamination, it becomes clear that the isolation of an individual area of
contamination may be more easily accomplished for alpha emitting radioactive sources. Thompson et
al. suggest that by measuring the size of the corona it might be possible to estimate the energy of the
alpha emission which may provide a means to identify the source material, although the difficulty of
isotope identification is discussed later.

Figure 7. Number of photons emitted per mm2 attributed to the 337 nm emission in a 200 × 200 mm
area as observed from above a 241Am source dispersed over a 2 cm radius circle on an aluminium
surface. The ticks give the x and y positions in mm. Reprinted from [20] with permission from Elsevier.
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Figure 8. Number of photons emitted per mm2 attributed to the 337 nm emission in a 500 × 500 mm
area as observed from above a 60Co source dispersed over a 2 cm radius circle on an aluminium surface.
The ticks give the x and y positions in mm. Reprinted from [20] with permission from Elsevier.

Figure 9. Number of photons emitted per mm2 attributed to the 337 nm emission in a 500 × 500 mm
area as observed from above a P-32 source dispersed over a 2 cm radius circle on an aluminium surface.
The ticks give the x and y positions in mm. Reprinted from [20] with permission from Elsevier.

It can therefore be seen from the research carried out to date that there are approximately
19 photons produced per alpha emission, 95 percent of which are in the 300–400 nm wavelength
range, which is within the solar radiation spectrum at the surface of the earth. The flight of an alpha
particle depending on energy is approximately 35–50 mm. Within 10 mm of the source will be the
greatest intensity of radioluminescence, with the photons traveling many meters in a spherical or
hemispherical pattern, depending on the source geometry.
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4. Advantages and Drawbacks of Using Radioluminescence

There are several benefits to detecting alpha particle emissions via radioluminescence from
ionisation. The main benefit is that detection can be carried out with a greater distance between the
source and the detector, reducing detection costs, time and risk to personnel, enabling automated or
manual scanning. Photons have a much greater mean free path than alpha particles. In comparison to
the 50 mm or so MFP of alpha particles themselves, the induced photons can travel 1 km at 200 nm and
10 km at 280 nm in typical atmospheric conditions [22]. As the photon flux drops off with an inverse
square law relationship, the further away from the source that the detector is placed, the more difficult
it is to detect the source due to the reduction in signal strength. As UV photons will pass through
certain translucent materials detection of alpha contamination can be carried out without breaching
containment in instances such as glove boxes or sealed sample bags [4] although modification may be
required by the addition of suitable materials.

The radioluminescence phenomenon will always be seen when alpha contamination occurs,
and so can be used in all situations. Due to the distribution and reflection of photons, it also does not
depend on a line of sight to the alpha source. For example the ‘glow’ may be visible behind an item in
a glovebox. This glow can also be imaged and overlaid on a photo of the area in question, which gives
a pictorial view of the contamination well suited to analysis by personnel who can then ‘see’ where
the contamination is. This image could be analysed for intensity to provide numerical data as well as
an image.

Due to the short range of the alpha particles, the photon emissions are relatively local to the
source allowing accurate location of the contamination. This also allows differentiation between alpha
and other forms of ionising radiation, which occur over a longer range and therefore cause less intense
radioluminescence [12]. Researchers found that the ratio of intensities between alpha, beta and gamma
induced radioluminescence were 1:10−8:10−10 respectively, allowing the much greater intensity of
alpha radioluminescence to be detected in the presence of other radiation sources [3].

Although theoretically desirable, there are also considerable difficulties with using the
radioluminescence approach. The main issue that needs to be overcome is separating the alpha-induced
air-radioluminescence from background UV radiation, i.e., sunlight or background lighting. Although
the nitrogen radioluminescence has a distinct spectrum, see Figure 4, the main peaks of this spectrum
are in the UVA and UVB bands of light (UVA 315–400 nm, UVB 280–315 nm wavelengths) (see Figure 5).
Therefore, background light can strongly affect the ability of detectors to identify the relatively weak
signal produced by alpha emissions within these wavelength ranges. This inhibits and restricts the use
of many of the detectors trialed to date to darkness or carefully controlled lighting conditions, which is
unfeasible for most practical decommissioning purposes where a wide range of different environments
will be encountered.

UV radiation from the sun in the wavelength range of 200 to 280 nm, known as UVC, is absorbed
in the atmosphere by oxygen and ozone [23] therefore there is little background at the earth’s surface
in this wavelength range from natural light. Fluorescent lighting also emits very little UV light as this
cannot be seen by the human eye and is therefore unwanted. Some fluorescent lamps may emit UVC
at 254 nm which is the wavelength at which mercury fluoresces, as this is the mechanism through
with fluorescent tubes operate [24]. So there is likely to be some background UV from interior lighting,
but little of this will be in the UVC wavelength range for a properly operating lighting system.

Due to the low intensity of the UV radiation from the nitrogen radioluminescence, a high
signal-to-noise ratio is required in order to differentiate the signal from any background, and long
collection times are needed, in the order of minutes to hours, to reliably detect the signal. Conversion
efficiency is the ratio of the energy of the particle transferred to the air during ionisation and the
energy converted to radioluminescence. Conversion efficiency figures for the generation of air
radioluminescence vary between 1 × 10−5 [3] to 6.7 × 10−5 [18]; 1.5 × 10−5 has been used as
a conservative estimate in other work [12].
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There are also issues with calculating the exact yield of this radioluminescence. Energy lost to the
air has been used to calculate the yield, but due to internal absorption of the source and the complex
mechanism of ionisation, it is not always possible to predict yield from a specific isotope via energy
lost. As the nature of the radioluminescence does not depend on the isotope emitting the alpha particle,
but depends on the energy levels of the gas atmosphere, this makes isotope identification at best
complex and at worst impossible using this technique.

