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Abstract: This work proposes a 3D shaped optic fiber sensor for ultrasonic stress waves detection
based on the principle of a Mach–Zehnder interferometer. This sensor can be used to receive
acoustic emission signals in the passive damage detection methods and other types of ultrasonic
signals propagating in the active damage detection methods, such as guided wave-based methods.
The sensitivity of an ultrasonic fiber sensor based on the Mach–Zehnder interferometer mainly
depends on the length of the sensing optical fiber; therefore, the proposed sensor achieves the
maximum possible sensitivity by wrapping an optical fiber on a hollow cylinder with a base.
The deformation of the optical fiber is produced by the displacement field of guided waves in the
hollow cylinder. The sensor was first analyzed using the finite element method, which demonstrated
its basic sensing capacity, and the simulation signals have the same characteristics in the frequency
domain as the excitation signal. Subsequently, the primary investigations were conducted via a
series of experiments. The sensor was used to detect guided wave signals excited by a piezoelectric
wafer in an aluminum plate, and subsequently it was tested on a reinforced concrete beam, which
produced acoustic emission signals via impact loading and crack extension when it was loaded to
failure. The signals obtained from a piezoelectric acoustic emission sensor were used for comparison,
and the results indicated that the proposed 3D fiber optic sensor can detect ultrasonic signals in the
specific frequency response range.

Keywords: ultrasonic wave; acoustic emission; optic fiber; Mach–Zehnder interferometer

1. Introduction

Ultrasonic stress waves, either passive acoustic emission signals or active guided waves,
propagating in a structure can be employed to interpret the structural status, especially to detect
small structural damage, such as debonding, lamination, crack, corrosion, etc. Over the past few
decades, the corresponding methods and techniques have also been proven effective and promising
in a variety of metal, composite, concrete and other materials and structures [1–8]. Ultrasonic stress
waves, generated by either transducers or a rapid release of energy within a stressed material,
are often at a fairly high frequency, from several tens of kHz to approximately several MHz.
These waves are captured usually by ultrasonic transducers, including piezoelectric wafers [7,9,10],
magnetostrictive sensors [11,12], electromagnetic acoustic transducers (EMAT) [13], macro-fiber
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composites [14,15], etc. The aforementioned ultrasonic transducers are used to convert mechanical
energy into electric or magnetic energy; therefore, they are more easily affected by electromagnetic
interference. Moreover, they also suffer from distinct disadvantages, such as a larger footprint, and a
lack of capability for continuous or long-term performance monitoring, such as corrosion-resistant and
electrical stability. Recently, the developments in fiber optic sensors (FOSs) have provided an excellent
substitution because optical fiber sensors have very small dimensions and are lightweight; they can be
embedded unobtrusively within structures; they have a wide range of operating temperatures and are
capable of transmitting a signal over a long distance; significantly, they resist the corrosion and are
immune to electromagnetic interference [16].

A variety of optical sensing technologies have been developed over the years [17–22],
and conventional FOSs are generally used to measure single-point or distributed strain [23]
and temperature in the low frequency range, which is often lower than kHz. However, by using phase
demodulation methods, FOSs can detect an ultrasonic signal with fairly high frequency, which is
from several kHz to several MHz. This frequency range is usually used by ultrasonic guided waves
based or acoustic emission methods for damage detection in civil, mechanical or aerospace structures.
In 1977, Bucaro et al. [24] of the U.S. Naval Research Laboratory demonstrated the possibility of
using an optical fiber to sense an acoustic field, which was produced by exciting a piezoelectric plate
with a sinusoidal signal in a water-filled tank. Experiments were carried out over the 40–400 kHz
frequency range. Gachagan et al. [25,26] proposed a condition monitoring system that used a
fiber-optic sensor. Two groups of optical fibers were embedded across the composite plate, and a
633 nm Mach–Zehnder interferometer was used to demodulate the acoustic signal, which was a
Lamb wave propagating in the plate. Using this system, a delamination through the thickness of
the composite plate was localized by analyzing reflected Lamb waves successfully in the laboratory.
These experimental results can be considered as a fundamental basis for structure health monitoring
using the Mach–Zehnder interferometer-based ultrasonic FOSs (UFOSs). The fiber-optic sensor based
on Mach–Zehnder can be also the distributed one [27], which has been used to detect leakage in
the long pipeline. In addition, using a Mach–Zehnder interferometer on different structures, other
demodulation techniques are also employed for detecting ultrasonic elastic signals [28], such as
Michelson interferometers [29,30], Fabry–Perot interferometers [31,32], Sagnac interferometers [33],
and Fiber Bragg Grating [34], or methods based on the Doppler effect of light wave transmission in
an optical fiber [35,36]. It should be noted that a considerable part of the sensors above were used to
detect acoustic emission signals.

