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Abstract: Equivalent circuits of piezoelectric structures such as bimorphs and unimorphs
conventionally focus on the bending vibration modes. However, the longitudinal vibration modes
are rarely considered even though they also play a remarkable role in piezoelectric devices. Losses,
especially elastic loss in the metal substrate, are also generally neglected, which leads to discrepancies
compared with experiments. In this paper, a novel equivalent circuit with four kinds of losses is
proposed for a beamlike piezoelectric structure under the longitudinal vibration mode. This structure
consists of a slender beam as the metal substrate, and a piezoelectric patch which covers a partial
length of the beam. In this approach, first, complex numbers are used to deal with four kinds
of losses—elastic loss in the metal substrate, and piezoelectric, dielectric, and elastic losses in the
piezoelectric patch. Next in this approach, based on Mason’s model, a new equivalent circuit is
developed. Using MATLAB, impedance curves of this structure are simulated by the equivalent
circuit method. Experiments are conducted and good agreements are revealed between experiments
and equivalent circuit results. It is indicated that the introduction of four losses in an equivalent
circuit can increase the result accuracy considerably.
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1. Introduction

Piezoelectric structures such as bimorphs and unimorphs are of great research interest for
a wide variety of applications including ultrasonic motors [1], microgrippers [2], and microcantilever
biosensors [3]. Impedance or admittance curves play a remarkable role in the study of piezoelectric
structures, and electromechanical properties like resonance frequency, antiresonance frequency, quality
factor, and losses are revealed in those curves. Various methods are used to obtain the impedance and
admittance curves theoretically. The typical one is Finite Element Analysis (FEA) which mainly relies
on FEA software like ANSYS and ABAQUS, but the software is expensive and losses in piezoelectric
materials are ignored. The other method is by way of a Mason equivalent circuits model. The equivalent
circuit separates the piezoelectric structure into an electrical port and two acoustic ports through the use
of an ideal electromechanical transformer [4]. It contains information derived from the mathematical
statement of the structure, such as the piezoelectric constitutive equation and the motion equation [5],
and gives much faster calculation compared with FEA [6]. Moreover, Mason’s model only uses
one-dimensional assumptions and a more accurate result can be obtained [7]. Therefore, it is more
suitable to use equivalent circuits to present the electromechanical behavior of piezoelectric structures.

Mason’s equivalent circuit of piezoelectric structures has been investigated extensively since its
introduction. Mason developed the Butterworth–Van Dyke (BVD) equivalent circuit from a one-port
model into a three-port model by considering not only the electrical terminal but also the mechanical
terminal of the piezoelectric patch [8]. Germano [9] used a simplified Mason’s equivalent circuit to
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describe the electromechanical and electroacoustic behaviors of a bimorph. Bao et al. [10] studied
the thickness mode of a bilaminar actuator. Yang et al. [11] modeled a piezoelectric energy harvester
composed of a rectangular unimorph. Wang et al. [12] simulated a bimorph piezoelectric energy
harvester with segmented electrodes. The above studies focus on the bending vibration modes
of piezoelectric patches and related metal substrates; thus, the motion equations which generate
the equivalent circuits are of flexure vibrations of the structures, and do not take the longitudinal
vibration modes into consideration because longitudinal vibrations are not the working condition of
those bimorphs and unimorphs. Nevertheless, for some particular applications, such as multimode
ultrasonic motors, the longitudinal vibration modes of piezoelectric patches play a remarkable
role [13–17]. For those ultrasonic motors, first-order longitudinal vibration is used together with
second- or fourth-order bending vibration to generate an elliptical motion locus at the drive feet.
Except for the study of magnetoelectric laminated composites by Dong et al. [18,19], little attention has
been drawn to the longitudinal vibration modes of piezoelectric structures.