In 2013, Roberts [22] looked at the feasibility of using alpha-induced air-radioluminescence for the
detection of radiation sources. Through a series of calculations and a number of Geant4 simulations,
it asserted that a source with 1010 decays per second at a distance of 10 m, would produce a signal of
10 s or 100 s of photons per centimetre square. To verify the presence of the signal suggested by the
calculations and simulations, experiments were carried out to detect a polonium-210 source, using
a photon counting module and bandpass filter. This verified the emission of photons in the solar
blind range by an alpha source, but did not quantify the number of photons in this wavelength range.
Although limited in its results in terms of quantifiable experimental data, this work was able to verify
the presence of UVC photons and demonstrated an ability to detect these, albeit in dark conditions
due to the photomultiplier having some ability to detect photons of above 280 nm. It concludes that it
may be feasible to use this method to detect alpha or other ionising radioactive sources, however this
would depend on the situation, and that further research would be required, including determining
the yield efficiency more accurately for this wavelength range [22].

One other consideration when trying to detect alpha induced radioluminescence photons is the
transmittance of UV photons through visible light translucent materials. This is important in both
optical elements of any detection system, for example lenses, filters and detector windows, as well as
those found in field conditions, for example glove boxes or hot cell windows. The transmittance of
a material will depend on the properties of that material and the wavelength of light trying to pass
through. All forms of translucent materials have a transmission spectrum which determines how
much of each wavelength of light is absorbed or allowed to pass through. This can be tuned by the
addition of transition metal, rare-earth ions or nano-crystals to produce band pass filters, which can be
useful in blocking out unwanted light.

Although limited in scope and the number of samples used, Lamadie et al. investigated the
transmittance of several materials [5]. They determined that 1 mm thickness of Plexiglas would have
a transmission of 91 percent relative to air, 1 mm thickness of polycarbonate would have a 92 percent
transmission relative to air and that 1 mm thickness of triplex would have a 91 percent transmittance
relative to air. However they do not take into account any specific wavelength differences. The images
they present using their detection equipment in the UV range were carried out using a 10 mm thickness
of Plexiglas, where they were able to image a source in excess of 1 MBq cm−2 at 1 m distance, closer
for less active sources. Sand et al. quote attenuation of 80 percent by Plexiglas [10]. However, they do
not specify the thickness of the Plexiglas, which they refer to simply as a ‘standard Plexiglas glovebox’.
Others have shown various successes at imaging UV photons through Plexiglas, although the images
were in the main indistinct [5,25].

In the case of in situ materials, such as glove boxes and detector windows, the attenuation of
UV photons can be a significant issue. As part of the research into a stand-off detector several of the
researchers have looked into this issue and these results are included in this review.

For full characterisation, not only the presence but also the isotope is required. Although it is
theoretically possible for the activity, or at least the emission rate, to be calculated from the intensity of
the radioluminescence signal, the wavelength of the optical photons emitted are determined by the
gas in which they occur, as opposed to the energy of the alpha particles. As yet, work has not been
undertaken on isotope identification, and hence Section 5 looks at alpha particle detectors rather than
systems which characterise the isotope.
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5. Alpha Particle Detectors

This section explores the benefits and drawbacks of traditional detectors which are commercially
available, and looks at the prototype and test detectors designed to detect and locate alpha sources
through air radioluminescence. Some novel further ideas are also presented. The detectors included
are designed to identify the location of an alpha emitter and not to characterise that source, hence
carrying out part of the characterisation required for nuclear decommissioning, but not all.

5.1. Traditional Detectors

Currently characterisation of sites in regard to alpha contamination is carried out by taking
samples which are then analysed in order that the contamination can be identified and characterised.
This process takes significant time as samples must be collected and recorded, sent to a suitable
laboratory, analysed, and the results returned in a suitable format [9,26]. Therefore it is desirable to
have a less time consuming and labour intensive process to locate and identify alpha contamination.
The detection of the alpha contamination is traditionally carried out using hand-held alpha
radiation detectors.

Although hand-held alpha radiation detectors are readily available, these are in general intended
for the immediate detection of alpha radiation for health physics purposes and not characterisation [27].
As these alpha particle detectors, which use a Geiger-Muller tube or more recently a scintillator, work
through direct interaction with alpha particles the detector-source distance must be less than that of
the range of the alpha particles [3]. This means that the detector must be positioned within a few
centimetres of the source in order for alpha radiation to be detected. The benefits of these kinds of
detectors are: fast results through the immediate detection of the presence of alpha particles (typically
within seconds); good localisation of sources through close proximity requirement; portable; readily
available; mature technology.

Although for certain detection purposes this is acceptable, there are drawbacks: proximity
to the source provides a hazard for test personnel and requires the use of PPE; detectors may
become contaminated if they inadvertently touch the source in hand-held applications; complex
plant geometries may make contamination by touch more likely and scanning harder to achieve;
time consuming to scan large areas; access issues (limiting penetrations to areas which require
characterisation); use in areas of high radioactivity (including safety of personnel, levels of PPE
required and contamination of equipment); limited collection of data not suited to isotope identification;
no associated automatic mapping of contamination onto an image or map for location purposes.

Hence, it is desirable to find a new method of alpha particle detection which: can be carried out at
a distance; is operated remotely; scanning based; completed on site; portable; and possible through
clear/translucent barriers (e.g., glove box sides or viewing windows). Therefore, a new way to detect
alpha radiation has been sought through secondary effects of alpha particle emissions.

