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Abstract: In order to meet the requirements of autonomy and reliability for the navigation
system, combined with the method of measuring speed by using the spectral redshift information
of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation
System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for
autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous
integrated navigation system is explored, and the corresponding mathematical model is established.
Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this
autonomous integrated navigation system. The simulation experiments are conducted and the results
show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good
autonomy, strong robustness and high reliability, thus providing a new solution for autonomous
navigation technology.

Keywords: spectral redshift; autonomous navigation; integrated navigation; robust adaptive filtering;
particle filtering

1. Introduction

At present, navigation methods mainly include inertial navigation, surface radio navigation,
celestial navigation and satellite navigation. Each of these methods possess their own characteristics,
scope of application and limitations, and cannot achieve completely autonomous or high precision
autonomous navigation [1,2].

Strapdown inertial navigation system (SINS) has the advantages of simple structure and
strong autonomy, providing continuous support of position, velocity and attitude information,
under all-weather conditions. However, the navigation errors of SINS accumulate with time, thus the
SINS cannot obtain high precision navigation information [3,4]. Radio navigation is limited by the
coverage area of ground stations. The operation of this system is related to the radiowave propagation
conditions, and vulnerable to the influence of artificial interference, which make radio navigation
a non-autonomous navigation method [5–7]. Satellite navigation is the combination of celestial
navigation and radio navigation, with the advantages of convenient application and high precision.
However, because the satellite navigation depends on artificial beacons, it is also vulnerable to the
influence of artificial interference and cannot achieve fully autonomy [8–10]. The advantages of celestial
navigation are high accuracy of attitude measurement and strong ability to resist electromagnetic
interference. Its disadvantages are the low rate of data updating, indirectly measured velocity and the
limited navigation performance due to the number, distance and space environment of target celestial
bodies [1,2,11,12].
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The spectral redshift of natural light sources contains the velocity information of the celestial body
relative to the moving object [13]. Based on this principle, spectral redshift navigation (SRS) becomes
a forward-looking navigation method, with the advantages of simple principle, high navigation
accuracy, strong autonomy and good real-time performance. The SRS can provide a new technological
method to improve the autonomy of navigation systems. However, when the carrier is in the process
of attitude maneuvering, the navigation accuracy will be worse and the navigation result may even
be divergent due to the insufficient or interrupted observation information. Therefore, it is necessary
to combine SRS with some other navigation method to constitute an integrated navigation system,
thus compensating for the defects of SRS alone.

Nonlinear filtering algorithms are commonly used in autonomous navigation systems, however,
these filtering algorithms have their own defects. For example, when the practical probability function
has multiple peak values, the extended Kalman filtering (EKF) may be divergent because the nonlinear
system equations arelinearized by the Taylor expansion and the linearized states are required to obey
the Gaussian distribution [14–17]. The unscented Kalman filtering (UKF) method also demands the
states obey the Gaussian distribution, which is not applicable for nonlinear systems with non-Gaussian
distribution [18,19]. The particle filtering (PF) method is prone to particle degeneracy phenomena,
and the accuracy depends heavily on the choice of importance sampling density and resampling
scheme [20–24]. By robustly estimating the covariance matrix of observation noise and adaptively
adjusting the covariance matrix of the state noise by augmenting the adaptive factor into the covariance
matrix of the state prediction, the robust adaptive filtering can deal with observation and model
noises to obtain reliable filtering results, especially in the presence of abnormal observations [25–28].
Therefore, combined with robust adaptive filtering and particle filtering, a new nonlinear filtering
algorithm for autonomous navigation system is designed to improve the accuracy and reliability of
the autonomous navigation system.

Based on the principle of velocity measurement by using spectral redshift of celestial
bodies in space, and combined with the advantages of Geomagnetic Navigation System (GNS),
this paper proposes a new SINS/SRS/GNS autonomous integrated navigation system. The principle,
scheme and mathematical model of this autonomous integrated navigation system are established,
and a high-precision nonlinear filtering algorithm for the autonomous navigation system is proposed.
Subsequently, all of the models and algorithms are verified by experiments.

