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Abstract: Night-time fruit-picking technology is important to picking robots. This paper proposes
a method of night-time detection and picking-point positioning for green grape-picking robots
to solve the difficult problem of green grape detection and picking in night-time conditions with
artificial lighting systems. Taking a representative green grape named Centennial Seedless as the
research object, daytime and night-time grape images were captured by a custom-designed visual
system. Detection was conducted employing the following steps: (1) The RGB (red, green and blue).
Color model was determined for night-time green grape detection through analysis of color features
of grape images under daytime natural light and night-time artificial lighting. The R component of the
RGB color model was rotated and the image resolution was compressed; (2) The improved Chan–Vese
(C–V) level set model and morphological processing method were used to remove the background
of the image, leaving out the grape fruit; (3) Based on the character of grape vertical suspension,
combining the principle of the minimum circumscribed rectangle of fruit and the Hough straight
line detection method, straight-line fitting for the fruit stem was conducted and the picking point
was calculated using the stem with an angle of fitting line and vertical line less than 15◦. The visual
detection experiment results showed that the accuracy of grape fruit detection was 91.67% and the
average running time of the proposed algorithm was 0.46 s. The picking-point calculation experiment
results showed that the highest accuracy for the picking-point calculation was 92.5%, while the lowest
was 80%. The results demonstrate that the proposed method of night-time green grape detection and
picking-point calculation can provide technical support to the grape-picking robots.
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1. Introduction

With the rapid development of computer and automatic control technology, picking robots
for fruits and vegetables have been gradually applied in agricultural production [1,2]. Grapes are
a popular fruit and are produced on a large scale across the world. However, grape harvesting is
time-consuming as well as labor-intensive. Therefore, by designing a grape-picking robot to realize
automatic harvesting in a grape orchard this can raise grape production and increase income. This is
of great importance for implementing automatic production in agriculture using picking robots.

There exists extensive research on the visual technology of picking robots so far, much of which
focuses on visual recognition and location under natural light [3,4]. Bulanon et al. used luminance and
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the color difference of red (LCD) model to conduct segmentation of the Fuji apple using the optimal
threshold with an accuracy of 88%. However, the error rate reached 18% in backlight circumstances [5].
Ji et al. conducted research on an apple-picking robot with a color charge-coupled device (CCD)
camera installed on the end-effector to perform apple recognition. The picking experiments indoors
and outdoors demonstrated that the success rate of apple recognition and positioning was 77% [6,7].
Chen et al. presented a vision-cognition framework for tomato harvesting which used the fusion
of calibrated observation data from red, green and blue–depth sensors (RGB-D) installed on the
head and the hand of a humanoid [8]. Bargoti and Underwood presented an image-processing
framework based on multi-scale multi-layered perceptrons (MLP) and convolutional neural networks
(CNN) for apple detection and counting using orchard image data. The research showed that
using CNN and watershed segmentation (WS) resulted in the best performance for this dataset [9].
Chaivivatrakul and Dailey proposed a technique based on texture analysis, interest-point feature
extraction and descriptor computation by using low-cost web camera sensors. This method has
a high accuracy, with single-image detection rates of 85% for pineapples and 100% for bitter
melons [10]. Kitamura and Oka designed a lighting system for the picking robot, which contained
an image-processing system, a camera-positioning system, and a cutting device to improve the ability
to recognize sweet peppers [11]. Font et al. developed an automatic fruit-harvesting system by using
a stereovision camera to estimate the size, distance and position of the fruits. The robotic arm was used
to mechanically pick up the fruits. The average distance error was from 4–5%, and the average diameter
error was up to 30% in the case of a small object and in a range from 2–6% in the case of a pear and
an apple [12]. Kusumam et al. used a low-cost RGB-D sensor under real-world conditions to address
the tasks of detecting mature broccoli heads in the field and providing their 3D locations relative to the
robotic vehicle [13]. Mehta et al. presented an estimation-based localization approach based on a new
sensing procedure that uses multiple (≥2) inexpensive monocular cameras to estimate the unknown
position of the fruits [14]. Rakun et al. described a method for apple fruit detection that relied on the
combination of the object’s color, texture and 3D properties. This work could measure their size and
model by estimating the fruit yield [15]. Sa et al. presented a novel approach for fruit detection of
an autonomous agricultural robotic platform using deep CNN. They used color RGB and near-infrared
(NIR) modalities for sweet pepper detection and the precision and recall performances improved from
0.807 to 0.838 [16]. Henten et al. focused on the individual hardware and software components of the
robot, including the autonomous vehicle, the manipulator, the end-effector, the two computer-vision
systems and a control scheme. With a success rate of 80%, the robot can pick cucumbers without human
interference [17]. Stein et al. presented a novel multi-sensor framework that used a state-of-the-art
faster regions with CNN features (faster R-CNN) detector. The pair-wise correspondences were
established between images using trajectory data provided by a navigation system. In addition,
a novel light-detection and ranging (LiDAR) component generates image masks for each canopy
automatically, allowing each fruit to be associated with the corresponding tree. The experiment
showed that single, dual and multi-view methods can all provide precise yield estimates, but only
the proposed multi-view approach can do so without calibration, with an error rate of only 1.36% for
individual trees [18]. Amatya et al. developed a machine-vision system for splitting and detecting
cherry tree branches. For this system, a Bayesian classifier was used to segment the image, and then the
curve-fitting method was used to connect the branches. The overall accuracy in detecting individual
branches was 89.2% [19]. Yamamoto et al. developed a strawberry-harvesting robot and set up
a visual system to detect strawberries in which white, red and green light-emitting diodes (LEDs)
were used to increase detection accuracy, with a strawberry pick rate of 67.1% [20]. Among this
research, mutable light conditions in natural environments are the key factors leading to recognition
and positioning errors.