5.2. Alpha-Induced Air Radioluminescence Detectors

Alpha-induced air radioluminescence detectors may provide a way forward in overcoming the
shortcomings of traditional detectors and there has been significant research in this area in devising
a prototype system. Table 1 shows the results of various alpha particle detection research and is
included to provide some comparison between the results of different research projects. As can be seen
from the table the differences in distances, sources, exposure times, conditions and detector methods
makes comparison of the methods and results difficult in determining the most efficient system to date,
but some broad conclusions can be made by a comparison in this manner. As of yet, these detectors
are designed to locate an alpha source with various success, but identification of the source isotope has
not as yet been achieved which would be required for full characterisation.

The remainder of Section 6 looks at this research in more detail, dividing the detectors by
technology type.
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Table 1. Summary of alpha particle detection research to date.

Authors Year Ref. Distance Time Activity
(Where Known) Source Equipment Conditions

Baschenko 2004 [3] 30 m, 3.7 × 107 Bq 239Pu
Monochromator & PMT for spectrum
Reflector & film for image

Darkness
Presence of strong gamma source

Lamadie et al. 2005 [5] 1 m, 600 s, <1 Mbq. cm−2 244Cu CCD, Fused silica objective lens Through 10 mm Plexiglas, Darkness, Field Test

10 cm, 3600 s, 30 kBq 241Am “

20 cm, 5 h, 3.88 kBq 238Pu “

Giakos 2008 [28] 25 m, two 3.7 × 107 Bq sources 239Pu Spectrometer, ICCD camera, lenses, reflectors Theoretical. Daylight. In presence
of 18.5 × 107 Bq 60Co gamma source.

Ivanov 2009 [29] 3 m, 600 s, 105 Bq 5 MeV alpha emitting, point source “ Estimate of performance in daylight

Ivanov 2011 [30] 10000 s, 5 × 104 Bq DayCor UV camera Daylight

Leybourne et al. 2010 [31] 150 m, <1 min, 5 mCi (185 MBq) 210Po PMT, Filters Field experiment

150 m 1 mCi (37 MBq) “ “ Theoretical

Sand et al. 2010 [11] 0.4 m, 1.2 kBq, 620 cps 239Pu, 241Am, 244Cm HAUVA (own design) Spectral filtering

0.4 m, 1 s, 100 kBq “ Yellow radioluminescence or white LED light

0.4 m, 1 s, 1 kBq 241Am „ ‘Selected room lighting’

0.2 m, 13 kBq „ „ Coincidence filtering

Sand et al. 2013 [32] >1 s uranium, plutonium EMCCD Darkness

Sand et al. 2015 [10] 0.5 s, 0.52 GBq Pu nitrate „ Darkness, glovebox, quartz window

30 s, 4.0 GBq Mox pellet „ „

100 s, 0.52 GBq Pu nitrate „ „

100 s, 52.79 MBq 239Pu plancette „ „

Sand et al. 2016 [16] 1 m, 10 s, 4 kBq PMT, optics, filter stack UV-free lighting

1 m, 10 s, 800 kBq „ Bright fluorescent lighting

Inrig et al. 2011 [8] 1.5 m, 10 s, <37 MBq 241Am PMT, filter, optics Artificial light (60 Hz)

Ihantola et al. 2012 [33] 0.157 m, 4200 Bq 241Am PMT, filter, optics Light tight box, nitrogen atmosphere

Ihantola et al. 2013 [4] 0.1 m, 50 Bq 241Am „ Red LED lighting

Kume et al. 2013 [34] 1 m, 30 s, 1.5 kBq 241Am PMT, lens, mirror Darkness

1 m, 20 s, 9 kBq „ LED light–centre wavelength 635 nm

1 m, 30 s, 1.5 kBq Theoretical

Crompton et al. 2017 [18] 20 mm, 6.95 MBq 210Po Solar-blind UVTron flame sensor (Hamamatsu UVTron R9533) Ordinary laboratory lighting.
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5.3. Solar-Blind Detectors

In order to address the main obstacle to detecting radioluminescence, solar-blind detectors, those
sensitive only in the UVC wavelength range, have provided the basis for prototype detector systems
shown to be operable in normal indoor lighting conditions.

In 2011 Ivanov et al. used an off-the-shelf, solar-blind, UV camera to locate alpha contamination
in daylight conditions through air radioluminescence [30]. They had estimated in 2009 that they would
be able to detect alpha radiation of 5 MeV energy with an activity between 40 and 100 Bq cm−2 with
a corresponding integration time of 600 s to 3600 s from a separation of 3 m between detector and
source [29]. The camera they used (DayCor SuperB UV, Ofil Ltd., Lawrenceville, GA, USA) is designed
to show the corona and arcing of high voltage equipment for fault diagnosis. It is ‘blind’ to UVA and
UVB (400–315 nm and 315–280 nm wavelengths respectively), and only detects UV light of less than
290 nm (UVC). This removes the interference of the stronger background light, allowing detection of
the much weaker air radioluminescence in daylight conditions.

They present an image of a 5 × 104 Bq alpha source with an integration time of 10,000 seconds
(approx. 3 h). They also present images of background spots generated by noise, as a single frame
and a sum of 7500 frames. This shows an apparently random distribution of these background spots
over time, which the researchers were able to filter out to some degree for better sensitivity. They also
presented a filtered image taken with a 500 s integration time.

Their use of cameras that are available off-the-shelf and are therefore mature technology is
beneficial in terms of the reliability. As yet no one has put forward a tested method to quantify the
intensity of the light captured by these images, however this could potentially be used to determine
the activity levels. This work shows that the approach of using solar-blind detectors in detecting air
radioluminescence is viable in addressing the issue of background UV radiation interference, although
Ivanov et al. note that there is future work to be carried out to quantify and apply their findings [30].