2. The Principle of the Spectral Redshift Navigation

We assume the carrier can receive optical signals from celestial bodies during the space flight
process. According to the Doppler effect principle, the spectral frequency of carrier received signals is
not equal to the spectral frequency of the celestial bodies, and the variation of spectral frequency is
related to the motion state of the carrier relative to the celestial bodies. Therefore, the relative velocity of
the carrier can be obtained by measuring the redshift of the spectral frequency. According to the space
vector relation, if the number of observed celestial bodies (which are non-collinear) is greater than
three, the velocity vector of the carrier in inertial coordinate system can be determined by integrating
the ephemeris of the celestial bodies and the inertial attitude information, and then the position vector
can be obtained by integration.

The total redshift measured by spectral sensors is actually the sum of gravitational redshift,
cosmological redshift and Doppler redshift. The gravitational redshift and cosmological redshift can
be obtained by astronomical ephemeris, and both of them need to be removed. Only the Doppler
redshift can be used to navigation calculation. We define the Doppler redshift as:

z =
λ− λ0

λ0
=

f0 − f
f

(1)

where z represents Doppler redshift, λ0 is the original wavelength of the spectral line, λ is the observed
wavelength, f0 is the original frequency of the spectral line, f is the observed frequency.
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Accordingly, the redshift equation is:

1 + z =
f0

f
=

1 + v cos θ/c√
1− v2

c2

(2)

where v is the velocity of the carrier relative to the light source, θ is the angle between the wave
vector of the light source pointing to the carrier and the velocity v in the inertial coordinate system,
v cos θ represents radial velocity, c is the light speed in vacuum.

In three-dimensional celestial navigation, Equation (2) is transformed and applied to the first
reference celestial body, and we can obtain:

vr1 = (1 + z1)

√
c2 −

∣∣vp − v1
∣∣2 − c (3)

where vr1 is the radial velocity of the carrier relative to the first reference celestial body (the light
source), z1 is the redshift value of the first reference celestial body, vp is the velocity vector of the carrier
in the inertial coordinate system, v1 is the velocity vector of the first reference celestial body in the
inertial coordinate system. The redshift value can be obtained by spectral preprocessing, spectral line
feature extraction and spectral line matching.

Select three reference celestial bodies and the equations are listed as follows:
vr1 = (1 + z1)

√
c2 −

∣∣vp − v1
∣∣2 − c

vr2 = (1 + z2)
√

c2 −
∣∣vp − v2

∣∣2 − c

vr3 = (1 + z3)
√

c2 −
∣∣vp − v3

∣∣2 − c

(4)

From the geometric relationship of the celestial bodies, the relationship between vP and vr1, vr2,
vr3 satisfies the following relationship:

vr1 = (vP − v1) · u1

vr2 = (vP − v2) · u2

vr3 = (vP − v3) · u3

(5)

where v1, v2 and v3 are the velocity vectors of the celestial bodies in the inertial system determined by
the ephemeris, respectively, u1, u2 and u3 are the unit vectors of the position vectors of the celestial
bodies pointing to the carrier in the inertial coordinate system, which can be measured by the sun
sensor or the star sensor.

The state estimation equations for the velocity vector and the position vector are established as:{
vP = f (v1, v2, v3, u1, u2, u3, vr1, vr2, vr3 )

rP =
∫

vPdt
(6)

After the initial value is given, the velocity vector vP of the carrier in the inertial coordinate system
can be obtained by solving (6), and then the position vector rP can be obtained by integration.

3. Design of the SINS/SRS/GNS Autonomous Integrated Navigation System

Since the SINS can provide three-dimensional attitude, speed and position in all weather and
all day conditions, and possesses the ability of good concealment and strong anti-interference. it is
usually used as the main navigation system. SRS and GNS are used as auxiliary navigation systems to
form the SINS/SRS/GNS autonomous integrated navigation system, as shown in Figure 1.
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Figure 1. The principle of the SINS/SRS/GNS autonomous integrated navigation system.

The estimation of spectral redshift can be calculated by de-noising and spectral lines separation
of spectral signals that obtained by a spectrometer. According to the principle of spectral redshift
navigation, the accurate velocity information of the carrier can be obtained by combining the celestial
ephemeris and the attitude information measured by the star sensor. The difference between this
velocity and the velocity obtained by SINS is made as observation vector and sent to the SINS/SRS
subfilter for filtering calculation. GNS can get regional geomagnetic distribution by magnetic sensor,
and the position information of the carrier can be obtained by matching the regional geomagnetic
distribution and the reference geomagnetic library. The difference between this position and the
position from SINS is treated as observation vector, which is sent to SINS/GNS subfilter for filtering
calculation. The attitude errors, position errors and velocity errors calculated by the SINS/SRS subfilter
and the SINS/GNS subfilter are both sent into the global filter for multi-sensor information fusion.
Then the global optimal estimation of navigation errors is calculated to correct the SINS, for obtaining
the accurate output of SINS/SRS/GNS autonomous integrated navigation system.

