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Abstract: There are many artificial parameters when fuse infrared and visible images, to overcome
the lack of detail in the fusion image because of the artifacts, a novel fusion algorithm for infrared and
visible images that is based on different constraints in non-subsampled shearlet transform (NSST)
domain is proposed. There are high bands and low bands of images that are decomposed by the
NSST. After analyzing the characters of the bands, fusing the high level bands by the gradient
constraint, the fused image can obtain more details; fusing the low bands by the constraint of
saliency in the images, the targets are more salient. Before the inverse NSST, the Nash equilibrium is
used to update the coefficient. The fused images and the quantitative results demonstrate that our
method is more effective in reserving details and highlighting the targets when compared with other
state-of-the-art methods.

Keywords: image fusion; constraints; infrared and visible images; details of image; salient targets;
Nash equilibrium

1. Introduction

Image fusion plays a very important role in many fields. In remote sensing [1], multispectral
images and panchromatic images are integrated into an image; the fused image can obtain quality
spatial resolution and the quality spectral resolution. In medical imaging [2], the MRI images and PET
images are fused to help diagnose the condition. In modern military technologies [3,4], the fusion
of thermal infrared (IR) images and visible images is becoming more important for night action.
In this paper, we concentrate on the fusion of IR images and visible images, which can lead to better
performance for target recognition and human visual perception.

The goal of IR and visible image fusion is to integrate them into an image, which can contain
most information in the source images without distortion or loss. The visible spectrum is better in
spatial resolution, but it is easily affected by illumination and disguise. In contrast, IR images are not
affected by illumination and disguise, but do suffer form low resolution. Therefore, integrating the
two types of images can be beneficial for target detection and recognition at night.

The image fusion algorithm can be divided into two categories. One type is fusion algorithms,
which achieve in the spatial domain, such as the weight method, pyramid transform method [5],
principal component analysis (PCA) [6], saliency method [7], and so on. Those algorithms are simple
to implement, and they can obtain some useful images, but the fused images lose information on
occasion sometimes. Another type of fusion algorithms fuse images in the transform domain. Chao [8]
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fused images based on wavelets in 2004, in the high- and low-level bands of the fused the images,
respectively. The result is effective, but loses some orientation information in the image. Due to the
insufficient orientations in wavelets, Do [9] proposed the contourlet transform based on wavelets.
Wang [10] fused IR images and visible images based on the contourlet transform, and the fused images
perform well with respect to the image details, but with sampling, there are Gibbs phenomena in the
final images. Thus, the non-subsampled contourlet transform is used in the fusion algorithm [11],
overcoming the shortcoming of the Gibbs phenomenon. Guo [12–14] proposed the shearlet transform
in 2008, and it not only possessed the above properties, but it is equipped with a rich mathematical
structure that is associated to multi-resolution analyses, and it forms a tight frame at various levels
and directions, reducing the complexity and improving the efficiency of the operation. Wang [15]
proposed a novel fusion algorithm that is based on improved shearlet transform to enhance the
quality of the fused image. Wan [16] proposed a method based on the guided filter and improved
sum-modified-Laplacian (SML) in the non-subsampled shearlet transform (NSST) domain. However,
most of the above algorithms set a large number of artificial parameters, and there are many artifacts
in the final results that seriously affect the target edge and the background information.

Ma [17] proposed an infrared and visible image fusion algorithm that is based on the total
variation, the optimal image is calculated by iterations, and the details in the visible image can be
retained as much as possible, while also maintaining the target characters in the IR image. However,
the fusion results look like an enhanced IR image, which is not suitable for many applications.
To improve the quality of the fused image, we proposed a novel fusion algorithm for IR images
and visible images. On one hand, the details in the visible image can be reserved; on the other hand,
the salient target and some important information are transformed in the final image. The algorithm
fuses images that are based on the NSST, but uses the gradient and saliency constraints in the
fusion rules.

The contributions of this paper are as follows: we take advantage of the total variation
minimization to optimize the fusion image based on the NSST domain, and both details and target
information are well reserved. In addition, we provide both qualitative and quantitative comparisons
with several state-of-the-art algorithms on a publicly available dataset. When compared to those
algorithms, our results are more suitable for human vision systems and processing, and thus,
improve the reliability of automatic target detection and recognition systems.

The rest of the paper is organized as follows: Section 2 introduces the related NSST, and, at the
same time, we establish the constraints based on the gradient and the saliency of the rules of different
levels. In Section 3, we compare our approach with several of the most advanced methods. Section 4
summarizes the full text.