Another aspect paid little attention is the loss of metal substrates in piezoelectric structures. Loss
mechanisms of piezoelectric materials have been investigated for a long time and plenty of studies
have been conducted. Holland and Uchino extensively described the losses in piezoelectric materials,
and found that there are three losses: dielectric, elastic, and piezoelectric losses [20,21]. Sherrit et al. [22]
compared the KLM (Krimholtz, Leedom, and Matthae) and Mason’s equivalent circuits including
the three losses. Chen et al. [23] established an equivalent circuit composed of complex material
numbers which represent the three losses. Dong et al. [24] developed Mason’s equivalent circuits
with three losses and external loads for different configurations of electrodes. Among those studies,
“pure” piezoelectric ceramics are the targets when the equivalent circuits are related with losses and no
metal substrates are concerned. This approach simplifies the derivation of motion equations, while for
practical applications, the metal substrates are included. Therefore, it is more accurate to take the whole
structure as a “composite” when investigating the properties of piezoelectric structures. In addition,
since the metal substrates account for large portions of the entire structures, the elastic losses of the
metal substrate should not be neglected while the losses in the piezoelectric ceramics are involved.

The aim of this paper is to establish an equivalent circuit for a beamlike piezoelectric structure
in longitudinal vibration mode. In the motion equation, elastic loss in the metal substrate and three
losses in the piezoelectric patch are built into the related parameters, and the longitudinal vibration
mode is dealt with. Based on the equation, an equivalent circuit with four kinds of losses is derived.
Using MATLAB, the impedance curve of the structure is obtained by calculating the equivalent circuit.
Finally, the effectiveness of the equivalent circuit considering both elastic loss of the metal substrate
and the three piezoelectric material losses is verified through experiments.

2. Loss and Motion Equation of the Piezoelectric Structure

Figure 1 shows the configuration of the piezoelectric structure, which consists a slender beam
(metal substrate, the length/thickness ratio is 15.9) made of aluminum and a piezoelectric patch (PZT).
The whole structure divides into four parts; Sections 0–2 represent the metal substrate. L0 and L1

denote the lengths of related sections in Cartesian coordinates. The nomenclature used in this paper is
summarized in Appendix B.
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Damping, which is responsible for dissipation of energy, is one of the key properties that
determines the dynamic responses of structures [25]. Damping from the oscillatory system results
in the decay of amplitude of free vibration [26]. Losses expressed in complex numbers are among
the most suitable indices for describing damping [27]. In this paper, we apply the superscript “*” to
indicate the complex number parameters of the metal substrate and PZT. It should be noted that the
superscript “*” differs from the complex conjugate. For the metal substrate, we use aluminum, and the
complex Young’s modulus is defined to describe the properties of aluminum.

Y∗M = YM(1 + j tan φM) (1)

where Y∗M is the complex Young’s modulus of aluminum, YM is the Young’s modulus, j is the imaginary
notation, and tan φM is the loss factor of aluminum, where the subscript “M” indicates the metal
substrate (aluminum).

For piezoelectric materials, heat generation due to losses leads to the degradation of material
properties; losses are a major concern for miniaturized devices with high power density. Loss in
piezoelectric materials is considered to have three components: dielectric, elastic, and piezoelectric.
The tangent functions with superscript “′”—tan δ′, tan φ′, and tan θ′—are used to represent “intensive”
dielectric, elastic, and piezoelectric loss factors; tan φP represents the “extensive” elastic loss factor
and the subscript “P” indicates the PZT [21,28]. In this paper, we use PZT5 for its relatively large
losses and low quality factor. Compared with PZT4, which has small losses and a higher quality
factor, the usage of PZT5 can illustrate the great impact of PZT losses when they are considered in the
equivalent circuit model.

CE∗
11 = CE

11(1 + j tan φP) (2)

εT∗
33 = εT

33(1− j tan δ′) (3)

sE∗
11 = sE

11(1− j tan φ′) (4)

d∗31 = d31(1− j tan θ′) (5)

where CE
11 is the stiffness under a constant electric field, εT

33 is the dielectric constant under constant
stress, sE

11 is the compliance under a constant electric field, and d31 is the piezoelectric constant.
A differential equation of motion is the basis for equivalent circuit establishment. Since this

structure is a slender beam and we assume that the boundary condition is free–free, with no external
force and only axial stress considered, the standard 3D piezoelectric constitutive equation can be
reduced to a 1D form [29]: {

D∗3 = εT∗
33 E3 + d∗31X∗1

S∗1 = d∗31E3 + sE∗
11 X∗1

. (6)

Losses in the piezoelectric patch and metal substrate are included in the derivation, so complex
numbers are used and are denoted with a superscript “*”, as mentioned before. Here, D3 is the electric
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displacement in the z-direction, E3 is the electric field in the z-direction, X1i is the axial stress in the
x-direction, and S1 is the axial strain in the x-direction.