3.1. State Equation of the Autonomous Integrated Navigation System

Using the E-N-U (East-North-Up) geographic coordinate system as the base coordinate system
for navigation. The system state vector x(t) of SINS/SRS/GNS autonomous integrated navigation
system can be defined as:

x(t) = [(δq)T, (δV)T, (δP)T, εT,∇T]
T

(7)

where δq = [δq0, δq1, δq2, δq3]
T is the attitude error quaternion of SINS, δV = [δVE, δVN , δVU ]

T is the
velocity error of SINS, δP = [δL, δλ, δh]T is the latitude error, longitude error and height error of SINS,
ε = [εx, εy, εx]

T represents the random drift of the gyroscope,∇ = [∇x,∇y,∇z]
T is the constant bias of

the accelerometer.
According to (7) and the error model of SINS [10], the kinematic model of the SINS/SRS/GNS

autonomous integrated navigation system is described as:

.
x = f (x, t) + G(t)w(t) (8)
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where f (x, t) is nonline state function of the system, G(t) is the coefficient matrix of system noise.
w(t) = [wgx, wgy, wgz, wax, way, waz]

T represents system noise, [wgx, wgy, wgz] is the white Gaussian
noise of the gyro measurement,

[
wax, way, waz

]
is the white Gaussian noise of the accelerometer

measurement:

f (x, t) =


B(I − Cc

n)ω
n
in − BCc

bεb

(I− Cn
c )C

c
bfb − (2ωn

ie + ωn
en)× δVn − (2δωn

ie + δωn
en)× Vn + Cc

b∇b

MδV + NδL
03×1

03×1

 (9)

G(t) =


Cc

b 03×3

03×3 Cc
b

03×3 03×3

03×3 03×3

03×3 03×3


where Cc

n and Cc
b are the attitude transition matrixes of the navigation coordinate system n and the

carrier coordinate system b to the computing coordinate system c, respectively. ωn
in represents the

projection of the angular velocity of the carrier in the navigation coordinate system, ωn
ie and ωn

en are
the rotation angle velocity and the position angular velocity of the earth, respectively. Vn is the velocity
of the carrier, ∇b is the error of the accelerometer, fb is the accelerometer’s specific force. M and
N are the coefficient matrixes of the velocity error and position error respectively, δ·represents the
corresponding error of the parameter. B = 1

2 M(Qn
p), M(Qn

p) is the matrix representation of quaternion
multiplication, and:

M(Qn
p) =


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

 (10)

3.2. Observation Equation of the Autonomous Integrated Navigation System

(1) Observation equation of SINS/SRS subsystem

Let vX , vY and vZ represent the E-velocity, N-velocity and U-velocity of the carrier in the inertial
system, respectively, which are obtained by the spectral redshift navigation, then:

Vn = Cn
b Vb (11)

Vn =

 vSE
vSE
vSE

,Vb =

 vX
vY
vZ

 (12)

where Cn
b is the attitude transition matrixes of the body coordinate system to the navigation coordinate

system, Vn is velocity vector of the carrier in navigation coordinate system, Vb is velocity vector of
the carrier in body coordinate system. vSE, vSN and vSU are E-velocity, N-velocity and U-velocity
of the carrier in navigation coordinate system, respectively, which are obtained by the spectral
redshift navigation.



Sensors 2018, 18, 1145 6 of 19

Take the difference of the velocity between SRS and SINS output as the observation, and the
velocity observation equation is obtained as:

Zv =

 ZS1

ZS2
ZS3

 =

 vE − vSE
vN − vSN
vU − vSU

 = HvX(t) + Vv(t) (13)

where Hv is the velocity observation matrix, vE, vN and vU are the E-velocity, N-velocity and U-velocity
of the carrier, respectively, which are obtained by the SINS, Vv is velocity observation noise. Hv can be
expressed as:

Hv =
[

03×3 diag
(

1 1 1
)

03×9

]
3×15

(14)

Accordingly, the observation equation of SINS/SRS subsystem can be expressed as:

Z1(t) = [Zv(t)] = [Hv]X(t) + [Vv(t)]
= H1(t)X(t) + v1(t)

(15)

where H1(t) is observation matrix, V1(t) is white noise vector.