To solve the disturbance of changing natural light to picking robots, some researchers have
performed visual recognition in night-time or greenhouse environments. Payne et al. developed the
automatically estimated mango crop yield algorithm at night by reducing its dependence on color
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features and increasing its use of texture filtering and hessian filtering in particular [21]. Arefi et al.
used a vision sensor and designed a recognition algorithm which could be adapted to the illumination
conditions of a greenhouse. The total accuracy of the proposed algorithm was 96.36% [22]. Linker and
Kelman developed a novel approach which was based on analyzing the spatial distribution of the light
around highlights (“bright spots”) in night-time images under artificial illumination [23]. Qureshi et al.
used texture-based dense segmentation as well as the shape-based fruit detection method for the
automated counting of fruit in mango tree canopies by using night-time imaging [24]. A conclusion
can be drawn from the above research that night-time visual technology for fruit detection or picking
with stable artificial illumination can effectively improve the accuracy of fruit recognition and picking
localization, avoiding the influence of different intensity or non-uniform distribution of natural light.

Currently, there exists some research on the visual recognition of grapes and several works
mainly focus on recognition and positioning under natural light [25,26]. Dolezel et al. introduced and
evaluated a classifier based on an artificial neural network for white wine grape recognition in a natural
environment [27]. Since the natural light can influence the recognition performance, some research
about night-time grape recognition has been undertaken. For instance, Reis et al. proposed a system for
the detection and location in the night-time natural environment of bunches of grapes in color images.
The system could distinguish white and red grapes and calculate the location of the bunch stem with
recognition accuracies of 97% for red grapes and 91% for white grapes [28]. The above research mainly
focuses on the recognition of grapes with different colors in different environments. The calculation of
picking points is seldom discussed by researchers and also the speed of the algorithm of the picking
robot is seldom considered.

The grape is a kind of multi-fruit, and its visual detection and location are more difficult than
for a single-fruit species. Also, it is more difficult to recognize green grapes than red and brown
ones in a natural environment. At the same time, natural lighting conditions can be a disturbance.
Precise visual location is difficult for the grape picking robot. In this research, a kind of green grape
named Centennial Seedless is selected to conduct the detection and picking-point calculation experiment
at night-time. The Chan–Vese (C–V) level-set model proposed by both Chan and Vese is combined
with the level-set idea and M-S mode [29,30]. In this paper, an algorithm based on the improved C–V
level-set model was proposed to conduct night-time green grape detection. Combining the principle
of the minimum circumscribed rectangle of fruit and the method of Hough straight-line detection,
the picking point of the fruit stem was calculated. This proposed method of night-time green grape
detection and picking-point calculation provides technical support to the grape-picking robots.

2. Materials and Methods

2.1. Image Acquisition

The picking robot and its vision-sensing system are shown in Figure 1. The vision-sensing
system in this research consisted of two CCD cameras, LED illumination and the sensing algorithm.
The CCD cameras used in the system were the MV-E800C produced by Microvision Corporation
(Guangzhou, China), with a maximum resolution of 3312 × 2496 pixels. The illumination used
consisted of the XREWHT-L1-Q5 LED lights produced by the CREE Corporation (Durham, NC, USA),
with light temperature of 5700–7000 K, luminous flux of 93.9–100 LM·W−1, and a field angle of 90◦,
which can provide efficient stable illumination in a night-time environment. The structure of the
grape-picking robot is shown in Figure 1b and the picking experiment of the night-time grape is shown
in Figure 1c.