2. Methods

2.1. Preliminaries

When n = 2, the affine systems with composite dilations are defined as follows [10,11]:{
ψj,l,k(x) = |detB|j/2ψ(Al Bjx− k) : l, j ∈ Z, k ∈ Z2

}
(1)

where ψ ∈ L2(R2), A and B are 2 × 2 invertible matrices with det(B) = 1, A and B control the level
and direction of the transform, respectively, and j, l and k are the parameters that control the levels,
directions, and transform, respectively. The values of the two matrices play an important role in the
transform, and the values of A and B for the shearlet transform are defined as follows:

A =

(
a 0
0
√

a

)
, B =

(
1 s
0 1

)
(2)

where a = 4 and s = 1 in the Equation (2).
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When processing the digital image using the shearlet transform, we need the discrete shearlet
transform. There are subsamples in the operation of discretization, so there is the impossibility of
Gibbs phenomenon in the images. To overcome the shortage, the NSST is proposed [14].

The NSST can be more sparse and effective when simulating the images, which are
two-dimensional, and it can be considered as the optimal tool to analyze two-dimensional data.
There are also some methods of image fusion that are based on the NSST in recent years, which can
reserve the characteristics of different frequencies, but the universal fusion rule relies on artificial
parameters, which leads to the artifacts. Therefore, this paper proposes a fusion rule that is based on
different constraints in the NSST domain to improve the quality of the fused image.

2.2. Proposed Method

2.2.1. Model of Image Fusion

The model of the traditional infrared and visible image fusion is mainly expressed as Equation (3):

f̃ = α·I + β·V (3)

In Equation (3), f̃ represents the fused image, α and β represent the weight factors, respectively,
I represents the infrared image, and V represents the visible image. In general, the setting of the
weight factors needs to be man-made. Although this approach is convenient, the quality of the fused
image is not optimal, and results in artifacts. Thus, in this paper, we assume the optimal fused image
is f . The relationship between the optimal fused image and the original images can be expressed by
Equation (4):

min
∫
‖ f − α·I − β·V‖2

2 (4)

Equation (4) is the fidelity constraint of the fused image, the result is similar to the fused image
by Equation (3), rely on the Equation (4) only, and cannot avoid the existence of artifacts. Therefore,
in different frequency bands, we build more constraints for different frequency bands, according to
their characteristics.

2.2.2. Strategy for High Frequency Coefficients

The low-frequency coefficient fd and the high-frequency coefficient group {fg} can be obtained by
an image f transform by the NSST. The high-frequency coefficients contain a great deal of detailed
information [18] and the regularization term of the gradient constraint is used in our method to
preserve the information better:

∇i f =

√
(∇h

i f )2
+ (∇v

i f )2 (5)

As Equation (5) shows, ∇i f represent the gradient value of pixel i in the image f. ∇h
i f = fi − fr(i)

and ∇v
i f = fi − fb(i) represent the neighbor to the right and below pixel i. When pixel i is located in

the edges, the value of its gradient is large; on the other hand, when it is located in the smooth area,
the value is small. The f (i) represents the value of the image in the pixel i, fr(i) represents the value of
infrared image in the pixel i, and fr(i) represents the value of the visible image in the pixel i.

After the fusion, the fused image should preserve the advantage of the gradient in the infrared
image or visible image as much as possible. If the gradients of some area in the different images are
small, then the area should be inhibited because of the little information that is contained in this area.

As Ma [19] mentioned in the paper, they constrained the fused image to have a similar gradient
with the visible image, as the equation below:

min
∫
‖∇ f −∇I‖0 (6)
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However, in infrared images, there is still some useful information for the gradient, so we constrain
the gradient of the fused image f as:

min
∫
‖∇ fg −WI ·∇Ig −WV ·∇Vg‖1 (7)

where the ∇ fg is the gradient of the high-level frequency that should be solved, ∇Ig and ∇Vg are the
gradients of the original images respectively, and WI and WV are the weights for the infrared image
and the visible image, respectively. It is widely known that the l0 norm is difficult to solve, and the
l1 norm encourages sparsity, thus, we consider minimizing the constraints that use the l1 norm as
superior. We compare the l0 norm and the l1 norm, and the result is shown in Figure 1.

Figure 1. The illustration of two type of norm.