(2) Observation equation of SINS/GNS subsystem

The difference between the positions of SINS and GNS is selected as the observation, and the
observation vector can be described as:

Z2(t) =

 LI
λI
hI

LG
λG
hG

 =

 (L + δLI)− (L + δLG)

(λ + δλI)− (λ + δλG)

(h + δhI)− (h + δhG)

 =

 δLI
δλI
δhI

−
 δLG

δλG
δhG

 (16)

where LI , λI and hI are latitude, longitude, and height of the SINS output, respectively. LG, λG and
hG are the latitude, longitude, and height of the GNS, respectively. δ·represents the corresponding
parameter error.

According to (18), the observation equation of the SINS/GNS subsystem can be obtained as:

Z2(t) = H2(t)X(t) + V2(t) (17)

where H2(t) is the observation matrix, V2(t) = [δLG, δλG, δhG]
T is a white noise vector.

3.3. Information Fusion Algorithm of the Autonomous Integrated Navigation

According to federal filtering technology [29,30], the information fusion principle of
SINS/SRS/GNS autonomous integrated navigation system is shown in Figure 2. Firstly, SINS/SRS
and SINS/GNS navigation subfilters are designed, and two sets of local optimal estimation X̂i and
local optimal error covariance matrix ΣX̂,i(i = 1, 2) are obtained. Secondly, the federated filtering
technology is applied to send two sets of local optimal estimation into the main filter for information
fusion, and the global optimal estimation X̂g and the global optimal error covariance matrix ΣX̂,g of the
system state vector are obtained. Finally, the SINS error is corrected in real time by using X̂g. Due to
the divergence of the SINS height channel, the height of the altimeter output is used to correct the
SINS. The optimal fusion algorithm for SINS/SRS/GNS autonomous integrated navigation system is
expressed as:  ΣX̂,g = (Σ−1

X̂,1
+ Σ−1

X̂,2
)
−1

X̂g = ΣX̂,g(Σ
−1
X̂,1

X̂1 + Σ−1
X̂,2

X̂2)
(18)
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Figure 2. The information fusion principle of SINS/SRS/GNS autonomous integrated navigation system.

4. Robust Adaptive Central Difference Particle Filtering Algorithm

Combined with the advantages of robust adaptive filtering (RAF), central difference Kalman
filtering (CDKF) and particle filtering (PF), a robust adaptive central difference particle filtering
algorithm (RACDPF) is proposed. By choosing appropriate equivalent weight function and adaptive
factor, the algorithm controls the information of the state model and observation model to suppresse the
influence of abnormal interference on the system state estimation, and updates the a priori information,
adjusts the filtering gain, for improving the filtering accuracy.

4.1. Algorithm Steps

Consider the nonlinear system model:

xk = f (xk−1, vk−1)

yk = h(xk, nk)
(19)

The main steps of the robust adaptive central difference particle filtering algorithm are as follows.

(1) Initialization. At the time k = 0:

x̂0 = E[x0]

Px0 = E[(x0 − x̂0)(x0 − x̂0)]
T (20)

(2) When k = 1, · · · , ∞, and j = 0, · · · , 2L:

Wm
0 = h2−L

h2 , Wm
j = 1

2h2

Wc1
j = 1

4h2 , Wc2
j = h2−1

4h4

(21)

where L is state dimension, h represents the central differential interval of the scalar, for Gauss
prior random variables, the optimal value is h =

√
3.

Time update:

χi
k−1 = [x̂i

k−1, x̂i
k−1 + h

√
Pi

k−1, x̂i
k−1 − h

√
Pi

k−1] (22)

χi
k|k−1 = f (χi

k−1, ui
k−1) (23)

x̂i−
k =

2L

∑
j=0

Wm
j χi

j,k|k−1 (24)
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Pi−
xk

=
L

∑
j=0

[Wc1
j (χi

j,k|k−1 − χi
L+j,k|k−1)

2
+Wc2

j (χi
j,k|k−1 + χi

L+j,k|k−1 − 2χi
0,k|k−1)

2
] (25)

χi∗
k|k−1 = [x̂i

k|k−1, x̂i
k|k−1 + h

√
Pi−

xk|k−1
, x̂i

k|k−1 − h
√

Pi−
xk|k−1

] (26)