The lighting source was 50–100 cm from the grape fruit, in the same horizon level of the camera,
parallel to the shooting direction. The acquisition time of the images was on 30 September 2016.
The grape variety used was Centennial Seedless. The grape cluster was conical with an average weight
of 1300 g and a maximum weight of 2500 g. Its fruit grain is elongated oval, close against, not easy
to fall, of average weight 5.2 g and maximum weight 10 g. There were 324 daytime images and



Sensors 2018, 18, 969 4 of 17

637 night-time images in total. The resolution of the images was 3000 × 2000 pixels. The daytime
images were collected with natural light, while the night-time images were collected with LED
illumination. Examples of the daytime and night-time image are shown as Figure 2.Sensors 2018, 18, x FOR PEER REVIEW  4 of 17 
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Figure 2. Daytime and night-time grape pictures. (a) Daytime grape cluster; (b) night-time grape cluster.

2.2. Color Feature Analysis of Images

The RGB color model as selected for the detection. We chose 50 image blocks of grapes, leaves and
other parts, respectively, at daytime and night-time. There were 300 image blocks in total and the size
of the blocks was 40 × 40. Samples of the image blocks are shown in Figure 3a. The blocks at daytime
contained different lighting conditions like front lighting, back lighting and shading. The blocks at
night-time were illuminated by artificial LED lighting. The histograms derived from these 300 blocks
are shown in Figure 3b,c. With the lighting condition changing at daytime, the daytime images
changed more in terms of brightness. Since the daytime histograms contained blocks of different
lighting conditions, there were large amount of overlaps between the grape fruit and the background
(leaf and other objects) in all three components of the RGB color model, while at night-time, the stable
artificial illumination seldom changed the image brightness. This means that by controlling the
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lighting intensity, the grape could be recognized better. According to Figure 3c, the R component
had least overlap between fruit and the background. In this component, the total brightness of the
fruit was higher than the background. The brightness of the fruit was between 150 and 250, while the
background was mainly lower than 150 and only a few parts were higher than 150. This indicated that
the R component was suitable for the night-time detection of Centennial Seedless.
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3. Grape Detection and Picking-Point Calculation

3.1. Algorithm Flow Diagram

The proposed algorithm flow of this study is shown in Figure 4.
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3.2. Image Pre-Processing

In order to facilitate image batch processing, the resolution of the images was firstly adjusted to
300 × 450 pixels, and the R component of the RGB color model was extracted. Mao et al. used the
rotation of Hue to move the high score range to the low point range, eliminating the reflective parts
in some images, thus improving the recognition effect [31,32]. As shown in Figure 3c, under a stable
artificial light environment, the R component of the grape area was mainly concentrated from 160 to
215. So, this paper according to Formula (1) rotated the R component values, and the treatment effect
is shown in Figure 5. Through the use of the rotation of the R component, the grape component values
move into the high-value range, the original component value is bigger than the grape component
values and move to the low score interval, and the grape area become the largest area in the full
component values. After the rotation of the R component, the background area of the high score
value caused by the reflection, the external light source or other factors was moved to the low value
range. Therefore, the component value of the background region was in the low value range, and the
component value of the grape region was in the high score range, making the segmentation simpler
and more precise. {

r1 = r + 35, r + 35 ≤ 255
r1 = r + 35− 255, r + 35 > 255

, (1)

where r is the component value of the original R component image, and r1 is the component value of R
component image after rotation.
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Figure 5. Comparison of R component before and after rotation. (a) The original R component image;
(b) the R component image after rotation; (c) the original R component histogram; (d) the R component
histogram after rotation.