In the aforementioned modulation techniques, the sensitivity of the UFOSs is closely related
to the effective length of the UFOS; the larger the L, the larger the sensitivity. In early experiments,
an optical fiber was attached to the structural surface or embedded within the structure along the whole
dimension as a line. This layout first leads to the directionality of UFOSs; second, it cannot be used to
estimate the source location even if two optical fibers were used, since they measure a line rather the the
single point. Another method is the use of the circular loop UFOS, which can obtain higher sensitivity
with a smaller area [36,37]. Its sensitivity can be controlled by changing the radius and number of turns,
and the circular UFOS is not directional. However, in order to achieve further improved sensitivity,
the circular UFOS will require a significantly large footprint. Additionally, in engineering practices,
especially for the civil engineering structures, the sensor should be attached to the structural surface,
which is often not well-prepared for reliable measurement. Recently, a fiber-optic ring sensor was
presented by Wei et al. [38]. The optical fiber was around the acrylic cylindrical skeleton. It can be
analyzed that the resonant frequency of the sensor is related to the resonant frequency of the skeleton,
which is high for the solid one. In addition, this work was demonstrated on only a small aluminum
plate for acoustic emission detection.

In this work, a 3D shaped optic fiber sensor, which is a hollow metal cylinder wrapped in optical
fibers, is proposed to detect the ultrasonic stress waves. The metal hollow cylinder will be attached
to the testing surface using different couplants, such as grease or superglue. In this case, removing
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the sensor from the structural surface will not damage the optical fiber. Moreover, this sensor may be
designed by changing the geometric parameters and material, and provides the lesser and designable
resonant frequency range.

In the remaining part of this paper, the basic working principle of a Mach–Zehnder interferometer
will be presented first. Subsequently, a finite element analysis with thin aluminum plates using the
proposed sensor is performed in detail to examine the feasibility of ultrasonic signal measurement.
Finally, in order to explore the characteristics of the proposed sensor further, it is applied on the
aluminum and reinforced concrete beam, respectively. The setups and results of the experimental test
program will be presented and discussed. The damage progress in a concrete beam was monitored
during a four-point bending test and acoustic emissions were detected using the proposed sensor and
a piezoelectric (PZT) wafer for comparison.

2. Mach–Zehnder Interferometer and the Fiber Optic Sensor

2.1. The Principle of Mach–Zehnder Interferometers

The pressure of the ultrasonic stress signal may induce optical phase modulation within the
optical fiber sensor bonded or embedded in the structures. The phase change can be demodulated
using a Mach–Zehnder interferometer, whose principle is presented schematically in Figure 1. It is
used to determine the relative phase shift variations between two light beams in two optical fibers,
which are derived by splitting light from the same light source and, thus, they have exactly the same
initial phase. In case the light propagating in one optical fiber is disturbed by the ultrasonic stress
signal, the phase change can be converted by the photodetector and then collected using a digital
oscilloscope. It should be noted that a polarization controller and variable optical attenuator are not
included on the reference arm, which would be useful to maximize a detector’s sensitivity, since this is
a demonstration only.

The damage progress in a concrete beam was monitored during a four-point bending test and acoustic 

emissions were detected using the proposed sensor and a piezoelectric (PZT) wafer for comparison. 
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Figure 1. Schematic of a Mach-Zehnder interferometer. 
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Figure 1. Schematic of a Mach–Zehnder interferometer.

The strain induced by the ultrasonic stress waves will lead to an optical phase shift in the sensing
arm. In general, the relative phase change can be expressed using three strain components [39]:

∆φ ≈ βLε11 −
1
2

βLn2(p11ε11 + p12ε22 + p12ε33), (1)

where β is the propagation constant of a single mode, β = k0n, k0 is a free-space propagation constant,
and n is the core index of the optical fiber. Furthermore, L is the length of the optical fiber; ε11 is the
strain in the direction of light propagation, i.e., the longitudinal direction of the optical fiber; ε22 and ε33

are the transverse strain, i.e., the radial direction of the optical fiber; p11, p12, and p13 are the elements
of the strain-optic tensor for a homogeneous isotropic material. When the sensing arm is bonded
onto the surface of the structure by an adhesive, the sensitivity of the phase change to these strains is
expressed as [37]:
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∆φ

ε11
≈ βL− 1

2
βLn2(p11 + 2vp12), (2)

where v is the Poisson’s ratio of the optical fiber.

2.2. The 3D Shaped Ultrasonic Fiber Optic Sensor

The aforementioned equations demonstrate that the sensitivity of the UFOSs based on a
Mach–Zehnder interferometer is highly dependent on the length of the optical fiber. In this work,
to obtain as large a response from the sensor as possible, the optical fiber is wrapped around a hollow
cylinder with a base, as shown in Figure 2. With this shape, the sensor sensitivity increases, while its
coverage is kept constant.

The aforementioned equations demonstrate that the sensitivity of the UFOS based on a Mach-Zehnder 

interferometer is highly dependent on the length of the optical fiber. In this work, to obtain as large a 

response of the sensor as possible, the optical fiber is wrapped around a hollow cylinder with a base, 

as shown in Figure 2. With this shape, the sensor sensitivity increase, while its coverage is maintained 

constant.  