Observation update:
Yi

k|k−1 = h(χi∗
k|k−1) (27)

ŷi−
k =

2L

∑
j=0

Wm
j Yi

j,k|k−1 (28)

Pi
yk

=
L

∑
j=0

[Wc1
j (Yi

j,k|k−1 − Yi
L+j,k|k−1)

2
+Wc2

j (Yi
j,k|k−1 + Yi

L+j,k|k−1 − 2Yi
0,k|k−1)

2
] (29)

Pi
xkyk

=
√

Wc1
1 Pi−

xk
[Yi

1:L,k|k−1 − Yi
L+1:2L,k|k−1]

T
(30)

The predicted residual vector contains the state information that is not corrected by observation
information, and can reflect the disturbance of the dynamic system. Therefore, we can use the
predicted residual vector as the variable to construct the error discriminant statistic and the
adaptive factor of the kinematic model. The ith predicted residual vector Vi

k at time k can be
expressed as:

Vi
k = Yi

k − ŷi
k (31)

Correspondingly, the error discriminant statistic of the kinematic model is written as:

∆Vi
k =


(

Vi
k

)T
Vi

k

tr(Pi
ykyk

)


1
2

(32)

Then, the adaptive factor that is based on the error discriminant statistic can be obtained as [25]:

αi
k =


1

∣∣∣∆Vi
k

∣∣∣ ≤ c
c∣∣∣∆Vi

k

∣∣∣
∣∣∣∆Vi

k

∣∣∣ > c
(33)

where αi
k is the ith adaptive factor at time k, c is an empirical constant, and generally 1.0 < c < 2.5.

According to the Kalman filtering framework, we can obtain:

Ki
k = Pi

xkyk
(Pi

yk
)
−1

(34)

x̂i
k = x̂i−

k + Ki
k(y

i
k − ŷi−

k ) (35)

Pi
xk

= Pi−
xk
− αi

kKi
kPi

yk
KiT

k (36)

It can be seen from (38) that the adaptive factor αk can influence and adjust Pxk to make the
importance density function closer to the actual distribution. When anomalies exist in the
observation model, the adaptive factor αk decreases, the use of observation information is reduced
in the process of the state estimation, thus weakening the abnormal interference of the observation
model, or vice versa.

Let N(x̂i
k, pi

xk
) be the importance density function of the particle sampling, the new sample

xi
k ∼ N(x̂i

k, Pi
xk
) can be obtained by importance sampling. In addition, compared with the
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UKF algorithm, the CDKF algorithm only needs to calculate the parameter h, therefore the
computational complexity is reduced.

(3) Calculate the weight:

wi
k = wi

k−1

p(yk

∣∣∣xi
k)p(xi

k

∣∣∣xi
k−1)

q(xi
k

∣∣∣xi
k−1, yk)

(37)

and normalize the weight to w̃i
k = wi

k/
n
∑

i=1
wi

k.

(4) Calculate the threshold estimate:

N̂e f f = 1/
N

∑
i=1

(w̃i
k
)

2
(38)

Compare the result with the established threshold to determine the degree of the particle
degradation. The smaller N̂e f f is, the worse the particle degeneracy is. In order to inhibit particle
degeneracy, M new particles can be obtained by resampling the posterior density function, and
given the same weight 1/M.

(5) Markov Chain Monte Carlo (MCMC) move. This step can be selected according to the needs.
(6) Calculate the estimate of the nonlinear state vector and its covariance matrix:

x̂k =
N

∑
i=1

w̃i
kxi

k (39)

P̂k =
N

∑
i=1

w̃i
k(x

i
k − x̂k)(x

i
k − x̂k)

T
(40)

return to Step (2).

In the above steps, the Expectation Maximization (EM) [23] method can be used to replace the
resampling, so that the state estimation is converged to the optimal value. In addition, when selecting
the importance density function, the proposed RACDPF takes advantage of the important adjustment
factor, namely the robust adaptive factor, which controls the contribution of the observed information
in the state estimation, and provides better sampling function for the importance sampling process.

4.2. Adaptive Adjustment of the Weight

In the RACDPF algorithm, the adaptive adjustment method of the weight can be used to calculate
the weight value, for reducing the amount of calculation while improving the accuracy. The principle
of the method is that after the steps of time update and observation update, utilize observation
information, Euclidean distance and precision dilution, which reflects statistical characteristics of
observation noise to Euclidean distance, to adaptively adjust the weight, thus move the sampled
particles from the high priori density region to the high likelihood density region, to obtain a posteriori
density function closer to the true distribution.