Section 0 and PZT in this structure play the main role and act as the excitation source; the motion
equation is derived upon it and the corresponding parameters are depicted in Figure 2. Here, ρ, V,
m, A, and h stand for the density, volume, weight, cross-sectional area, and thickness, respectively;
the related subscripts “P” and “M” indicate that those parameters describe the PZT and the metal
substrate (aluminum), respectively; and similarly hereinafter. A driving voltage U is applied on the
electrode surface of the PZT, U0 is the amplitude of voltage, and E3 = U/hP. Lw stands for the width of
the structure.Sensors 2018, 18, x FOR PEER REVIEW  4 of 18 
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Using the Lagrange function and the variational principle [30], the motion equation of the
piezoelectric structure under longitudinal vibration mode is obtained:

ρM AM(
∂2u∗

∂t2 ) + ρP AP(
∂2u∗

∂t2 ) = APCE∗
11 (

∂2u∗

∂x2 ) + AMY∗M(
∂2u∗

∂x2 ) (7)

where u∗ is the displacement along the x-direction and is a function of both position x and time t.
According to the principle of composite materials, we can rewrite Equation (7) as the following:

ρB(
∂2u∗

∂t2 ) = Y∗B(
∂2u∗

∂x2 ) (8)

where ρB is the density of the PZT and metal substrate (aluminum) as a composite material and Y∗B is
the composite Young’s modulus as a complex number [31].

ρB =
mM + mP
VM + VP

(9)

Y∗B =
VP

VM + VP
CE∗

11 +
VM

VM + VP
Y∗M (10)

3. Equivalent Circuit with Four Kinds of Losses

Equivalent circuits derive from the mathematical statement of the structure, namely, the motion
equation. Although the calculation procedures of the equivalent circuit are developed in Mason’s
edited book [32], the main parameters presented here are in complex numbers. For Section 0 and PZT
of this piezoelectric structure, the motion equation is expressed in Equation (8). Since we focus on the
longitudinal vibration, a displacement formula for an arbitrary point in Section 0 and PZT is assumed:

u∗(x, t) = [α cos(k∗0x) + β sin(k∗0x)]ejωt, (11)
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where α and β are coefficients that will be introduced later. Here, k∗0 is the wave number rewritten as
a complex number, and

k∗0 = ω

√
ρB
Y∗B

(12)

where ω is the angular frequency.
The velocity formula for an arbitrary point is

ν∗ = ∂u∗(x,t)
∂t

= jω[α cos(k∗0x) + β sin(k∗0x)]ejωt . (13)

The distribution of forces and velocities in Section 0 and PZT is shown in Figure 3, where ν

stands for velocity and F for force. The subscript “P” represents the PZT, and “M” the metal substrate;
the other subscript “1” means that the corresponding parameter is located at the position of x = 0, and
“2” means the same but at x = L0.
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3.1. Equivalent Circuit of PZT

First of all, we conduct the equivalent circuit of the PZT part. According to Figure 3, we have{
ν∗P1 = ν∗P1|x=0

ν∗P2 = −ν∗P1

∣∣x=L0

. (14)

By inserting Equation (13) into (14) and calculating coefficients α and β, we get
α =

ν∗P1

jωejωt

β = −
1

jωejωt

[
ν∗P1

tan(k∗0 L0)
+

ν∗P2
sin(k∗0 L0)

] . (15)

The strain of an arbitrary point in the PZT is

S∗1 =
∂u∗(x, t)

∂x

= −
ν∗P1k∗0 sin(k∗0x)

jω
−

k∗0 cos(k∗0x)
jω

[
ν∗P1

tan(k∗0 L0)
+

ν∗P2
sin(k∗0 L0)

].
(16)
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The corresponding stress is

X∗1P =
1

sE∗
11

S∗1 −
d∗31

sE∗
11

E3

= −
ν∗P1k∗0 sin(k∗0x)

jωsE∗
11

−
k∗0 cos(k∗0x)

jωsE∗
11

[
ν∗P1

tan(k∗0 L0)
+

ν∗P2
sin(k∗0 L0)

]−
d∗31

sE∗
11

E3.
(17)

Then, the forces can be expressed as

F∗P1 = −APX∗1P|x=0

=
APk∗0
jωsE∗

11

[
ν∗P1 + ν∗P2
sin(k∗0 L0)