 

 

 

 

 

 

 

Figure 2. The spiral optical fiber ultrasonic sensor. 

 

In this sensor, the optical fiber is not exposed to the structure directly, but receives the scattering 

ultrasonic signals through the hollow cylinder, as indicated in Figure 3, which shows the guided wave 

case. The scattering characteristics of guided waves are very complicated, because the interaction 

between the guided waves and scatterer causes mode conversions, which involve not only propagating 

modes but also non-propagating modes [27]. Therefore, this problem is difficult to analyze 

theoretically. However, it can still be concluded that the scattering energy into the hollow cylinder is 

dependent on the diameter of the hollow cylinder and the wavelength. A smaller stiffness of the 

cylinder wall results in a lower resonant frequency and a larger response; therefore, the response of 

the optical fiber is also dependent on the stiffness of the cylinder wall. Notably, a small diameter of 

the hollow cylinder leads to a large optical power loss; therefore, an appropriate diameter will be used 

in this work according to the literature. 

In addition, the scattering ultrasonic signals are reflected repeatedly within the hollow cylinder, 

which results in complicated overlapping signals. However, it is fairly easy to demonstrate that the 

main frequency characteristic is not affected significantly, as shown in Eqs. (3) and (4).  

  ( )e dj tF f t t
 


  ,                            (3) 

   
 1 2

1 1 2 2

1 2

( ) ( ) ( ) e d

e e e n

j t
n n

j tj t j t
n

F a f t t a f t t a f t t t

a a a F



 





 


       

     

 


.             (4) 
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Figure 2. The 3D shaped optical fiber ultrasonic sensor: (a) sketch; (b) photo.

In this sensor, the optical fiber is not exposed to the structure directly, but receives the ultrasonic
signals through the coupling between the hollow cylinder and the object structure, as indicated in
Figure 3, which shows the guided wave case. Actually, in the object structure, ultrasonic stress waves
can be not only guided waves but also bulk waves, surface waves , etc. In the interface between the
hollow cylinder and the object structure, ultrasonic stress waves can be considered as asymmetric
displacements applied on the hollow cylinder, even if they are the symmetric mode in the plate.
Along the axial direction of the hollow cylinder, there are three guided wave modes, i.e. longitudinal
mode (L mode), torsional mode (T mode), and flexural mode (F mode) [40]. The first two modes can be
excited by the symmetric loading. In this work, guided waves propagating in the hollow cylinder will
be F mode, since the excitation is asymmetric. The hollow cylinder is very short, and then the F mode
guided waves reflect repeatedly. The displacement field on the surface of the hollow cylinder complies
with the analytic wave equations of guided wave along the axial direction. Similarly, the deformation of
the coiled optical fiber is produced due to the coupling between the fiber and the surface of the hollow
cylinder. According to the theory of ultrasonic guided waves in the hollow cylinder, the displacement
components related to the deformation of the optical fiber are the radial and circumferential ones,
ur and uθ , which can be obtained analytically for the single guided wave mode. The length change for
single loop ∆Li can be obtained through the curvilinear integral. Thus, the total relative phase change
of the optical fiber with m loops is

∆φ =

[
1− 1

2
n2(p11 + 2vp12)

]
β

m

∑
i=1

∆Li. (3)

However, in case of multiple wave reflections, this problem is difficult to analyze theoretically.
However, it can still be concluded that the energy into the hollow cylinder is dependent on the diameter
of the hollow cylinder and the wavelength. A smaller stiffness of the cylinder wall results in a lower
resonant frequency and a larger response; therefore, the response of the optical fiber is also dependent
on the stiffness of the cylinder wall. Notably, when the optical fiber bends too much, there will be a
large optical power less; therefore, a small diameter of the hollow cylinder is avoided. An appropriate
diameter is used in this work.
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The aforementioned equations demonstrate that the sensitivity of the UFOS based on a Mach-Zehnder 
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In addition, in regard to the signal characteristics in the frequency domain, the ultrasonic
signals are reflected repeatedly within the hollow cylinder, which results in complicated overlapping
signals; however, it is fairly easy to demonstrate that the main frequency characteristic is not affected
significantly, as shown in Equations (4) and (5):

F(ω) =
∫ +∞

−∞
f (t)e−jωtdt, (4)

where f (t) is a narrow-band signal, which is used widely in guided ultrasonic wave applications.
F(ω) is the amplitude in the frequency domain:

F′(ω) =
∫ +∞

−∞
[a1 f (t− t1) + a2 f (t− t2) + ... + an f (t− tn)]e−jωtdt

=
[

a1ejωt1 + a2ejωt2 + ... + anejωtn
]

F(ω),
(5)

where ai is the scale factor of the amplitude, and ti is the time delay for each ultrasonic signal. The sum
in the above equation indicates the superposition of all signals, which have different amplitudes and
different arrival time, in the time domain. Equation (5) gives the amplitude in the frequency domain of
the overlapping signal. It shows that F′(ω) has a similar predominant frequency to F(ω).