Figure 1 shows the high-frequency coefficients in the first iteration of the algorithm
implementation in this paper, analyzing the data in the blue frame area. The l0 norm constraint
should theoretically be 35, but the actual operation needs to set the threshold ε in order to determine
its value. If ε = 0.5, then the value in the green frame area should be 0, and the value in the blue area
will be smaller when ε is reduced. The l1 norm is constrained directly by the absolute value, sparseness
is lacking, but more precise, and the calculation is simple. Thus, we choose the two coefficients of the
l1 norm constraint.

The weights of the two source images are weighted, and the specific weights are set as follows:

Wi
I =

∇Ii
g

∑
i∈N

(∇Ii
g +∇Vi

g)
(8)

Equation (8) represents the weight value at pixel i, N represents the number of pixels adjacent to i,
and we select a smaller 3 × 3 pixel block for the weight calculation. By the weighting of Equation (8),
the gradient difference is increased and the calculation is more favorable.

The fusion rules of the high frequency part can be set by the minimization cost function of
Equation (9):

Eg =
∫
‖ fg − α·Ig − β·Vg‖2

2 +
∫
‖∇ fg −WI ·∇Ig −WV ·∇Vg‖1 (9)

In Equation (9), the unknown parameters have the optimal fusion fg and the weight parameters α

and β, which is an unsolvable problem. To simplify the solution, we set the relationship between the
parameters α and β and update Equation (9):

Eg =
∫
‖ fg − α·Ig − (1− α)·Vg‖2

2 +
∫
‖∇ fg −WI ·∇Ig −WV ·∇Vg‖1 (10)

Equation (10) can be transformed into a classical total variation equation for solving. We assume
that Z = fg −WI ·Ig −WV ·Vg and Equation (10) can be transformed, as follows:

Eg =
∫
‖Z + WI ·Ig + WV ·Vg − α·Ig − (1− α)·Vg‖2

2 +
∫
‖∇Z‖1 (11)
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Discretizing Equation (11), we obtain the final formula [20]:

Eg = ∑
Ω

(Z + WI ·Ig + WV ·Vg − α·Ig − (1− α)·Vg)
2 + ∑

Ω
|∇Z| (12)

where Ω represents the entire image field. Calculating the value of Z, the optimal high-frequency
transform coefficients are obtained by transformation.

2.3. Strategy for Low-Frequency Coefficients

In the low-frequency coefficient, the main energy of the image is concentrated, and the subject of
the image is in the low-frequency coefficient. Figure 2 shows the low frequency coefficients of multiple
images, and different salient targets are embodied in different sensor images.

Figure 2. The salient target in the low level coefficient. (a) The low-frequency band of the infrared
image for the first group; (b) the low-frequency band of the visible image for the first group; (c) the
low-frequency band of the infrared image for the second group; and (d) the low-frequency band of the
visible image for the second group.

Figure 2 shows the two groups of low-frequency coefficients of the image, and the salient objects
in Figure 2a,b are the thermal objects. As indicated by the red box in Figure 2a, the salient object of
the main target in Figure 2b is the roof. The significance of the target in the infrared image is more
obvious, the significance of the latter set of images includes heat source objects and light reflection
text, and, in Figure 2c,d is the performance of the green box content. Thus, the key to the fusion of
low-frequency coefficients is to optimize the performance of the significant targets.

To improve the salience of the fused image, we constrain the low-frequency coefficients after
fusing. Firstly, the salient extraction of low-frequency coefficients is analyzed below.

The extraction of salient targets has been extensively studied. In 1998, Itti first proposed a salient
detection method that was based on human vision [21], identified salient areas based on a variety of a
priori knowledge of the visual mechanism, but the results were not accurate enough. Additionally,
many scholars have proposed new detection methods. In 2007, Tie [22] proposed the method of using
a random field model based on Itti’s model, where the global information, local information, and scale
information were taken into account. In 2011, Xie [23] proposed a salient detection method based on
the Bayesian model, the result is suitable for simple backgrounds, but there is noise with the complex
background. In 2012, Stas [24] determined the salient areas based on neighborhood relationships,
obtaining better results with the context information. In 2014, Yang [25] used the propagation map to
obtain salient graphs, and was able to extract the main target. In 2016, Sun [26] used multi-regional
mergers to obtain salient areas, thus improving the accuracy of the test. These algorithms have
achieved good results in detecting, but these algorithms are computationally complex. In our method,
we use the gray image as the experimental images, so we need to concisely calculate the salience of the
low-frequency coefficients. A salient area is determined by using the prior image contrast:

Pi
X = e

|X(i)|/ ∑
j∈ω
|X(j)|

(13)
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In Equation (13), Pi
X represents the value of pixel i in the image X, X(i) represents the gray value of

the pixel i, and ω represents the adjacent area of pixel i. As Equation (13) shows, the value of salience
is higher in the pixels whose contrast is higher. However, we can obtain the single value of the pixel in
the image; for the target, we need to detect the salient area:

Si
X =

Pm
X

Ldis(X(i), X(m)) + Lval(X(i), X(m))
(14)

Pm
X = max(Pω

X , i ∈ ω) (15)

where Ldis and Lval represent the geometric distance and gray value distance between the two pixels.
Si

X represents the salient value of pixel i in image X. As Equation (15) shows, Pm
X represents the

extreme values in area ω. The closer to the extremes of the salient point, the value of salience is higher.
The salience of the low-frequency portion can be extracted by Equations (13)–(15).

We fuse the low-frequency coefficient with the salient constraints, as follows:

min
∫
‖S f − Sc‖1 (16)

where Sf and Sc represent the salient values of the fused low-frequency coefficient and the constraint
value, respectively, and Sc is calculated by the original images:

Sc = H(SI , SV) =

√
(SI)

2 + (SV)
2 (17)

H represents the synthesis of the two-source image’s salient maps; we need to select the suitable
area to constrain the low-frequency coefficients. S(I) represents the salient area in the infrared image
and the S(B) represents the salient area in the visible image. As in Equation (17), the difference between
salient and non-salient areas were more pronounced, so the salient area can be emphasized.

We calculate the fused low frequency with the constraints, as follows:

Ed =
∫
‖ fd − α·Id − β·Vd‖2

2 +
∫
‖S fd
− Sc‖1 (18)

Discretizing this equation as:

Ed = ∑
Ω

( fd − α·Id − β·Vd)
2 + ∑

Ω

∣∣∣S fd
− Sc

∣∣∣ (19)

2.4. Nash Equilibrium to Update the Coefficients

After calculating the low and high coefficients, the obtained coefficients need to inverse the NSST.
Before this step, we should confirm that the coefficients of the different frequencies are the best, so we
use the Nash equilibrium for this purpose.

The idea of the Nash equilibrium can be shown by the following example:
The K represents the final set of the strategies:

K =
{

E∗d , E∗g
}

(20)

We need to ensure that the final choice Ed ∈
{

E∗d
}

is the best option for the every option of
{

E∗g
}

and the final choice Eg ∈
{

E∗g
}

is the best option for every option of
{

E∗d
}

. We set the two parameters
to update the different frequencies’ coefficients. Using σd to update the low-frequency coefficients,
and σg to update the high-frequency coefficients, when the values of Ed and Eg are smaller than the
parameters, we can ensure that the result of the fused image will be better.
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Thus, we obtain the fused low-frequency coefficient, and we can obtain the fused image by the
inverse NSST. The overall Algorithm 1 is described below:

Algorithm 1. The proposed method

Input: infrared image I, visible image V
Output: fused image f
Step 1. Initialize parameters, α = 0.5, σd = 0.04, σg = 0.01
Step 2. Decompose the I and V by NSST, get the Id , {Ig} and Vd, {Vg}
Step 3. Compute the Eg and Ed by Equation (12) and (18)

Where Eg < σg, and Ed < σd, compute the fd and fg
Else back to the step 3, update the α to minimize the Eg and Ed

Step 4. Use the fd and fg to inverse NSST to obtain the output.

Figure 3 shows the procedure of proposed method in this paper. After the NSST transformation
of the visible and infrared images, the low and high frequency coefficients were obtained. Fused the
coefficients based on the Nash equilibrium principle, and the final fused image was obtained with
INSST transformation.

Figure 3. The illustration of the proposed method.

3. Results and Analysis

In order to verify the effectiveness of the proposed algorithm, we experiment the infrared and
visible images in MATLAB 2016a (Core i3, clocked at 3.5 GHz, memory for 8 GB). The levels of
NSST is four, the directions of the first level is four, and the next level is double than the last level.
There are three groups of images, which include the salient target and rich details. When compared
with other algorithms, such as contrast pyramid (CP) [5], PCA [6], Guided Filter fusion (GFF) [27],
saliency fusion (SAL) [7], gradient transfer and total variation (GTF) [17], non-subsampled Contourlet
transform (NSCT) [11], and the NSST [15]. The validity of the algorithms is verified by subjective and
objective evaluation.