− ν∗P1 tan(
k∗0 L0

2
)

]
+

d∗31

sE∗
11

LwU
(18)

F∗P2 = −APX∗1P
∣∣x=L0

=
APk∗0
jωsE∗

11

[
ν∗P1 + ν∗P2
sin(k∗0 L0)

− ν∗P2 tan(
k∗0 L0

2
)

]
+

d∗31

sE∗
11

LwU.
(19)

The following is the calculation of the current flow I*. The charge Q* of the electrode surface is

Q∗ =
s

D∗3 dxdy

=
d∗31

sE∗
11

Lw[α cos(k∗0 L0) + β sin(k∗0 L0)− α]ejωt +

(
εT∗

33 −
d∗231

sE∗
11

)
LwL0

U0ejωt

hP

. (20)

The current flow I* is

I∗ = dQ∗
dt

= −
d∗31

sE∗
11

Lw
[
ν∗P1 + ν∗P2

]
+ jω

(
εT∗

33 −
d∗231

sE∗
11

)
LwL0

U0ejωt

hP

(21)

and we assume

C∗0 =

(
εT∗

33 −
d∗231
sE∗

11

)
LwL0

hP
(22)

N∗ =
d∗31Lw

sE∗
11

. (23)

Meanwhile, we use the following equations to simplify the expression of Equations (18)–(21).

APk∗0
jωsE∗

11

1
sin(k∗0 L0)

= RP1 + jGP1 (24)

APk∗0
jωsE∗

11
tan(

k∗0 L0

2
) = RP2 + jGP2 (25)

C∗0 = C01 + jC02 (26)

In Equations (24) and (25), we collect all the real parts of those parameters together and mark them
as RP1 and RP2, which represent resistors (the mechanical energy consumption). The imaginary parts
of those parameters are marked as GP1 and GP2, which stand for reactance (the mechanical energy
storage). The complete expressions of RP1, RP2, GP1, and GP2 are listed in Appendix A. In Equation
(26), the real part and imaginary part of C∗0 are separated into C01 and C02.
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By inserting Equations (24)–(26) into Equations (18)–(21) correspondingly, we have the final
equations to decide the equivalent circuit of PZT, as follows:

F∗P1 = (RP1 + jGP1)(ν
∗
P1 + ν∗P2)− (RP2 + jGP2)ν

∗
P1 + N∗U

F∗P2 = (RP1 + jGP1)(ν
∗
P1 + ν∗P2)− (RP2 + jGP2)ν

∗
P2 + N∗U

I∗ = −N∗(ν∗P1 + ν∗P2) + jωUC01 −ωUC02

(27)

Kirchhoff’s current law and Kirchhoff’s voltage law are applied to build the equivalent circuit of
PZT, as shown in Figure 4, where Z0 = 1

jωC01
, Z1 = 1

−ωC02
.
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M M

A Y k k L
R jG

jω
= +   (34) 

  

Figure 4. The equivalent circuit of the PZT.

3.2. Equivalent Circuit of Section 0 and Complete Equivalent Circuit

According to Figure 3, and ignoring the effect of the bonding layer, we have{
ν∗M1 = ν∗P1
ν∗M2 = ν∗P2

. (28)

The strain of an arbitrary point in Section 0 is

S∗1 = ∂u∗(x,t)
∂x

= − ν∗M1k∗0 sin(k∗0 x)
jω − k∗0 cos(k∗0 x)

jω [
ν∗M1

tan(k∗0 L0)
+

ν∗M2
sin(k∗0 L0)

].
(29)

The corresponding stress is

X∗1M = Y∗BS∗1
= −Y∗Bν∗M1k∗0 sin(k∗0 x)

jω − Y∗Bk∗0 cos(k∗0 x)
jω [

ν∗M1
tan(k∗0 L0)

+
ν∗M2

sin(k∗0 L0)
].

(30)

The forces can then be expressed as

F∗M1 = −AMX∗1M|x=0

=
AMY∗Bk∗0

jω

[
ν∗M1+ν∗M2
sin(k∗0 L0)

− ν∗M1 tan( k∗0 L0
2 )
] (31)

F∗M2 = −AMX∗1M
∣∣x=L0

=
AMY∗Bk∗0

jω

[
ν∗M1+ν∗M2
sin(k∗0 L0)

− ν∗M2 tan( k∗0 L0
2 )
]
.