In 2017 Crompton et al. were able to detect the radioluminescence from a 6.95 MBq Po-210
source from 20 mm distance using a solar-blind UVTron flame sensor (UVTron R9533, Hamamatsu,
Hamamatsu City, Shizuoka Pref., 430-8587, Japan) in ordinary laboratory lighting [18]. This sensor is
designed to detect the UVC emissions from flames for fire detection purposes and is sensitive in the
180–260 nm wavelength range. The sensor was used with the manufacturer’s off-the-shelf driver board
configured to emit a pulse for each UVC photon detected. An average pulse rate of 0.3280 cps was
recorded, with a background pulse rate of 2.224 × 10–3 ± 0.7034 × 10–3 counts per second. A fused
silica window was inserted between the sensor and source to prevent alpha particles directly impacting
on the sensor. Although the distance between sensor and source is small, they assess that in this
configuration the maximum detectable distance could have been 240 mm.

Crompton et al. also tested flowing various noble gases over the source. They found that
xenon increased the cps by 52%, P-10 increased the count by 32%, neon by 26%, and krypton 23%.
Interestingly they found that nitrogen had little effect on the cps. However, they note that these
results require replication for verification, especially in light of the difference between the increase in
radioluminescence reported in a nitrogen purge (Hannuksella et al. [14] and Ihantola et al. [4]) with
the flow results presented by Crompton et al.

Although the sensor used in Crompton et al.’s research was only shown to work over a short
distance in these experiments and its ability for locating the source was not tested, they point out that
these initial experiments indicate that this sensor may be viable for stand-off alpha detection if used
with other elements in a detector system. This is due to its low background count and insensitivity
to indoor lighting conditions. Also, that using a flow of gas which could be achieved through the
deployment of a thin flexible pipe, which may be more easily provided in field conditions due to not
requiring a gas-tight enclosure and the purging of air, could enhance radioluminescence for detection
purposes. This presents a far from developed detector system, but does show a possible sensor which
could be used as a foundation for the development of such.



Sensors 2018, 18, 1015 14 of 23

Shaw et al. note the limitations of using PMTs to detect UVC photons, and explore the background
and function of new detectors in development, Geiger-mode avalanche photodiode (GM-APD)
detectors [23]. This semi-conductor based alternative may make alpha induced air radioluminescence
easier to detect than using CCD or PMT. They compared 5 different existing detection technologies,
before detailing the GM-APD detector. In their tests this shows a better quantum efficiency at
a wavelength of 270 nm (just inside the UVC range). Although their work does not include any
testing for alpha detection, this provides an alternative detector technology which may prove useful in
the detection of alpha induced radioluminescence. They also explore a number of possible applications
of this technology, including the imaging of deep-UV (UVC).

The use of UVC detectors seems to somewhat overcome the issue of background interference
from other light sources, however the low signal strength due to the smaller number of photons
emitted in this wavelength range is an issue in terms of the distance at which these may work. Others
suggest though that solar-blind detectors may not be completely ‘solar-blind’ and hence that the use of
external filters to ensure that there is no interference from longer wavelengths may still be required [23]
although these would also attenuate the signal.

5.4. UVA and UVB Cameras

Other detectors trialed to date specifically focus on the main peaks in the nitrogen
radioluminescence spectrum, which occur at wavelengths between 310 and 400 nm, as 95 percent
of the intensity falls into this range [3]. Although in this range the number of generated photons is
greatest, the intensity of UV radiation from other sources is much higher, i.e., sunlight and traditional
artificial light. Therefore, these detectors must be used in complete darkness or with artificial lighting
of specific wavelengths, even when filtering or background rejecting methods are used. This limits
their practical application.

Work using camera-based systems has mainly focused on locating alpha sources rather than
characterising them, with an overlaid image of the radioluminescence over a conventional image being
the preferred method of demonstrating the presence of an alpha emitter. This results in images where
contaminated surfaces seem to ‘glow’.

Lamadie et al. used a CCD and objective lens to detect alpha sources using radioluminescence [5].
The CCD was cooled with liquid nitrogen and was backlit, which gave it a 60 ± 5 percent quantum
efficiency (QE) in the 300 to 400 nm wavelength range. This is in comparison to Sand et al. [10] whose
EMCCD achieved a maximum QE of 38 percent in the nitrogen radioluminescence wavelength range.

They noted that the luminescence was visible in what they termed a ‘bubble’ around the source
with an approximate radius of the range of alpha particles emitted from the source, with the intensity
reducing relative to the square of the distance from the source. They found these ‘bubbles’ limited the
separation distance between sources at which the two luminescence zones could still be distinguished,
which was greater than the resolution of the equipment used, and was between 30 mm and 50 mm
depending on the energy of the alpha particles. They were also able to detect bulk contamination,
showing that internal absorption that did not fully restrict the emission of alpha particles did not
prevent detection.

They developed two equations to calculate the activity of the sample based on the signal
intensity and the number of photons per alpha emission, both of which were verified by their
experimental results.

The limitation of Lamadie et al.’s work is that it required long integration times of between
1 and 5 h and was carried out in complete darkness. It does however provide advancement in the
quantification and characterisation of the radioluminescence phenomenon.

In 2013, Sand et al. tested an EMCCD device to carry out alpha imaging in a glove box with
a quartz glass window [32]. They were able to image two mixed fuel pellets (uranium and plutonium),
with a 60 s exposure time. The experiment was most likely carried out in darkness as they cite this as
being beneficial.
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Sand et al. continued with this work in 2015 when they compared the efficacy of two low light
cameras; an electron-multiplying CCD (EMCCD) and an intensified CCD (ICCD) [10]. They tested both
the differences between the two cameras and also the effect of detecting several sources of different
activity at the same time. Their samples were of various alpha emitting materials, and activities ranged
from 106 kBq to 4.3 GBq.