3. Feasibility Analysis Using the Finite Element Model

Finite element analyses were first conducted on a metallic plate to explore the basic sensing ability
of the proposed sensor. A plate (200 mm × 160 mm × 1.6 mm) was modeled as aluminum material
using a SOLID185 element with ANSYS. Two square-shaped piezoelectric wafers (4 mm × 4 mm),
modeled using a SOLID5 element, were bonded onto both the upper and lower surfaces and the exact
same position, working as actuators, which can generate a single mode Lamb wave propagating in the
plate by applying symmetric or anti-symmetric electric fields. An aluminum hollow cylinder with a
base, an outer radius of 5 mm, and an inner radius of 4.6 mm represents the proposed sensor, which
was only used to demonstrate the wave scattering; therefore, there is no optical fiber surrounding it.
The proposed sensor was placed 60 mm away from the actuator. Figure 4 shows the size of the plate
and the layout of the piezoelectric actuator and the proposed sensor.

2r rL m rd m r        ,                           (5) 

where m is the loop number of the optical fiber. 

Subsequently, the total relative phase change of the optical fiber is 
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The narrow-band excitation signal was a 5-cycle sinusoid tone burst, defined by Equation (6),
with a fixed center frequency of 160 kHz, as shown in Figure 5.

V(t) = A
[

H(t)− H
(

t−
Ncycle

fc

)] [
1− cos

(
2π fct
Ncycle

)]
sin(2π fct), (6)

where A is the amplitude, H(t) Heaviside step function, fc the center frequency of the wave, and Ncycle
is the number of the signal cycles, and Ncycle = 5 in this work. With two piezoelectric actuators
applying an anti-symmetric electric field, only the omnidirectional A0 mode of a Lamb wave was
generated. This can reduce complexity of the guided waves propagating in the plate. Figure 6 shows
the in-plane displacement component u contour on the surfaces of the plate and the round tube at the
time 40 µs. The guided waves scattering from the plate through the strong coupling between them and
propagating on the round tube are clearly visible in Figure 6b. Behind the sensor, most of the energy
continues to propagate towards the plate edge.
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Figure 6. Propagation and scattering of Lamb waves in the aluminum tube: (a) top view; (b) axonometric
view; (c,d) the corresponding enlarged views.
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For the A0 mode of a Lamb wave, the out-of-plane displacement component w in the z-direction
is dominant, so the values of displacement components w on the surface of the small tube are extracted
and plotted in Figure 7a. The arrival time of the guided wave signal fits well with the value calculated
according to the theoretical value, which is shown as a dotted red line in Figure 7a. Owing to the
multiple reflections and mode conversions of the ultrasonic waves in the small round tube, after the
first major wave packet, the other wave packets cannot be recognized individually. Thus, the single
wave packet of a Lamb wave is hardly recognized. From this point of view, the signals received
by this UFOS do not reflect the actual shape of the ultrasonic stress waves. However, according to
Equation (5), the superposition of multiple packets does not change the frequency characteristic of
signals. Figure 7b shows the frequency spectra of the excitation signal and the signal received by UFOS.
It can be observed that the signal received by the UFOS can be still considered as the narrow-band,
and the main frequency components are contained within the frequency spectrum of the excitation
signal. All results obtained from finite element analysis indicate the mechanism and feasibility of the
proposed sensor.
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Figure 6. Lamb wave signals and their frequency spectra. 
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Figure 7. Lamb wave signals and their frequency spectra: (a) the displacement component w; (b) the
frequency spectra of the excitation signal and the displacement component w, respectively.

4. Experimental Investigations on the Specimens

In the following experimental investigations, the proposed UFOS was used to detect Lamb
waves propagating in an aluminum plate and receive acoustic emission signals produced in a
reinforced concrete beam. The former applications are often found in guided wave based structural
health monitoring methods, whereas the latter applications are often found in acoustic emission
non-destructive evaluation techniques. In both groups of experiments, the ultrasonic signals
were detected by a Mach–Zehnder interferometer, which consisted of a RIO ORION laser module
(RIO0175-5-01-3) (Redfern Integrated Optics Inc., Santa Clara, CA, USA), which is a modulation
laser source, and a Thorlabs FPD510 photodetector (MenloSystems GmbH, Martinsried, Bavaria,
Germany), which converts light signals into electric signals. The output voltage signals from the
photodetector were collected at a 2 GHz sampling rate using the digital oscilloscope Tektronix DPO
2024 (Tektronix, Beaverton, OR, USA).