In Figure 4, four sets of experimental images are registered as infrared and visible images; the first
group has a more obvious salience of the target, the second set of images has rich details, and the third
set of images has a salient target and a blurred background; the fourth set of images has rich details
and a blurred background.
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Figure 4. Images for experiment: (a,b) the first set of experimental images; (c,d) the second set
of experimental images; (e,f) the third set of experimental images; and (g,h) the fourth set of
experimental images.

3.1. Performance Evaluation

As the Figure 5 shows, analyze the red box area in the images, the result of PCA algorithm is poor,
and the target is not obvious. In the Figure 5c,d,f, the target is brighter, but to enhance the target area
brightness, a greater impact on the environmental area is produced at the same time. There is more
serious blur in the Figure 5c, and the railing in the background is too smooth to detect in Figure 5d,f.
In the images of Figure 5a,e,g, the target brightness is similar to the proposed algorithm, but the edge
in Figure 5c is blurry, and the information of the background is missing. In the proposed algorithm,
we reflect the target and retain the background information as much as possible. The green box area
mainly reflects the details of the trees, and we can find that there is a shadow phenomenon in the result
of PCA, GFF, and SAL. The results of CP, GTF, and NSCT are fuzzier. The details of the NSST has been
promoted, but when compared with the proposed algorithm, our result is better in terms of the details.

Figure 5. The results for first set of images. (a) Contrast pyramid (CP); (b) principal component analysis
(PCA); (c) Guided Filter fusion (GFF); (d) saliency fusion (SAL); (e) gradient transfer and total variation
(GTF); (f) non-subsampled Contourlet transform NSCT; (g) non-subsampled shearlet transform (NSST);
and (h) proposed.

There are more details in Figure 6, comparing the proposed algorithm with other algorithms.
The red box is the text message in the roof, low brightness around the text, and their performance is
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not obvious in the results of CP, PCA, GTF, and the NSST. When compared with results of GFF, SAL,
and NSCT, there are no artificial artifacts in the proposed method. The proposed algorithm preserves
the detailed information on the basis of maximizing the brightness of the text background, and it is
more suitable for the human eye system. The green box area in the figure is a more pronounced salient
target, the contrast in the CP and the NSST is insufficient, and the information of the target can be
preserved in the results of PCA, SAL, and NSCT, but the seat information on the left side of the target
is basically lost. The result of the GFF algorithm has black block noise near the target. The proposed
algorithm is better with respect to details and salient constraints, and it is superior.

Figure 6. The results for second set of images. (a) CP; (b) PCA; (c) GFF; (d) SAL; (e) GTF; (f) NSCT;
(g) NSST; and (h) proposed.

Figure 7 shows the results of the third set of experimental images, processed by eight algorithms,
and the overall comparison shows that proposed algorithm has the best effect in terms of detail
reservation. The green box area in the figure shows some of the details of the trees, there is more
retention of infrared image information in the results of CP, PCA, GTF, and the NSST, but also a
lack of information is preserved in the visible images. The proposed algorithm is constrained by the
gradient for the high-frequency part, and the details are more reserved in the result. There are also
some algorithms that preserve the details, such as GFF, SAL, and NSCT, but when compared with the
proposed algorithm, they are not superior enough. The red box section is the target area, the target is
vague, and the edges are affected by the artificial artifacts in the GTF’s result. Additionally, there is a
loss of background information around the target in the other algorithms. The proposed algorithm can
reflect the target, and it has rich information of the background at the same time. It is more conducive
to further processing.

Figure 8 shows that the proposed algorithm has obvious advantages in detail handling when
compared with existing algorithms. In the proposed algorithm, the high frequency coefficients are
constrained by the gradient constraint, and the details are more reserved in the result. Although there
are also some other algorithms that can preserve the details, such as GFF, SAL, and PCA, they are
not superior enough when compared with the proposed algorithm. Observing the red box tree area,
the tree target is vague and the edges are affected by the artificial artifacts in the results of NSST, GTF,
and CP algorithms. The target is reflected more definitely and more details are reserved with the
proposed algorithms.
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Figure 7. The results for third set of images. (a) CP; (b) PCA; (c) GFF; (d) SAL; (e) GTF; (f) NSCT;
(g) NSST; and (h) proposed.

Figure 8. The results for fourth set of images. (a) CP; (b) PCA; (c) GFF; (d) SAL; (e) GTF; (f) NSCT;
(g) NSST; and (h) proposed.