Both Sand et al.’s systems are sensitive to natural light (visible and UV) and therefore tests were
carried out in near darkness. Testing was carried out in a modified glove box where one of the glove
ports had been replaced with a quartz glass window to allow a 90 percent transmittance of photons,
as compared to approximately 80 percent attenuation by standard glove box Plexiglas. Their optical
results are overlaid on a conventional image.

These images show that although the higher activity sources were detected, those emitting similar
radioluminescence intensities to the low background light were undetectable to both systems. They
were able to achieve a resolution of better than 1 cm between sources. They also found that high
intensity sources could mask lower intensity ones and suggested re-imaging after the removal of
high intensity sources to check for sources of lower intensity, using longer exposure times or reduced
background lighting. Sand et al. conclude that the ICCD gave marginally better results in the field
than the EMCCD, partially due to its greater field of view.

Pineau et al. (patent registered) put forward a proposed stand-off alpha detection system which is
broad ranging in its description, and as such all avenues of operation it describes may not necessarily
have been shown to work [35]. Their main assertion is to fill the environment containing the source
with a scintillating gas, which may contain nitrogen. As nitrogen has been shown to be the main
radioluminescence emitter in the UV range, this is consistent with other findings. This could be in
an enclosure which is placed over the area to be investigated, which will retain the scintillation gas and
has a window transparent to UV photons. However, the flow of gas used in other work [18] could be
easier to apply in the field than the need for a gas-tight enclosure to be deployed in potentially difficult
to access or contaminated areas.

Pineau et al.’s detector is described as being a CCD type detector, connected to a ST 138 type
controller. Due to the small number of photons produced, the system will integrate a number of
images, therefore increasing the detection time. They suggest using a wavelength range of 200–400 nm.
The device may also have a camera able to take a visual image over which to overlay the image of the
alpha induced photons. Due to the possible interference of light in the visual spectrum, they suggest
using the system in darkness or using filters to attenuate light outside of the UV spectrum. No results
are presented in the effectiveness of this system, however, for a patent to be applied for it may be
assumed that they were confident that this system would work and therefore that tests had been
successfully carried out.

Haslip et al. use a comparison of the alpha induced nitrogen radioluminescence signals of four
wavelengths; two wavelengths where nitrogen radioluminescence peaks, and two where it does not
which present the background signal [36]. A telescope is used to collect the signal, which is amplified
by mirrors and focused on six UV-sensitive cameras. This is achieved through the use of beam splitters
and wavelength selective filtering. Images from these 6 cameras are collated by a microprocessor
proving an aggregated image to the operator which is in almost real time. Although this system is not
able to reject daylight, it can be used at night where these is still a significant amount of background
UV radiation, or under street lighting.

In 2008 Giakos proposed a stand-off alpha detector architecture using a spectrometer and ICCD
camera, with a focusing assembly of lenses and reflectors [28]. Their calculations indicate that two
3.7 × 107 Bq 239Pu sources could be detected at 25 m, even in the presence of an 18.5 × 107 Bq 60Co
gamma source. They also suggest that the use of an active system using a Raman lidar system along
with the passive radio-luminescence detector, would not only be able to determine the presence of
a radiative source, but also indicate it’s biological hazard by determining the energy loss associated
with the detected light though the specific spectrum. The calculations are presented in the research
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paper to show how the architecture was devised, but there is no evidence that this system was tested
and therefore if it was successful or not, or any limiting factors found during any experimental trials.

5.5. UVA and UVB PMT Based Detector

Due to the ability to more easily quantify the signal intensity, other prototypes utilise a PMT
to detect the radioluminescence. In 2010 Leybourne et al. reported their prototype detector was
capable of detecting a Po-210 source (37 MBq) at 150 m distance from the detector, outdoors [31].
Using optical filtering, telescope optics for collection, and a PMT (photo-multiplier tube), they were
able to detect the presence of an alpha emitting source on the surface of any one of three, 55-gallon
drums spaced 10 m apart at approximately 150 m distance. This was achieved in less than 1 min of
data acquisition time for each source. Although not specifically stated it can be inferred from the
text that these experiments were carried out at night as there is reference to ‘heavy traffic’ and ‘other
surrounding outside illumination’ causing interference. However, even at night there is significant UV
radiation outdoors.

Leybourne et al.’s filtering was able to attenuate background UV radiation and provide
a sufficiently high signal-to-noise ratio to differentiate the relatively weak UV radioluminescence.
They also noted an inverse squared relationship between the intensity of the UV photon signal and
distance, as would be anticipated in a spherical (or hemispherical) isotropic photon emission zone
around a point source.

The result of Leybourne et al.’s work is very positive in terms of indicating that it is possible to
detect alpha emissions through air radioluminescence in the presence of significant UV background.
However there are several drawbacks and limitations to the work. A relatively crude approach was
taken for identifying the alpha source, in terms of a resolution of 10 m between sources (i.e., the distance
between the drums) and the variability of the counts which show little more than the presence of
a single or double source rather than anything about the nature of the source. It is possible that the
experiments were carried out at night, to reduce the background UV that the device was required
to reject. There is little information on the equipment specification or models used to carry out the
experiment, meaning that it could not be replicated to check the accuracy of the work. This includes
the bandpass of the filtering system. However, whilst limited this work does show that there are
approaches to this method of alpha particle detection which may prove viable in the field.