3.3. Fruit Area Extraction

3.3.1. Improved Chan–Vese (C–V) Level-Set Model

The gradient information was not utilized by the C–V level-set model, which evolves the curve
by minimizing the energy function. An image I(x, y) with a definition domain of Ω is divided into
two regions Co and Cb of the target and background by a closed boundary, and their average grayscale
value are Co and Cb respectively. Then, the energy function is defined as follows:

E(C, Co, Cb) = µL(C) + vSo(C) + λo

∫
Co

|I − Co|
2
dxdy + λb

∫
Cb

|I − Cb|
2
dxdy, (2)

where L(C) is the length of the closed contour line C; and So(C) is the internal region of Co, namely the
area of Co, µ, v ≥ 0, λ0, λb ≥ 0 are the weight coefficients of the energy terms. The value of the energy
function decreased as the iteration times inceeased. When E(C) reached the minimum, the contour
curves of the two regions could be obtained. Using the traditional C–V level-set model, the level-set
function needs to be updated within its definition domain with a large amount of calculation and
long iteration time. Therefore, in this paper, based on method of other researchers [33,34], the image
segmentation algorithm of the C–V level-set model is improved with better expression of the initialized
level-set function. After the improvement, C will be shown as a straight line in plane Ω which is
divided into an upper region Ωu(y ≥ y0) and a lower region Ωd(y < y0), and the improved initialized
function φ0 is shown as Formula (3):

φ0(x, y) =

{
ρu, (x, y) ∈ Ωu

ρd, (x, y) ∈ Ωd
, ρu × ρd < 0 , (3)

where ρu and ρd are the fixed constants. Suppose y = y0 to be the boundary between the upper and
lower regions, the I (x, y) is processed using dispersed network segmentation with y0 = j0h, and the
Formula for calculation of φn+1 can be evolved as:

φn+1
i,j − φn

i,j

∆t
=


δh

(
φn

i,j

)
R, j< j0 − 1, j >j0

δh

(
φn

i,j

)(
− u

h sign(ρu − ρd) + R
)
, j = j0

δh

(
φn

i,j

)( u
h sign(ρu − ρd) + R

)
, j = j0 − 1

, (4)
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where δ(·) is regularization form of the Dirac function, φn
i,j = φ

(
n∆t, xi, yj

)
; ∆t is time step; h is the

spatial step size of the discrete grid; i, j is the grid point coordinate; and u ≥ 0 is an invariant parameter.
The improved C–V level-set model improves efficiency of the horizontal set image segmentation

from the aspects of time step and initialized curved surface. The level set of the improved model
does not need to be reinitialized, the evolution time and the number of iterations are greatly reduced,
and the segmentation efficiency is greatly improved with a better segmentation effect than traditional
level-set model. The example of the segmentation effect using the improved C–V level set model is
shown as Figure 6.
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Figure 6. Segmentation with improved Chan–Vese (C–V) level-set model. (a) Segmentation result;
(b) binary image.

3.3.2. Improved Algorithm Speed

The traditional C–V level-set model is applied with a large amount of computation and long
operation time. It usually takes a few minutes to obtain results with the traditional model. The improved
C–V level-set model increases the efficiency of the image segmentation. However, through testing, it is
found that the running time of the algorithm using a R component image with 300× 450 pixels is lengthy
and not suitable for robot-picking jobs. Therefore, we propose an algorithm based on the improved
C–V level-set model. Adopting the idea of the pyramid theory “Coarse to fine” [35], the resolution of
the R component image is changed firstly to 50 × 75 pixels, and the grape fruit contour is obtained
with the improved C–V level-set model; then the contour is enlarged to 300 × 450 pixels to obtain the
rough contour. Using the enlarged contour as the initial contour of the level set, this continues to be
iterated with the improved C–V level set to obtain a more accurate contour.

3.3.3. Fruit Detection

The pseudo code of the image segmentation and target extraction was as follows (in Algorithm 1).

Algorithm 1: The pseudo code of image segmentation and targets extraction
Input: Night-time grape image

1. Change the image size to 300 × 450 pixels.
2. Extract the R component histogram of the image.
3. Calculate the number a of pixels with values greater than 140 and the number b of all pixels in the image.
4. If (a/b > 7.75%).
5. Rotate the R component image.
6. Change the image size to 50 × 75 pixels and obtain the grape fruit contour using the improved C–V

level set.
7. Enlarge the grape fruit contour to 300 × 450 pixels as the initial contour, and iterate with the improved

C–V level set to obtain a more accurate contour.
8. Obtain binary image using the accurate contour.
9. For all pixel regions (value for 1) in the binary image.
10. Retain the largest region and fill the hole for every pixel region.
11. Perform open and close operator to delete the noise.
12. End for.
13. End if.

Output: Binary image that contains only the grape clusters.
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There are four situations for grape images captured by the picking robot: (1) multi-fruit clusters
in the same image; (2) fruit clusters out of the center light source; (3) no fruit cluster in the image;
and (4) a stem connecting to the fruit is blocked. Since situation (4) is a complex comprehensive
problem, it will not be considered in this paper.