After sampling the importance density function N(xi
k, Pi

k), the weight of each particle is calculated by:

wi
k = wi

k−1

p(yk

∣∣∣xi
k)p(xi

k

∣∣∣xi
k−1)

q(xi
k

∣∣∣xi
k−1, yk)

(41)

Then the maximum weight wi∗
k−max and the minimum weight wi∗

k−min is recorded, and the
observation innovation yi

k−max, yi
k−min, and Euclidean distance Lmax and Li can be calculated, which are

expressed as:

Lmax = (yi
k−min − yi

k−max)
T · (yi

k−min − yi
k−max) (42)
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Li = (yi
k − yi

k−max)
T · (yi

k − yi
k−max) (43)

where yi
k−max = yk − h(xi

k−max), yi
k−min = yk − h(xi

k−min), xi
k−max and xi

k−min represent the particles
that correspond to the maximum weight and the minimum weight.

The weight of particles can be modified as:

wi∗
k = wi∗

k + (
wi∗

k−max
N

) · sin(
Li

Lmax · π
2
) · β (44)

where β is the adaptive coefficient determined by the statistical characteristics of observation noise, and:

β =

{
K
α′ α′ ≤ ε

0 α′ > ε
(45)

where α′ is the dilution of precision that reflects statistical characteristics of observation noise.
By changing the size of α′, we can adaptively adjust the distribution of weights and increase the
weights of useful particles. When α′ is large, the observation accuracy is low, otherwise, the observation
accuracy is relatively high. ε is the threshold that determined by experience, K is the proportional
constant, and K

α′ > 0. When the observation noise is small, let β = 0, that is, do not adjust the likelihood
distribution. Otherwise, when the likelihood distribution is in the peak or at the tail of the transfer
prior distribution, let β = K

α′ , that is, artificially make the likelihood distribution wider.

5. Simulation Experiment and Result Analysis

In this section, we compare the navigation errors of the proposed SINS/SRS/GNS autonomous
navigation system with the SINS, SINS/SRS subsystem and SINS/GNS subsystem, respectively,
by using the proposed RACDPF algorithm, to verify the performance of our SINS/SRS/GNS
autonomous navigation system. Furthermore, under the same conditions, the simulation results of UKF,
PF, and the proposed RACDPF are also compared to verify the performance of the proposed filtering
algorithm, including comparisons of the accuracy, real-time and robustness of the filtering algorithms.

In the experiment, the J2000 geocentric equatorial inertial coordinate system is selected for the
coordinate system. Assume that the experimental data are from a flight of a spacecraft. The orbit
parameters of the spacecraft are described as Semimajor axis 6947.035365 km, Eccentricity 0.001088,
Orbit inclination 22.998◦, Right ascension of ascending node 334.87◦, Argument of perigee 341.452◦,
True anomaly 231.43◦. We selected a part of the flight, which lasted for 1500 s, and the initial position
is (3,330,812, −2,488,259, 5,565,647). The flight trajectory is shown in Figure 3.

Figure 3. Flight trajectory.
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In the simulation process, the initial alignment error of SINS is 0, the initial velocity error is 1 m/s,
the initial position error is 10 m, and the initial attitude error is 10′′ . The parameter for adaptive factor
calculation is c = 1.5 [25,27]. The number of particles is M = 200, the simulation time is 1500 s, and the
filtering period is 1 s. The parameters of the sensors used in the simulation are shown in Table 1.

Table 1. Parameters of the sensors used in the simulation.

Parameter Type Value

Gyro constant drift 0.02◦/h
Gyro random drift 0.005◦/

√
h

Constant drift of accelerometer 0.05 mg
Random drift of accelerometer 0.005 mg/

√
h

Accuracy of geomagnetic matching 20 m
Accuracy of velocity measurement with SRS [31] 5.5 m/s

(1) Simulation verification of the subsystems

The simulation of SINS, SINS/SRS subsystem and SINS/GNS subsystem are carried out
respectively, and the results are compared to verify the performance of the subsystems.

The simulation results are shown in Figures 4 and 5. The error statistics of the subsystems are
shown in Table 2.

Figure 4. Velocity errors of the subsystems.
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Figure 5. Position errors of the subsystems.