Baschenko used a monochromator and PMT in photon counting mode to determine the spectrum,
and low light sensitive film to image the source [3]. They found that the ratio of intensities between
alpha, beta and gamma induced radioluminescence were 1:10−8:10−10 respectively, allowing the much
greater intensity of alpha radioluminescence to be detected in the presence of other radiation sources.
This has two implications. The first being that this technique can be used to combat exposing personnel
to beta and gamma radiation, which may also be present within the range of traditional alpha particle
detectors. The second is that the different types of radiation do not interfere with the alpha detection,
making it suitable for mixed radiation environments normally seen within the nuclear industry.

Whilst characterising the alpha induced radioluminescence, Baschenko found that 95 percent of
this was in the 310 nm to 400 nm wavelength range and was due to the 2+ nitrogen transition system.
They calculated that there were approximately 30 UV photons emitted per alpha event, with 2.5× 10−5

of alpha particle energy being transformed to photon energy. They also assert that alpha particles may
be emitted in a cone shape with an angular distribution which is proportional to cos 8(θ), where θ is
the angle between normal to the surface and the flight of the alpha particle. Although this conclusion
is not supported by other literature which finds the emission of photons is isotropic [19] and therefore
is likely to be a misinterpretation or anomaly in the results.

Baschenko used these results to calculate a possible detector set up. From calculations of the
effectiveness of this system, they were able to determine that this would not be suitable for use out of
doors as background UV would always exceed the required level, even at night.



Sensors 2018, 18, 1015 17 of 23

Other work of Sand et al. focuses on two potential methods of detecting radioluminescence;
spectral and coincidence filtering. In 2010 Sand et al. and Hannuksela et al. tested both these
methods [11,14]. They compared background lighting to the radioluminescence signal using a beam
splitter and interference filters in a device they named Handheld Alpha UV Application (HAUVA).

Noting that cameras require relatively long integration times, Sand et al. and Hannuksela et al.’s
spectral filtering detection system uses two PMTs, which allows detection using an integration time of
approximately 1 s for a 100 kBq source at 400 mm distance from the detector. This was achieved under
artificial background lighting conditions which did not produce UV. Using a 40 nm bandpass filter,
the signal was first filtered into the peak air radioluminescence wavelength range, 300–340 nm (where
337 nm is the most intense peak of the spectrum). The signal was then split, with the background
portion being passed through a further 15 nm bandpass filter giving a 299 to 303 nm wavelength range.

Using two PMTs and a time correlated single photon counting unit Sand et al. and Hannuksela at al.
verified that all photons from a single alpha decay were emitted in one 5 ns time window, as found
in earlier work. This time period was sufficiently short to make a background count event at the
same time as an alpha induced photon improbable. Using coincidence filtering, they were able
to detect radioluminescence against background light which was 500 times more intense than the
radioluminescence. At this stage in their work, they quote a value of 400 photons per 5 MeV alpha
emission. However this is reduced in later work to 20 photons per MeV of alpha energy, more in line
with others’ findings.

Sand et al. and Hannuksela et al.’s optimised optics, designed with a large collection angle to
collect the greatest number of emitted photons, have a collection efficiency of 0.12 percent at 400 mm,
and they noted how this dropped off rapidly from 300 mm onwards, showing the importance of
distance to source. They also found a rapid drop in signal intensity when the source was moved 20 mm
to the side, giving a positive indication for source location possibilities.

By using a nitrogen-only atmosphere and a 10 kBq 241Am source, Sand et al. and Hannuksela et al.
found that the detector counts per second increased to 650 cps, from 150 cps in normal atmosphere.
They attributed this increase to the removal of the quenching effect of oxygen.

Building on their earlier work, in 2016 Sand et al. published the results of alpha induced
radioluminescence detection experiments carried out in bright lighting conditions [16]. Using the same
set up with two different equipment options, they were able to distinguish a 4 kBq source at 1 m in
10 s under UV free lighting, and 800 kBq under bright fluorescent lighting.

The general set up for Sand et al.’s experiments comprised of a telescope, utilising two lenses to
focus photons onto the eyepiece. This light passes through a filter stack before being focused onto the
window of a PMT. The PMT is used in photon counting mode to determine the intensity of this signal.
Two different filter stacks and PMTs are used. The first is a PMT with an ultra-bialkali photocathode
which is sensitive in the near UV range. The associated filter stack is sensitive at a central wavelength
of 335 nm. This was tested under yellow lighting conditions. The other set up utilises a solar blind
PMT which has a caesium-telluride photocathode, with a filter stack centred at 260 nm, which was
tested under fluorescent lighting conditions.

Sand et al. recognize the limitations of their systems, in that they are not suited to imaging due to
utilising telescope optics, and that scans are time consuming due to the narrow field of view. Due to
the differing field environments, each site would have to be surveyed in advance to determine if
these detector systems were suitable for that particular site. They also note that solar blind camera
detection methods can only be used in open spaces, however, the reasoning behind this statement is
not qualified.

Kume et al. build on the work of Lamadie et al. [5] and Chichester and Watson [12], whom they
consider to have both developed ‘convenient’ systems for stand-off alpha detection, by addressing
the issue of noise generated by a high gamma radiation background which create a low signal to
noise ratio [34]. They note that Ihantola et al. have gone some distance in noise rejection by using
time-coincidence, but that this has not completely removed the background noise generated by
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gamma-rays [4]. Their solution is an ‘alpha camera’ which utilises a lens and mirror to focus the UV
photons onto the UV detector, a PMT with a response in the range of 300–650 nm, peaking at 350 nm
(35 percent QE). Lead shielding around the PMT and mirror reduces the influence of gamma-rays on the
system. A CCD camera, also within the confines of the lead shield, provides a visual image over which
the results of the PMT can be overlaid to provide a visualisation of the alpha contamination’s location.