4.1. Experiments on the Aluminum Plate

The aluminum plate is a representative waveguide frequently used in Lamb wave related
experiments. In this work, the proposed sensors were also demonstrated on an aluminum plate with
dimensions of 1200 mm × 1200 mm × 1 mm. The Lamb wave was excited by a piezoelectric wafer,
which was driven by a function generator Tektronix AFG3252 (Tektronix, Beaverton, OR, USA) and
a power amplifier TEGAM 2350 (TEGAM, Geneva, OH, USA), and received by two UFOSs and a
piezoelectric wafer for the purpose of comparison. Figure 8 shows the dispersion curves of Lamb wave
in the aluminum plate. The diameter and thickness of the piezoelectric wafers are 10 mm and 1 mm,
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respectively. They were connected with the digital oscilloscope with 2 GHz sampling rate. The different
dimensions of the two UFOSs are listed in Table 1. The optical fiber wrapped around the tube with
superglue is single-mode and the length is approximately 1.88 m (30 loops). The layout and location are
shown in Figure 9. The distance between the actuator and sensors is approximately 40 cm. All of the
actuator and sensors were attached onto the surface of the plate by superglue, which can be considered
as strong coupling. The experimental setup was shown in Figure 10.

Table 1. Dimensions of UFOSs (unit: mm).

Sensor No. Outside Diameter Height Wall Thickness Base Thickness

1 20 0.5 1.0
2

20
20 1.0 1.0

2 1.0 1.0 

0 200 400 600 800 1000
0

1

2

3

4

5

6

Frequency (kHz)

P
ha

se
 v

e
lo

ci
ty

 (
km

/s
)

  

0 200 400 600 800 1000
0

1

2

3

4

5

6

Frequency (kHz)

G
ro

u
p 

ve
lo

ci
ty

 (
km

/s
)

 

 (a)                                       (b) 

Figure 7. The dispersion curves for the aluminum plate 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The layout of the piezoelectric actuator and other sensors. (unit: mm) 

 

 

Figure 9. Experimental setup for Lamb waves generation and reception with UFOS and the 

piezoelectric wafers. 

 

The Lamb waves were generated from a low frequency of 30 kHz to a high frequency of 240 

 

1
2

00

1200

400

30°

The proposed sensor 

Piezoelectric 
sensor 

Piezoelectric 
actuator 

RIO ORION 
laser module

Power supply

Photodetector

Function generator

Power amplifier  

Oscilloscope  

S0 

A0 

S0

A0

(a)

2 1.0 1.0 

0 200 400 600 800 1000
0

1

2

3

4

5

6

Frequency (kHz)

P
ha

se
 v

e
lo

ci
ty

 (
km

/s
)

  

0 200 400 600 800 1000
0

1

2

3

4

5

6

Frequency (kHz)

G
ro

u
p 

ve
lo

ci
ty

 (
km

/s
)

 

 (a)                                       (b) 

Figure 7. The dispersion curves for the aluminum plate 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The layout of the piezoelectric actuator and other sensors. (unit: mm) 

 

 

Figure 9. Experimental setup for Lamb waves generation and reception with UFOS and the 

piezoelectric wafers. 

 

The Lamb waves were generated from a low frequency of 30 kHz to a high frequency of 240 

 

1
2

00

1200

400

30°

The proposed sensor 

Piezoelectric 
sensor 

Piezoelectric 
actuator 

RIO ORION 
laser module

Power supply

Photodetector

Function generator

Power amplifier  

Oscilloscope  

S0 

A0 

S0

A0

(b)

Figure 8. The dispersion curves for the aluminum plate: (a) phase velocity vs. frequency; (b) group
velocity vs. frequency.

0 200 400 600 800 1000
0

1

2

3

4

5

6

Frequency (kHz)

P
ha

se
 v

e
lo

ci
ty

 (
km

/s
)

  

0 200 400 600 800 1000
0

1

2

3

4

5

6

Frequency (kHz)

G
ro

u
p 

ve
lo

ci
ty

 (
km

/s
)

 

 (a)                                       (b) 

Figure 7. The dispersion curves for the aluminum plate 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The layout of the piezoelectric actuator and other sensors. (unit: mm) 

 

 

Figure 9. Experimental setup for Lamb waves generation and reception with UFOS and the 

piezoelectric wafers. 

 

The Lamb waves were generated from a low frequency of 30 kHz to a high frequency of 240 

kHz in increments of 10 kHz, in order to determine the sensitivities to different frequencies. Figures 8 

 

1
2

00

1200

400

30°

The proposed sensor 

Piezoelectric 
sensor 

Piezoelectric 
actuator 

RIO ORION 
laser module

Power supply

Photodetector

Function generator

Power amplifier  

Oscilloscope  

Figure 9. Layout of the actuator and sensors on the aluminum plate in the experimental investigations
(unit: mm).

0 200 400 600 800 1000
0

1

2

3

4

5

6

Frequency (kHz)

P
ha

se
 v

e
lo

ci
ty

 (
km

/s
)

  

0 200 400 600 800 1000
0

1

2

3

4

5

6

Frequency (kHz)

G
ro

u
p 

ve
lo

ci
ty

 (
km

/s
)

 

 (a)                                       (b) 

Figure 7. The dispersion curves for the aluminum plate 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The layout of the piezoelectric actuator and other sensors. (unit: mm) 

 

 

Figure 9. Experimental setup for Lamb waves generation and reception with UFOS and the 

piezoelectric wafers. 