(32)
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We use the following equations to simplify the expression of Equations (31) and (32). The complete
expressions of RM1, RM2, GM1, and GM2 are listed in Appendix A and their meanings are the same as
introduced before.

AMY∗Bk∗0
jω

1
sin(k∗0 L0)

= RM1 + jGM1 (33)

AMY∗Bk∗0
jω

tan(
k∗0 L0

2
) = RM2 + jGM2 (34)

By inserting Equations (33) and (34) into Equations (31) and (32) correspondingly, we have the
final equations to decide the equivalent circuit of Section 0, as follows:{

F∗M1 = (RM1 + jGM1)(ν
∗
M1 + ν∗M2)− (RM2 + jGM2)ν

∗
M1

F∗M2 = (RM1 + jGM1)(ν
∗
M1 + ν∗M2)− (RM2 + jGM2)ν

∗
M2

. (35)

Then, Kirchhoff’s current law and voltage law are applied to build the equivalent circuit of
Section 0, as shown in Figure 5.
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The equivalent circuits of remaining sections have the same derivation procedures as that of
Section 0, apart from the different lengths and different directions of forces and velocities, as shown
in Figure 6.
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Finally, by combining the above separate equivalent circuits together, we can acquire the complete
equivalent circuit of the introduced piezoelectric structure, as shown in Figure 7. The complete
expressions of RM3, RM4, GM3, and GM4 are listed in Appendix A. This equivalent circuit represents
the longitudinal vibration mode of a beam with a PZT covering part of the beam length. The principle
of our new equivalent circuit differs from the conventional Mason’s equivalent circuit, for losses in
the metal substrate and PZT are integrated, as mentioned in the introduction. The effectiveness of the
proposed equivalent circuit will be verified through experiments.
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4. Experiment

In order to verify the effectiveness of our equivalent circuit, a prototype of this piezoelectric
structure was fabricated and tested using a Polytec PSV-400 laser vibrometer (PolyTec Inc., Waldbronn,
Germany). The experimental setup is shown in Figure 8. The piezoelectric structure is supposed to
work at free–free boundary conditions, so it was lightly fixed using expanded polystyrene boards
to avoid restriction on its longitudinal vibration. The driving signal was generated by a function
generator (33210A, Keysight Technologies, Inc., Santa Rosa, CA, USA) and amplified by a power
amplifier (HFVA-42, Nanjing Foneng Technology Industry Co., Ltd., Nanjing, China). The vibrometer
measurement system contained a Junction Box, Vibrometer Controller, Data Management System,
Scanning Head, computer, and monitor, as shown in Figure 8.
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Figure 9 shows the vibrometer measurement results of this structure. The tested edge surface
is perpendicular to the x-axis (Figure 1) and demonstrates longitudinal vibration at a frequency of
81.4 kHz. Aor stands for the original cross-sectional area, while Ac and Ae are the contraction and
extension of the original cross-sectional area, respectively. This structure was also measured using an
Agilent 4294A impedance analyzer (Keysight Technologies, Inc., Santa Rosa, CA, USA); the frequency
tested by the impedance analyzer was 81.5 kHz, which is close to the vibrometer result of 81.4 kHz.
An impedance curve was obtained and compared with the equivalent circuit result. The geometry and
material parameters, including loss factors, are listed in Tables 1 and 2. For the loss factor of aluminum
tan φM, since the loss factor decreased with increasing frequency [33] and this structure was tested at
high frequency (above 20 kHz), we assumed that it was equal to 1.0 × 10-3 [34,35]. The piezoelectric
ceramic we used was Haiying P-51 (Haiying Enterprise Group Co., Ltd., Wuxi, Jiangsu, China), a PZT5
ceramic. Compared with PZT4, the loss factors in tanφ′, tanθ′, and tanφP of the P-51 are much higher;
thus, the impact of losses can be clearly seen in the impedance curves in Figure 10.
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Figure 10. Comparison of impedance curves between experiment and equivalent circuit simulations:
(a) experiment vs equivalent circuit with three PZT losses and aluminum loss (Al loss); (b) experiment vs
equivalent circuit with three PZT losses; (c) experiment vs equivalent circuit with Al loss; (d) experiment
vs equivalent circuit with no losses.