One limitation of Kume et al.’s work is that this detector currently works exclusively in dark
conditions. Their proposed resolution to this issue for field operations is to use a coating on the lens of
their system to filter visual light. There is no discussion on the difficulties that this may present due to
the attenuation of the UV light that is likely to occur, or to the wavelength range of the light attenuated
by the filter, or what the nature of this coating will be. In practice this may be a more significant issue
than they suggest.

Inrig et al. used a position sensitive PMT with UV filters and a series of 6 lenses to detect a
1 µCi (37 kBq) source from 1.5 m distance with a 10 s integration time [8]. This was accomplished in
a windowless room with dim lighting by using an algorithm and the known frequency of oscillation
of the electricity supply to the lighting in their experimental environment to reject any unwanted
light. They were able to image the alpha sources, although the resolution of the images was poor. This
method may be suited to internal environments without windows where the frequency of electronic
supply oscillation is known. However, it is possibly not well suited for general field operations.

In 2012 Ihantola et al. used coincident spectrometry of gamma radiation and alpha-induced
radioluminescence to enhance alpha detection in areas of high activity [33]. Radioluminescence
photons from an alpha emission trigger the operation of a gamma detector. Hence only gamma
photons which occur in the presence of alpha induced photons are detected. This ensures that the
detector is focused on the alpha emitter and not other gamma emitting sources which may produce
photons of a higher energy than the alpha emitter and so mask the alpha source. This was undertaken
not only to locate the source, but also to characterise the source and determine the isotope, which
cannot as yet be achieved with alpha radioluminescence alone. The alpha detector, comprised of
a collection lens and PMT, was able to identity a 4.2 kBq source from 157 mm away in both a nitrogen
or air atmosphere. In nitrogen the intensity of the signal was 150 times the background, in air 30 times.
The 50 mm field of view provided by their test equipment means that a very localised analysis can
take place of the alpha emitter. It is also possible to detect sources in sealed containers if the material
of these is transparent to UV radiation, where UV photons will escape, but alpha particles will be
stopped by the container.

Their experiments were carried out in the dark, and Ihantola et al. suggest the use of filters for
daylight working. Although the system worked, they conclude that the UV system was better for
locating the source and the gamma detector for identifying the isotope, and suggest the two could be
separated for better efficiency. In 2013 this work was continued using dim red LED lighting which
allowed a level of illumination sufficient for working and for imaging of the set up [4]. They note during
this work that the coincidence filtering method works better with a high gamma background and
integration times of minutes or hours. This method allows an avenue for the identification of the isotope
as the gamma emissions are more suited to this type of analysis than alpha induced radioluminescence.

There are limitations to this work of Ihantola et al. Detection of the alpha-induced
radioluminescence photon suffers from the same issues as with other detectors, primarily the
interference of environmental light sources. However, Ihantola et al. found that this coincidence
spectrometry technique is ten times faster than a conventional gamma spectrometer, and from this it
seems that their assertion that it is a step forward is not unsubstantiated.

All of the above research results confirm that it is possible to detect alpha induced
radioluminescence in a number of ways and situations, but as these require a background of no,
low or special light they are unsuitable to be used in the field at present due to the difficulties in
controlling the lighting conditions.
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5.6. Other Detector Types

Although in the main recent detectors have focused on the detection of nitrogen
radioluminescence photons, this is not the only possible secondary effect of alpha particle emissions
which could prove suitable for the detection of alpha contamination.

Sprangle et al. put forward an alternative method of stand-off radiation detection through the use
of an ionising laser and a probe beam [37]. Although their work is specifically for gamma detection,
they plan to test their concept using an alpha source to reduce the safety issues. Hence this method
may be suitable for alpha detection. Ionising radiation produces free electrons in air. These attach
themselves to oxygen molecules and form O2 ions in greater concentration to free electrons. A high
powered laser, focused close to the radiation source is used to photo-detach the negative ions, which
initiates an avalanche ionisation process. A probe beam can then be used to detect the changes in
electron density caused by the avalanche ionisation, and the presence of radioactivity determined
using measurement of the frequency modulation. The main advantage of this system is that it would
be able to detect ionising gamma radiation from distances greater than 100 m.

Sprangle et al.’s paper highlights a potential design concept for a gamma detector, which has
two drawbacks when applied to alpha detection. This is a design concept which has not as yet been
proven for gamma detection for which it was designed. In addition, an examination of the possible
feasibility of using this design for alpha detection is not presented in this paper. For example the
much shorter mean free path in air of alpha radiation in comparison to gamma radiation is likely to
produce a smaller ionisation ‘bubble’ which may present challenges in focusing the laser sufficiently
close to the alpha source without prior knowledge of its whereabouts. It may also find the materials
used for shielded windows challenging, for example in glove boxes or hot cells. However, this does
present a possible alternative method of alpha detection possibly at further distances, which may merit
further consideration.

In order to address the propagation loss at a distance from the source to the detector, Yao et al.
used a collimated beam emission from a nitrogen laser at a wavelength of 337 nm to further excite
alpha ionised air molecules from the B3π to C3π state [38]. The absorption of the energy required was
detected and from this the presence of alpha radiation was identified. This detector was successful in
detecting a 1.48 GBq source at a maximum standoff distance of 10 m. They found that the detection
signal was not sensitive to the distance between the detector and source, as it is with the photon
detector methods. In their tests they were able to determine the relative intensities between two
sources of different activities. They also note that due to the longer carrier lifetime in the B3π band
compared to the C3π band, the population of carriers in the B3π may be an indication of the intensity
of the radiation causing the excitation.