 

The Lamb waves were generated from a low frequency of 30 kHz to a high frequency of 240 

kHz in increments of 10 kHz, in order to determine the sensitivities to different frequencies. Figures 8 

 

1
2

00

1200

400

30°

The proposed sensor 

Piezoelectric 
sensor 

Piezoelectric 
actuator 

RIO ORION 
laser module

Power supply

Photodetector

Function generator

Power amplifier  

Oscilloscope  

Figure 10. Experimental setup for Lamb waves generation and reception with UFOSs and the
piezoelectric wafers.



Sensors 2018, 18, 1218 9 of 16

The Lamb waves were generated from a low frequency of 30 kHz to a high frequency of 240 kHz in
increments of 10 kHz, in order to determine the sensitivities to different frequencies. Figures 11 and 12 show
the signals received by all the sensors at 70 kHz and 140 kHz, respectively. In all figures, the arrival time
of S0 and A0 modes is marked by the dotted red lines according to the group velocity shown in Figure 8.
In Figure 11, the first arrival wave packet is S0 mode Lamb wave for both UFOSs and the piezoelectric
sensor. In the latter, S0 and A0 modes may be distinguished, whereas, in the former, these two modes are
overlapping owing to the multiple reflections within the sensor body. Nevertheless, if there is a sufficient
time interval, these two modes can still be separated until S0 mode signal attenuates. The large response of
UFOS after 260 µs results from the reflections on all the edges, since their arrival times are similar.
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frequency curves” (for S0 mode only in this case), which demonstrate that the piezoelectric sensor has 
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frequencies. Specifically, the UFOS with a thinner wall exhibits higher sensitivity in the low 
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using a longer optical fiber. 

 

     

(a)                                      (b) 

 

  (c) 

Figure 8. Lamb wave signals from different UFOSs and piezoelectric wafer at 70 kHz. 

 

S0 A0 S0 A0 

S0 A0 

(a)

kHz in increments of 10 kHz, in order to determine the sensitivities to different frequencies. Figures 8 

and 9 show the signals received by all the sensors at 70 kHz and 140 kHz, respectively. In Figure 8, 

the first arrival wave packet is S0 mode Lamb wave for both UFOSs and the piezoelectric sensor. In 

the latter, S0 and A0 modes may be distinguished, whereas in the former, these two modes are 

overlapping owing to the multiple reflections within the sensor body. Nevertheless, if there is a 

sufficient time interval, these two modes can still be separated until S0 mode signal attenuates. The 

large response of UFOS after 260 μs results from the reflections on all the edges, since their arrival 

times are similar.  

In Figure 9, which is the higher frequency case, the piezoelectric sensor exhibits a larger 

response, which is also observed in Figure 10. The maximum values of the first wave packet in both 

the piezoelectric sensor and UFOSs are selected and plotted in this figure. These are the “tuning 

frequency curves” (for S0 mode only in this case), which demonstrate that the piezoelectric sensor has 

a lower sensitivity at low frequency, whereas the UFOSs exhibit high sensitivity at both low and high 

frequencies. Specifically, the UFOS with a thinner wall exhibits higher sensitivity in the low 

frequency range, but lower sensitivity in the high frequency range; whereas the opposite is true for the 

UFOS with a thicker wall. This can be attributed to the smaller structural stiffness of the UFOS with a 

thinner wall, which results in a lower resonant frequency and a larger response. Finally, although the 

sensitivity of the UFOS is lower than that of the piezoelectric sensor, it can be increased further by 

using a longer optical fiber. 

 

     

(a)                                      (b) 

 

  (c) 

Figure 8. Lamb wave signals from different UFOSs and piezoelectric wafer at 70 kHz. 

 

S0 A0 S0 A0 

S0 A0 

(b)

kHz in increments of 10 kHz, in order to determine the sensitivities to different frequencies. Figures 8 

and 9 show the signals received by all the sensors at 70 kHz and 140 kHz, respectively. In Figure 8, 

the first arrival wave packet is S0 mode Lamb wave for both UFOSs and the piezoelectric sensor. In 

the latter, S0 and A0 modes may be distinguished, whereas in the former, these two modes are 

overlapping owing to the multiple reflections within the sensor body. Nevertheless, if there is a 

sufficient time interval, these two modes can still be separated until S0 mode signal attenuates. The 

large response of UFOS after 260 μs results from the reflections on all the edges, since their arrival 

times are similar.  

In Figure 9, which is the higher frequency case, the piezoelectric sensor exhibits a larger 

response, which is also observed in Figure 10. The maximum values of the first wave packet in both 

the piezoelectric sensor and UFOSs are selected and plotted in this figure. These are the “tuning 

frequency curves” (for S0 mode only in this case), which demonstrate that the piezoelectric sensor has 

a lower sensitivity at low frequency, whereas the UFOSs exhibit high sensitivity at both low and high 

frequencies. Specifically, the UFOS with a thinner wall exhibits higher sensitivity in the low 

frequency range, but lower sensitivity in the high frequency range; whereas the opposite is true for the 

UFOS with a thicker wall. This can be attributed to the smaller structural stiffness of the UFOS with a 

thinner wall, which results in a lower resonant frequency and a larger response. Finally, although the 

sensitivity of the UFOS is lower than that of the piezoelectric sensor, it can be increased further by 

using a longer optical fiber. 