Table 1. Loss factors of aluminum and PZT5.

Parameter tan φM tan φP tan δ′ tan φ′ tan θ′

Value 1.000 × 10−3 10.20 × 10−3 2.000 × 10−2 11.70 × 10−3 21.80 × 10−3

Table 2. Geometry and material parameters of the piezoelectric structure.

Parameter Value Parameter Value Parameter Value

L0 (mm) 12.60 hP (mm) 0.7000 SE
11 (m2/N) 15.00 × 10−12

L1 (mm) 10.40 ρM (kg/m3) 2700 d31 (C/N) −185.0 × 10−12

Lw (mm) 5.300 ρP (kg/m3) 7450 εT
33 1750

hM (mm) 2.100 YM (Gpa) 69.00 CE
11 (N/m2) 15.00 × 1010

Figure 10a demonstrates that the impedance–frequency result of the equivalent circuit considering
both the three PZT losses and the elastic loss of the metal substrate (aluminum loss or Al loss) has good
agreement with the experimental result. It is notable that the deviations in Figure 10 are mostly the
values of impedances ZfR and ZfA in resonance and antiresonance frequencies, respectively, while the
frequency values simulated by the equivalent circuit have high accuracy and discrepancies in resonance
and antiresonance frequencies are close to 0%. As for the values of impedances, for neglect of the
aluminum loss (Figure 10b) or for neglect of the PZT losses (Figure 10c), the discrepancies in impedance
values become higher compared with the experiment results. Moreover, the neglect of both the PZT
losses and the aluminum loss leads to extremely high discrepancies (Figure 10d). The details are listed
in Table 3. In summary, the consideration of losses (both PZT losses and Al loss) in the equivalent
circuit increases its accuracy and thus makes it more effective in the study of piezoelectric structures.



Sensors 2018, 18, 947 12 of 17

Table 3. Comparison of results between experiment and equivalent circuit (EC) simulations.

fR (Hz) fA (Hz) ZfR (Ω) ZfA (Ω)

Experiment 81,500 82,280 143.78 15,479
EC with PZT losses and Al loss 81,516 82,295 137.50 14,169
Percentage of error (%) 0.019632 0.018230 4.3678 8.4631
EC with only PZT losses 81,520 82,291 89.301 20,765
Percentage of error (%) 0.024540 0.013369 37.890 34.149
EC with only Al loss 81,521 82,287 49.116 43,724
Percentage of error (%) 0.025767 0.0085075 65.839 182.47
EC without PZT losses and Al loss 81,522 82,287 0.24246 2,817,880
Percentage of error (%) 0.026994 0.0085075 99.831 18,105

5. Conclusions

This paper describes an equivalent circuit of a piezoelectric structure which consists of a slender
aluminum beam and a PZT patch. The longitudinal vibration mode of this structure was studied, and
the elastic loss of aluminum and three PZT losses were built into the equivalent circuit. The result
of the equivalent circuit, namely, the impedance curve of this structure, has good agreement with
the experiment result. The typical frequencies such as resonance and antiresonance simulated by the
equivalent circuit are almost the same as the experiment results, while the values of impedances in
resonance and antiresonance have percent errors of 4.3678% and 8.4631%, respectively. By contrast,
neglect of the elastic loss of aluminum in the equivalent circuit leads to discrepancies of 37.890%
and 34.149% in values of impedances, neglect of the PZT losses leads to discrepancies of 65.839%
and 182.47%, and neglect of both the PZT losses and the aluminum loss leads to discrepancies of
99.831% and 18,105%. The introduction of PZT losses and aluminum loss to the equivalent circuit
dramatically contributed to the result accuracy. This result can be extended to the analysis and design of
piezoelectric sensors and actuators. In this paper, only longitudinal vibration is investigated; however,
in practical applications, such as in multimode ultrasonic motors, bending or torsional modes are
involved. Thus, the next step of this work is to study the equivalent circuits combined with multiple
vibration modes on more practical assumptions, and to increase the result accuracy of equivalent
circuits containing losses.
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Appendix A

The real part RP1 and imaginary part GP1 in the equivalent circuit of the PZT are

RP1 =
AP(KOAχ1 + KOBχ2)

ωSE
11
(
χ2

1 + χ2
2
) (A1)

GP1 =
AP(KOBχ1 − KOAχ2)

ωSE
11
(
χ2

1 + χ2
2
) (A2)

where ω is the angular frequency, ω = 2πf, and f is frequency.