Although the work of Yao et al. was successful in identifying the presence of an alpha source its
main drawback is the required detector configuration. It requires an emitter and detector diametrically
opposite each other in line with the alpha source. This means that both sides of the alpha source need
to be accessible, which may not be possible for surface contamination, or in other hard to access areas.
It would make scanning difficult to conduct, as the detector alignment would need to be parallel to
any source, rather than perpendicular (see Figure 10). As the distance from the source to the laser or
detector has no effect on the signal it would not be possible to determine the position of the source
between the two, and direction to the source would be difficult to determine. Hence, it would be
difficult and time consuming to find the source of the alpha emissions.

Baschenko suggests a similar alternative method, using a laser of specific wavelength which
would affect air molecules already excited to a certain energy state due to alpha ionisation [3]. This is
the same as they approach of Yao et al. [38], but Baschenko aims to detect the change in the number of
photons that are emitted due to the increase in energy created by the addition of the laser energy to the
already excited nitrogen molecules, rather than changes to the laser probe signal. Baschenko has not
tested his approach and merely mentions that this may be theoretically possible, whilst noting that
there would be significant technical difficulties in using this approach.
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Figure 10. Deployment of photon v. excited state absorption detector systems.

Allander et al. developed a system for detecting the ion pairs produced by alpha particle ionisation
of the surrounding air, which they call the LRAD system (Long-Range Alpha Detector) [39]. It utilises
an air current or an electric field to transport the ion pairs to a collection grid where they are detected as
an electric current, the current being proportional to the activity and therefore allowing a measurement
of this. However, these require either that the potentially contaminated object is placed inside a chamber
where filtered air can be flowed over it to carry the ion pairs to the grid, or for the detector system to
be introduced into an existing pipe where an air flow can be used to measure any contamination inside
the pipe. Both of these have implications for the ease of use in the field, and the initial setting up of the
system, including moving and cutting into potentially contaminated materials. A third method allows
for the detector to be placed over a potentially contaminated surface (for example soil or a concrete
floor) and an electronic field be used to detect the ion pairs. The main drawback of this system is that
the detector could come into contact with contamination, thus becoming contaminated itself, and still
requires the operator to be in close proximity to the contamination to set up the device. However,
in processing samples, especially in large quantities, and for internal pipe examination, these methods
could prove superior to traditional techniques. Certainly radioluminescence would be harder to detect
within a pipe without special deployment equipment.

6. Future Prospects for Alpha Induced Radioluminescence Detection

Initial work in the detection of alpha contamination through nitrogen radioluminescence has
concentrated on the main peaks of the radioluminescence spectrum, which occur in the 300 to 400 nm
range. This leads to background UV radiation from the sun or artificial lighting interfering with
the detection of the alpha induced radioluminescence by masking its much weaker signal. Filtering
of the wavelength of photons detected allowed for the imaging of alpha sources in dark or special
background lighting conditions, but not as yet in daylight. By moving away from the UVA and UVB
range into the UVC range a possible route to overcoming this limitation becomes apparent. Although
the peaks of intensity in this band appear to be lower, there is not the competition from sunlight and
artificial light, improving the signal to noise ratio. This would potentially make detection possible on
site in nuclear installations to provide characterisation for decommissioning and other purposes.

A detailed analysis of the spectrum of UVC is required, including identification of any significant
peaks which may provide the best chance of detection. Other gasses may provide a better scintillation



Sensors 2018, 18, 1015 21 of 23

atmosphere, including in the UVC wavelength range and should be investigated. Tests carried out in
the 1960s provide some information regarding the effect on wavelength of emitted light in various gas
environments, for example, see Morse et al. [40]. However, these require further investigation to apply
them to enhancing the scintillation for specific required wavelengths.

Other beneficial future work would include the further testing of UVC/solar blind detectors
to determine their efficacy in detecting alpha induced radioluminescence. A review and testing of
currently available UVC detection technology would allow an assessment of it this could be utilsed to
develop a new UVC detector specifically for nuclear decontamination purposes.

Putting together a number of effective techniques to provide a multi-stage detector may be
the route forward. These other possible techniques include but are not limited to: data processing
algorithms, collection optics, superposition and amplification, and the use of light reactive materials.
A multi stage detector may provide a more efficient and robust detector for use in the field. Coincident
and background attenuation techniques are the subject of continuing experimentation and could be
expanded, as could active detectors of the kind as put forward by Baschenko and Yao [3,38].

Transmission through translucent materials for different wavelengths requires more investigation
for a completely suitable field detector to be produced. The limited research carried out to date does
not contain sufficient detail or analysis of the phenomenon to determine how much of an issue this
will be for detection in the field, and how this can be addressed. Tests to show both the internal and
external transmission would be useful, for conditions where the surface reflection of the glass may or
may not be relevant. In lenses and filters the internal transmission is more relevant as an anti-reflective
coating can be used. This may not be possible for gloveboxes and hot cell windows, hence the external
transmission may be more suitable. It may also be beneficial to test transmission of existing materials
in the field where the age of the materials may also prove influential as some of the nuclear sites for
decommissioning are of a substantial age. An understanding of the transmission of these materials
may also be beneficial in determining if contamination is on the interior of the translucent material or
at a distance which has not as yet been addressed, most likely due to researchers already knowing the
location of the contamination in test situations.

Although there is a great deal of existing research and information, the differences in distances to
source, detectors, sources and other conditions makes an assessment of progress difficult. A systematic
testing regime with single variable differences between tests would provide a more easily accessible
and comparable set of results, in terms of effect of yield on different conditions (gasses, translucent
materials, reflection etc.) and the efficacy of different detector types.

Work to date has provided a sound basis for continuation, with a clear route along the UVC
wavelength path, possible benefits from the identification of an alternative radioluminescence gas,
and routes using optics and other methods to optimise the collection, processing and detection of
alpha-induced air-radioluminescence photons. This work will lead to the development of an alpha
detection system that can be used on site for nuclear decommissioning purposes.
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