Table 2. The error statistics of the subsystems.

Errors
The Subsystems

SINS/GNS SINS/SRS

Velocity RMSE
(m/s)

East 9.4491 5.3219
North 8.7579 5.0692

Up 8.6688 5.2851

Position RMSE
(m)

Longitude 16.8274 65.6695
Latitude 17.3205 68.7935
Height 16.7775 70.1250

It can be seen that the velocity error and position error of SINS accumulate with time and diverge,
which cannot meet the high accuracy requirement of navigation system. Therefore, other navigation
methods need to be used to correct SINS.

For the SINS/GNS subsystem, GNS can obtain high position accuracy, so it is mainly used to
correct the position error of SINS. But the velocity accuracy is poor, and the correction effect is not
obvious. For the SINS/SRS subsystem, SRS can obtain good velocity accuracy, so the velocity accuracy
after correction is high, but the position accuracy is poor. Therefore, single SINS/GNS or SINS/SRS
subsystem cannot meet the needs of autonomous navigation and positioning. We need to combine
both of them to design the SINS/SRS/GNS autonomous integrated navigation system to improve the
navigation accuracy.
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(2) Simulation verification of the autonomous integrated navigation system

The simulation of SINS/SRS/GNS autonomous integrated navigation system is carried out,
and the results are shown in Figures 6 and 7. Table 3 shows the error statistics of the autonomous
integrated navigation system.

Figure 6. Velocity error of the autonomous integrated navigation system.

Figure 7. Position error of the autonomous integrated navigation system.
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Table 3. The error statistics of the autonomous integrated navigation system.

Error Value

SINS/SRS/GNS
autonomous

integrated navigation
system

Position RMSE(m)
Longitude 17.0375
Latitude 16.3565
Height 16.7865

Velocity
RMSE(m/s)

East 5.3698
North 5.1550

Up 5.2546

The simulation results show that the designed SINS/SRS/GNS autonomous integrated navigation
system adopts information fusion technology to combine SINS with SRS and GNS, and complements
the three systems in performance. Therefore, the SINS/SRS/GNS system overcomes the defects of
single navigation system, and exhibits a good performance. Therefore, the designed SINS/SRS/GNS
system effectively improve the accuracy and reliability of autonomous navigation systems.

(3) Performance verification of filtering algorithm

Based on the above performance comparison and analysis, UKF and PF are also applied to
the SINS/SRS/GNS autonomous integrated navigation system for filtering respectively, in order to
verify the performance of the proposed RACDPF algorithm and autonomous integrated navigation
system. We will compare and analyze the accuracy, real-time and robustness of the nonlinear filtering
algorithms (UKF, PF and RACDPF) respectively, so as to evaluate the performance of the filtering
algorithms from more aspects.

A. Accuracy Comparison of Filtering Algorithms

We define the filtering accuracy as the difference between the estimated state value and the
reference state value. The accuracy of the nonlinear filtering algorithms is compared and analyzed by
the following steps:

(1) Use UKF, PF and RACDPF for filtering and then calculate the velocity error and position error of
each filtering algorithm. The results are shown in Figures 8 and 9. In order to facilitate statistical
results, the position error can be defined as:

δp =

√
(δL)2 + (δλ)2 + (δh)2 (46)

the velocity error can be defined as:

δV =

√
(δVE)

2 + (δVN)
2 + (δVU)

2 (47)

Then, the error statistics of the three filtering algorithms can be obtained, as shown in Table 4.

Table 4. The error statistics of the three filtering algorithms (M = 200).

Filtering Algorithm Velocity Error/m/s Position Error/m

UKF 23.8122 56.7445
PF 11.1434 33.4074

RACDPF 5.1529 16.1745

(2) Repeat Step (1) in the case of particle number M = 50 and M = 500 respectively, and the results
are shown in Tables 5 and 6.
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Figure 8. Velocity errors of the three filtering algorithms (M = 200).

Figure 9. Position errors of the three filtering algorithms (M = 200).
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Table 5. The error statistics of the three filtering algorithms (M = 50).

Filtering Algorithm Velocity Error/m/s Position Error /m

UKF 23.8122 56.7445
PF 15.2567 39.9238

RACDPF 6.1740 18.2510

Table 6. The error statistics of the three filtering algorithms (M = 500).