δ1 =
VPCE

11
VP + VM

+
VMYM

VP + VM
(A3)

δ2 =
VPCE

11 tan φP

VP + VM
+

VMYM tan φM
VP + VM

(A4)
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KOA =

√√√√ω2ρB

(√
δ2

1 + δ2
2 + δ1

)
2
(
δ2

1 + δ2
2
) (A5)

KOB =

√√√√ω2ρB

(√
δ2

1 + δ2
2 − δ1

)
2
(
δ2

1 + δ2
2
) (A6)

χ1 = tan φ′ sin(KOAL0) cosh(KOBL0)− cos(KOAL0)sinh(KOBL0) (A7)

χ2 = tan φ′ cos(KOAL0)sinh(KOBL0) + sin(KOAL0) cosh(KOBL0) (A8)

The real part RP2 and imaginary part GP2 in the equivalent circuit of PZT are

RP2 =
AP(χ3χ5 + χ4χ6)

ωSE
11
(
χ2

5 + χ2
6
) (A9)

GP2 =
AP(χ4χ5 − χ3χ6)

ωSE
11
(
χ2

5 + χ2
6
) (A10)

where

χ3 = KOA tan
(

KOAL0

2

)
− KOBtanh

(
KOBL0

2

)
(A11)

χ4 = KOAtanh
(

KOBL0

2

)
+ KOB tan

(
KOAL0

2

)
(A12)

χ5 = tan
(

KOAL0

2

)
tanh

(
KOBL0

2

)
+ tan φ′ (A13)

χ6 = 1− tan φ′ tan
(

KOAL0

2

)
tanh

(
KOBL0

2

)
(A14)

and

C01 =
L0Lw

hP

εT
33 −

d2
31

(
1− tan θ′2 + 2 tan θ′ tan φ′

)
SE

11

(
1 + tan φ′2

)
 (A15)

C02 =
L0Lw

hP

−d2
31

(
tan φ′ − tan φ′ tan θ′2 − 2 tan θ′

)
SE

11

(
1 + tan φ′2

) − εT
33 tan δ′

. (A16)

The real part RM1 and imaginary part GM1 in the equivalent circuit of the metal substrate
(Section 0) are

RM1 =
AM(χ7χ9 + χ8χ10)

ω
(
χ2

9 + χ2
10
) (A17)

GM1 =
AM(χ8χ9 − χ7χ10)

ω
(
χ2

9 + χ2
10
) (A18)

where
χ7 = δ1KOA − δ2KOB (A19)

χ8 = δ1KOB + δ2KOA (A20)

χ9 = − cos(KOAL0)sinh(KOBL0) (A21)

χ10 = sin(KOAL0) cosh(KOBL0). (A22)
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The real part RM2 and imaginary part GM2 in the equivalent circuit of the metal substrate
(Section 0) are

RM2 =
AM(χ11χ13 + χ12)

ω
(
χ2

13 + 1
) (A23)

GM2 =
AM(χ12χ13 − χ11)

ω
(
χ2

13 + 1
) (A24)

where

χ11 = (δ1KOA − δ2KOB) tan
(

KOAL0

2

)
− (δ1KOB + δ2KOA)tanh

(
KOBL0

2

)
(A25)

χ12 = (δ1KOA − δ2KOB)tanh
(

KOBL0

2

)
+ (δ1KOB + δ2KOA) tan

(
KOAL0

2

)
(A26)

χ13 = tan
(

KOAL0

2

)
tanh

(
KOBL0

2

)
. (A27)

The real part RM3 and imaginary part GM3 in the equivalent circuit of the metal substrate
(Sections 1 and 2) are

RM3 =
AMYM(χ14χ16 + χ15χ17)

ω
(
χ2

16 + χ2
17
) (A28)

GM3 =
AMYM(χ15χ16 − χ14χ17)

ω
(
χ2

16 + χ2
17
) (A29)

where
χ14 = KOA − KOB tan φE (A30)

χ15 = KOB + KOA tan φE (A31)

χ16 = − cos(KOAL1)sinh(KOBL1) (A32)

χ17 = sin(KOAL1) cosh(KOBL1). (A33)