 

     

(a)                                      (b) 

 

  (c) 

Figure 8. Lamb wave signals from different UFOSs and piezoelectric wafer at 70 kHz. 

 

S0 A0 S0 A0 

S0 A0 

(c)

Figure 11. Lamb wave signals from different UFOSs and piezoelectric wafer at 70 kHz for: (a) UFOS
No. 1; (b) UFOS No. 2; (c) the piezoelectric sensor.

In Figure 12, which is the higher frequency case, the piezoelectric sensor exhibits a larger response,
which is also observed in Figure 13. The maximum values of the first wave packet in both the
piezoelectric sensor and UFOSs are selected and plotted in this figure. These are the “tuning frequency
curves” (for S0 mode only in this case), which demonstrate that the piezoelectric sensor has a
lower sensitivity at low frequency, whereas the UFOSs exhibit high sensitivity at both low and
high frequencies. Specifically, the UFOS with a thinner wall exhibits higher sensitivity in the low
frequency range, but lower sensitivity in the high frequency range, whereas the opposite is true for the
UFOS with a thicker wall. This can be attributed to the smaller structural stiffness of the UFOS with
a thinner wall, which results in a lower resonant frequency and a larger response. Finally, although
the sensitivity of the UFOS is lower than that of the piezoelectric sensor, it can be increased further by
using a longer optical fiber. Moreover, the tuning frequency curve of the proposed sensor is related to
the mode coupling effects, interferometer drift, etc.
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Figure 13. Tuning frequency curves for: (a) the piezoelectric sensor; (b) UFOSs No.1 and No. 2.

4.2. Experiments on the Reinforced Concrete Beam

Reinforced concrete is the most common civil engineering material. The acoustic emission
technique is one of the most effective methods for the crack monitoring of reinforced concrete
structures [41–43]. In this work, a reinforced concrete beam with width 150 mm, depth 250 mm,
and length 2000 mm was cast. The beam contained three tensile reinforcing bars with a diameter of
14 mm. The tested beams were instrumented with one UFOS and one piezoelectric sensor placed at
approximately the mid span for the purpose of comparison. Figure 14 shows the sketch of experimental
setup. The DiSP-4/PCI system, a product of the Physical Acoustic Corporation (Princeton Junction,
NJ, USA), was used in this work to collect the signals from the piezoelectric acoustic emission sensor.
This sensor is model R15α. The preamplifier used in the DiSP-4/PCI system has a gain of 40 dB.
Moreover, the sampling rate for the piezoelectric sensor is 5 MHz. In the following tests, the UFOS
with a wall and base thickness of 0.5 mm was used. The Mach–Zehnder interferometer used in this
test is the same as the above. Acoustic emission signals were produced via two methods: striking the
beam with a steel bar first and subsequently producing cracks by static loading.
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Figure 14. Experimental setup for acoustic emission tests on the reinforced concrete beam.

Since the noise affected the signals in both time and frequency domains, the noise signals were
collected by a data acquisition system and their frequency spectra were analyzed before the tests, such
that they can be distinguished from the acoustic emission signals. As shown in Figure 15, the noise
in the piezoelectric sensor is very faint, whereas, in the UFOS, there is high noise at the frequency of
approximately 114 kHz, which appeared in the frequency spectrum of the piezoelectric sensor signal.
The noise was not isolated from the acoustic emission signals in the following tests, but this figure
provides the useful information for understanding the following signals.

 

 

 

 

 

 

 

 

 

 

Figure 11. Experimental setup. 

 

Since the noise affected the signals in both time and frequency domains, the noise signals were 

collected by a data acquisition system and their frequency spectra were analyzed before the tests, such 

that they can be distinguished from the acoustic emission signals. As shown in Figure 12, the noise in 

the piezoelectric sensor is very faint; whereas, in the UFOS, there is high noise at the frequency of 

approximately 114 kHz, which appeared in the frequency spectrum of the piezoelectric sensor signal.  

 

   

(a)                                    (b) 

Figure 12. The frequency spectra of noise. 

 

The surface of the reinforced concrete beam was struck using a steel bar for three times, and the 

acoustic emission signals were collected and shown in Figures 13(a) and (c). The UFOS detected 

signals at the same time but with lower sensitivity. From the curves in the frequency domain, it can be 

observed that the UFOS has similar frequency components as the piezoelectric sensor in the low 

frequency range, but slightly more components in the high frequency range. Figure 14 further shows 

that the acoustic emission signals detected by the UFOS have lower amplitude but higher average 

frequency.  

 

Jack
Load cell 

LVDT 

Reinforced 
concrete beam 

UFOS and the 
piezoelectric 

sensor 

(a)

 

 

 

 

 

 

 

 

 

 

Figure 11. Experimental setup. 