Filtering Algorithm Velocity Error/m/s Position Error/m

UKF 23.8122 56.7445
PF 10.9682 28.4450

RACDPF 4.5424 13.5341

It can be seen that the accuracy of UKF is the worst. PF inevitably displays a particle degradation
phenomenon after several iterative computations, therefore the filtering accuracy is limited. RACDPF
uses the robust adaptive factor to control the kinematic model information and observation model
information, for suppressing the influence of abnormal interference, thus the filtering accuracy is better
than that of UKF and PF. From Tables 4–6, it can be seen that the number of particles can obviously
affect the accuracy of PF and RACDPF because PF uses samples to approximate the a priori information
and a posteriori information, and the more the number of samples, the closer to the true distribution.

B. Real-Time Comparison of Filtering Algorithms

The factors that affect the real-time performance of the filtering algorithm include algorithm
complexity, filtering condition and hardware processing ability. The algorithm complexity is the
main parameter to describe the degree of difficulty in algorithm implementation. In this section,
The real-time performance of UKF, PF and RACDPF is researched under the same hardware platform,
software platform and initial conditions.

The equivalent computational complexity and running time of each filtering algorithm are are
shown in Table 7, where M is the number of particles, n is the state dimension, O(·) represents the
computational complexity of each recurrence calculation for the algorithms.

Table 7. Real-time performance of the nonlinear filtering algorithms.

Filtering
Algorithm

Computational
Complexity

Running Time/s

M = 50 M = 200 M = 500

UKF O(n4) 0.6728 0.6728 0.6728
PF O(Mn3) 1.0795 2.4141 4.8626

RACDPF O(Mn3) 1.1589 2.6979 5.0032

It can be seen that PF and its improved algorithms need to sample a large number of particles,
allocate weights and resample, which is complex and computationally burdensome, therefore the
algorithm running time is obviously higher than that of UKF. Therefore, the number of particles should
be determined according to the specific application requirements.

C. Robustness Comparison of Filtering Algorithms

For a given filtering algorithm, its robustness is manifested in the performance that when the
system parameters or the external environment change, the filtering algorithm can still maintain certain
filtering accuracy.

In order to verify the robustness of the filtering algorithms (UKF, PF and RACDPF), the errors of
variance 1 m2/s2 and 4 m2 are added to the velocity and position observations of the experimental
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data, respectively. Then, the position RMSEs of the two sets of experimental data are calculated by
each filtering algorithm, respectively. The number of particles M = 200, and the other conditions are
consistent with the previous. The results are shown in Table 8.

Table 8. Robustness performance of the nonlinear filtering algorithms.

Filtering
Algorithm

Position RMSE/m

Errors Are Added No Error Is Added Difference

UKF 61.0342 56.7445 8.2897
PF 38.8110 33.4074 5.4036

RACDPF 17.3852 16.1745 1.2107

The effect of abnormal disturbances on the UKF and PF is more significant than RACDPF, this is
because UKF and PF cannot deal with abnormal interferences. However, RACDPF can control the
kinematic model information and the observation model information by selecting the appropriate
robust adaptive factor to suppress the influence of abnormal interferences. Therefore, the RACDPF is
the least affected.

The effect of abnormal disturbances on the UKF and PF is more significant than RACDPF, this is
because UKF and PF cannot deal with abnormal interferences. However, RACDPF can control the
kinematic model information and the observation model information by selecting the appropriate
robust adaptive factor to suppress the influence of abnormal interferences. Therefore, the RACDPF is
the least affected.

6. Conclusions

In order to satisfy the requirements of the high precision and reliability of the autonomous
navigation system, a new SINS/SRS/GNS autonomous integrated navigation method is proposed in
this paper. The scheme of the SINS/SRS/GNS autonomous integrated navigation system is designed,
and the corresponding filtering algorithm, a robust adaptive central difference particle filtering
(RACDPF) algorithm, is also proposed. This algorithm can control the state model information and
observation model information, suppress the influence of abnormal interference, and adaptively adjust
the weight of particles after importance sampling, thus improving filtering accuracy. The simulation
results show that the proposed method possesses high accuracy, strong robustness and good
reliability, and can satisfy the performance requirements of autonomous navigation in a certain
degree. Because of the abundant natural celestial bodies and their spectral redshift information in
space, the SINS/SRS/GNS autonomous integrated navigation method can be applied to spacecraft,
space station, and satellite orbit determination, thus providing a new solution for the autonomous
navigation technology.
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