The real part RM4 and imaginary part GM4 in the equivalent circuit of the metal substrate (Sections
1 and 2) are

RM4 =
AMYM(χ18χ20 + χ19)

ω
(
χ2

20 + 1
) (A34)

GM4 =
AMYM(χ19χ20 − χ18)

ω
(
χ2

20 + 1
) (A35)

where

χ18 = (KOA − KOB tan φE) tan
(

KOAL1

2

)
− (KOB + KOA tan φE)tanh

(
KOBL1

2

)
(A36)

χ19 = (KOA − KOB tan φE)tanh
(

KOBL1

2

)
+ (KOB + KOA tan φE) tan

(
KOAL1

2

)
(A37)

χ20 = tan
(

KOAL1

2

)
tanh

(
KOBL1

2

)
. (A38)
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Appendix B

Table A1. Nomenclature.

Symbol Meaning

Ac cross-sectional area of metal substrate in contraction situation
Ae cross-sectional area of metal substrate in extension situation
α coefficient in displacement formula

AM cross-sectional area of metal substrate
Aor cross-sectional area of metal substrate in original position
AP cross-sectional area of PZT
β coefficient in displacement formula

C∗0 capacitor as a complex number
C01 real part of C∗0
C02 imaginary part of C∗0
CE

11 stiffness under constant electric field
CE∗

11 stiffness under constant electric field as a complex number
d31 piezoelectric constant
d∗31 piezoelectric constant as a complex number
D∗3 electric displacement of z-direction as a complex number

δi(i = 1, 2) coefficients in the formula of equivalent circuit
e∗31 piezoelectric constant as a complex number
εT

33 dielectric constant under constant stress
εT∗

33 dielectric constant under constant stress as a complex number
E3 electric field in z-direction
fA antiresonance frequency
fR resonance frequency

F∗Mi (i = 1, . . . , 6) forces of metal substrate as a complex number
F∗Pi (i = 1, 2) forces of PZT as a complex number

GMi (i = 1, . . . , 4) imaginary parts of complex numbers in equivalent circuit of metal
substrate

GPi (i = 1, 2) imaginary parts of complex numbers in equivalent circuit of PZT
hM thickness of metal substrate
hP thickness of PZT
I* current as a complex number
j imaginary notation

k∗0 wave number as a complex number
KOA coefficients in the formula of equivalent circuit
KOB coefficients in the formula of equivalent circuit
L0 length of Section 0
L1 length of Section 1 and Section 2
Lw width of piezoelectric structure
mM weight of metal substrate in Section 0
mP weight of PZT in Section 0
N* force factor as a complex number
ν∗ velocity as a complex number

ν∗Mi (i = 1, . . . , 6) velocity of metal substrate as a complex number
ν∗Pi (i = 1, 2) velocity of PZT as a complex number

ω angular frequency
χi (i = 1, . . . , 20) coefficients in the formula of equivalent circuit

Q* charge of PZT electrode surface
ρB density of composite structure
ρM density of metal substrate
ρP density of PZT

RMi (i = 1, . . . , 4) real parts of complex numbers in equivalent circuit of metal
substrate

RPi (i= 1, 2) real parts of complex numbers in equivalent circuit of PZT
S∗1 strain as a complex number
SE

11 compliance under constant electric field
SE∗

11 compliance under constant electric field as a complex number
t time
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Table A1. Cont.

Symbol Meaning

tan δ′ “intensive” dielectric loss factor of PZT
tan φ′ “intensive” elastic loss factor of PZT

tan φM elastic loss factor of metal substrate
tan phiP “extensive” elastic loss factor of PZT

tan θ′ “intensive” piezoelectric loss factor of PZT
u* displacement along the x-direction
U driving voltage
U0 amplitude of driving voltage
VM volume of metal substrate in Section 0
VP volume of PZT
X∗1 stress as a complex number

X∗1M stress of metal substrate as a complex number
X∗1P stress of PZT as a complex number
Y∗B composite Young’s modulus as a complex number
YM Young’s modulus of metal substrate
Y∗M Young’s modulus of metal substrate as a complex number
Z0 the expression of C01 in equivalent circuit
Z1 the expression of C02 in equivalent circuit
ZfA impedance in antiresonance frequency
ZfR impedance in resonance frequency
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