 

Since the noise affected the signals in both time and frequency domains, the noise signals were 

collected by a data acquisition system and their frequency spectra were analyzed before the tests, such 

that they can be distinguished from the acoustic emission signals. As shown in Figure 12, the noise in 

the piezoelectric sensor is very faint; whereas, in the UFOS, there is high noise at the frequency of 

approximately 114 kHz, which appeared in the frequency spectrum of the piezoelectric sensor signal.  

 

   

(a)                                    (b) 

Figure 12. The frequency spectra of noise. 

 

The surface of the reinforced concrete beam was struck using a steel bar for three times, and the 

acoustic emission signals were collected and shown in Figures 13(a) and (c). The UFOS detected 

signals at the same time but with lower sensitivity. From the curves in the frequency domain, it can be 

observed that the UFOS has similar frequency components as the piezoelectric sensor in the low 

frequency range, but slightly more components in the high frequency range. Figure 14 further shows 

that the acoustic emission signals detected by the UFOS have lower amplitude but higher average 

frequency.  

 

Jack
Load cell 

LVDT 

Reinforced 
concrete beam 

UFOS and the 
piezoelectric 

sensor 

(b)

Figure 15. The frequency spectra of noise during the acoustic emission tests for: (a) the piezoelectric sensor;
(b) UFOS.

The surface of the reinforced concrete beam was struck using a steel bar for two times, and the
acoustic emission signals were collected and shown in Figure 16a,b. The proposed UFOS detected acoustic
emission signals successfully, but the amplitudes are a little less than those of the piezoelectric acoustic
emission sensor. Since the signals in the time domain are hard to compare, the frequency spectra are
given in Figure 16c,d for both signals. From the curves in the frequency domain, it can be observed
that the UFOS has similar frequency components as the piezoelectric sensor in the low frequency range,
but slightly more components in the high frequency range. Figure 17 further shows that the acoustic
emission signals detected by the UFOS have lower amplitude but higher average frequency. In this figure,
the x-axis denotes the number of acoustic emission events.

Furthermore, the reinforced concrete beam was tested under four-point loading. The loading was
applied manually by a 320 kN jack and the displacement speed was relatively constant, as shown in
Figure 18. The load was recorded by a load cell, and the displacement in the middle section of the beam
was measured using a linear variable differential transformer (LVDT). The load versus displacement
curve is illustrated in Figure 18. The following figures (Figure 19) show two groups of acoustic emission
signals, which are obtained during the failure process of the reinforced concrete beam. The rough area,
where the signals in Figure 19 were obtained, is shown as a red dotted oval in Figure 18. The other
frequency components show that both sensors can catch the signal emitting from the tensile cracks
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below approximately 100 kHz, which is the typical frequency range of the tensile cracks of concrete
materials. While the detailed frequency is different between the UFOS and piezoelectric sensor, this can
be attributed to the differences in their detailed sensitivity curves. Figure 20 demonstrates that the
characteristics of acoustic emission signals from both sensors are similar, as shown previously.
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It is known that piezoelectric acoustic emission sensors cannot measure the accurate structural
deformation, such as the structural strain, according to their working principles. Similarly, for the UFOS
proposed in this work, the voltage amplitudes of signals do not have a simple relationship with the
structural strain or deformation, but the signals collected by them can be used to evaluate the structural
damage certainly. Thus, the proposed sensor is more suitable to detect acoustic emission events.
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which is the typical frequency range of the tensile cracks of concrete materials. While the detailed 

frequency is different for the UFOS and piezoelectric sensor, this can be attributed to the differences 

in their detailed sensitivity curves. Figure 17 demonstrates that the characteristics of acoustic emission 

signals from both sensors are similar, as shown previously.  
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5. Conclusions

In this paper, a 3D shaped UFOS is proposed to sense ultrasonic stress waves, including guided
waves in the active damage detection methods and acoustic emission signals, which are collected
usually in the passive damage detection methods. Based on the principle of a Mach–Zehnder
interferometer, the UFOS is obtained by wrapping an optical fiber on a hollow cylinder with a base.
By being attached onto the surfaces of structures, the UFOS can catch the wave signals through strong
coupling and wave scattering.

First, an analytical model was developed for the proposed UFOS. The sensitivity of the 3D UFOS
also depends on its sensing length, and it can be realized with relatively limited space and long optical
fiber (up to several meters). Subsequently, its feasibility for the detection of guided ultrasonic waves
was demonstrated using finite element analyses. The results showed that the frequency characteristics
of the detected signals were affected slightly, as indicated by the formula. Experiments conducted on
the plate indicated that the UFOSs used in this work exhibit smaller responses than the piezoelectric
sensor, but they can be improved by increasing the optical fiber length. Moreover, the UFOS with a
thinner wall has higher sensitivity in the low frequency range as compared to the UFOS with a thicker
wall. Experiments conducted on the reinforced concrete beam further indicate that the UFOS can
detect the acoustic emission signals with a reasonable arrival time and frequency range in comparison
with the results from the piezoelectric sensor.
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