3.2. Further Analysis

After visual comparison and the analysis of the experimental results, it is obvious that
the proposed algorithm has advantages in salient target enhancement and detail reservation.
The advantages and disadvantages of objective indicators can be more effective in confirming
the effectiveness of the proposed algorithm. Thus, eight algorithms were evaluated by using the
commonly used fusion image quality evaluation index; they are the quality of image (Q) [28], quality
of edge (Qe) [29], information entropy (H), average gradient (AVG), and overall cross entropy (OCE).
The results are as follows:

Tables 1–4 list the four groups of experimental results of the quality evaluation indicators.
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Table 1. Comparison of evaluation results of first experiment.

Algorithm Q Qe H AVG OCE

CP 6.0401 55.7800 6.7564 5.3759 6.7892
PCA 5.7493 52.4211 7.4664 4.9450 6.2556
GFF 5.1017 45.3709 6.7829 4.2921 6.1763
SAL 6.0435 56.3253 7.1872 5.4797 6.4765
GTF 4.1171 35.6740 6.6778 3.4104 6.8306

NSCT 6.0186 50.6460 6.9740 4.8288 6.6516
NSST 3.4279 29.1192 6.2750 2.7837 5.9401

Proposed 6.1977 59.9885 6.6024 5.9197 6.9581

Table 2. Comparison of evaluation results of second experiment.

Algorithm Q Qe H AVG OCE

CP 4.6699 43.5812 6.1763 4.4344 6.8412
PCA 4.1114 35.8304 6.9892 3.3226 7.1751
GFF 4.7462 41.7774 6.8365 3.9003 7.1223
SAL 4.9055 41.0244 6.8306 3.8867 7.3618
GTF 2.8752 25.9216 6.6204 2.4483 7.4233

NSCT 4.5353 38.1520 6.6516 3.5918 7.4169
NSST 2.5643 21..4194 5.9401 2.0280 7.3417

Proposed 5.0675 45.5668 6.8449 4.5225 7.4521

Table 3. Comparison of evaluation results of third experiment.

Algorithm Q Qe H AVG OCE

CP 6.5900 36.4337 6.2311 4.2565 6.6155
PCA 2.8677 17.8803 5.9258 1.9602 6.4579
GFF 4.9492 28.1646 6.2764 3.2447 6.5692
SAL 5.3270 33.3692 6.2769 3.6519 6.7221
GTF 2.9241 21.2003 6.0205 2.1727 6.0142

NSCT 4.9417 29.5920 6.1613 3.2930 6.8353
NSST 3.1185 18.4770 5.9227 2.0706 6.9215

Proposed 5.7246 40.3332 6.6474 4.3008 7.2371

Table 4. Comparison of evaluation results of fourth experiment.

Algorithm Q Qe H AVG OCE

CP 2.4312 62.4540 6.3764 4.5540 3.6240
PCA 3.6473 57.6553 5.9483 3.9369 2.7300
GFF 4.5772 53.543 5.4922 3.5770 2.0700
SAL 4.2346 42.4731 4.5290 1.3330 1.0230
GTF 1.8541 55.5872 6.5158 3.5109 2.3092

NSCT 3.9298 59.8357 6.1275 3.5552 3.0523
NSST 3.1185 52.2627 5.4491 3.8873 1.8936

Proposed 5.9032 65.4193 6.4327 4.5692 3.9829

Through the objective data of Tables 1–4, the numerical values of the proposed algorithm
are advantageous with respect to the image quality, edge quality, and the average gradient.
When comparing the information entropy with these algorithms, the proposed algorithm in the first
two groups of experiments were lower than the PCA algorithm but, compared with other algorithms,
the value is higher. Analyzing the PCA algorithm, the reason for the higher value is that the targets
are dark in the first two experimental images, so the contrasts are poor, and so the values are higher.
When comparing the evaluation of the overall cross-entropy index, the results of the proposed method
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are better than the other methods, and it is shown that the information obtained from the two source
images is the largest. Based on the experimental results, the proposed algorithm is at the optimal level.

4. Conclusions

The traditional fusion algorithms are summarized in this paper, and a new fusion algorithm is
proposed for the problem of large artificial parameters and large errors. The high- and low-frequency
coefficients’ characteristics after the NSST are analyzed, fusing the high-frequency coefficients based
on the gradient constraints, and fusing the low-frequency coefficients based on the salient constraint.
Before the inverse the NSST, the Nash equilibrium is used to update the coefficient, so that the fused
image can preserve the details and enhance the target at the same time. After experiments and objective
analysis, the validity of the algorithm is verified.
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