For the first situation, multi-fruit clusters exist in the segmented binary image, and the largest fruit
area will be reserved for further detection. For situations (2) and (3), according to the analysis results
in Figure 7, there are some differences in the histograms for these different situations. There are mainly
four types of images for discussion in the different histograms: (i) grape clusters near a light-source
center; (ii) grape clusters near a light-source center and on the edge of the image; (iii) grape clusters on
the edge of the image but not near a light-source center; and (iv) no grape cluster, shown in Figure 7.
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Figure 7. Histograms of the R component of the night-time images in different conditions.
(a,e) Grape clusters near the light-source center; (b,f) grape clusters near light-source center and
on the edge of the image; (c,g) grape clusters out of the light-source center and on the edge of the
image; (d,h) no grape cluster.

The four types of images and their corresponding histograms are shown in Figure 7, from which
we find the ratios of the R component values, which are greater than 140, and all values are different.
Based on this feature, supposing the number of pixels with R component values over 140 to be a and
the total pixel number to be b, 25 images of each type are chosen for analysis. In 50 images of the first
two cases (as shown in Figure 7a,b), there are 49 images with the ratio of a and b greater than 7.75%,
but the latter two cases (shown in Figure 7c,d) have a ratio of a and b less than 7.75%. So, we use
Formula (5) to distinguish between the first two cases and the latter two. An image meeting Formula (5)
can be proven to exist in a grape cluster in a light-source center or multi-grape clusters in a light-source
center. If the image is not meeting Formula (5), it will not be further processed with detection for no
grape cluster near a light-source center.

a
b
> 7.75% (5)

In order to test the classification accuracy of Formula (5), 400 images were selected for testing,
and the confusion matrix of test results was shown in Table 1. According to the test results of Table 1,
384 images of the 400 images were classified correctly and the classification accuracy was 96.0%.

Table 1. The confusion matrix of Formula (5) classification results.

Reality
Classification Results

a b

Amounts Ratio Amounts Ratio

a 1 193 96.5% 7 3.5%
b 2 9 4.5% 191 95.5%

1 Exists in a grape cluster in a light-source center or multi-grape clusters in a light-source center. 2 No grape cluster
near a light-source center.

Summarizing the aforementioned analyses, this research proposed a method to remove the
background with procedures shown as follows:

Step 1. Extract the R component histogram of the night-time image. Then, calculate the number a of
pixels with values greater than 140 and the number b of all pixels in the image. If Formula (5) is
workable, go to Step 2. Otherwise, stop the grape picking.
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Step 2. Perform segmentation of the grape image combining the improved C–V level-set segmentation.
Then, conduct morphology processing and remove the minor noise.

Step 3. Calculate the number of connected regions. If the number is greater than 1, retain the largest
region. If the number is equal to 1, the image is regarded as being a single grape cluster.

The improved C–V level-set was used to remove the background. Compared to the frequently
changing lighting environment of daytime, the nocturnal image-capturing system has stable
illumination, so segmentation of the grape image using the improved C–V level set is automatically
stable. The segmentation effect of the proposed algorithm is shown as Figure 8.
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Figure 8. Detection results of the improved algorithm. (a) Night-time image; (b) initial iteration
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3.4. Picking-Point Calculation

The grape cluster is generally grown vertically to be under the action of gravity [36]. Based on
this growth characteristic, the method of grape picking point calculation is proposed as follows:

Step 1. Determine the minimum enclosing rectangle of the grape fruits and figure out its centroid.
Step 2. Draw a vertical line through the centroid of the grape cluster, set the area above the rectangle to

be the region of interest, detect straight lines of the region of interest using the Hough straight
line-detection method (as the red box in Figure 9e), and remove straight lines with an angle
between them and vertical lines greater than 15◦, shown as Figure 9a,b.

Step 3. Calculate the angle of the remaining straight lines and the vertical line, take the fitting straight
line with the minimal angle between itself and the vertical line as the line with the picking point,
and take the middle point of the fitting segment as the picking point shown as Figure 9c.
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Figure 9. The calculation of the picking point. (a) Horizontal line and vertical line; (b) detection of line
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The effect of using the above algorithm to calculate the grape picking point is shown as Figure 9d–f.

4. Results and Discussion

To validate the performance of the proposed algorithm, the experiments of green grape detection
and picking-point calculation in a night-time environment were performed.

4.1. Grape Fruit Detection Experiment

This study designed detection experiments using 300 night-time images. We first resized these
images into 300 × 450. Then we used Photoshop to label the fruit area artificially; this can provide
criteria to evaluate the algorithm. Detection results were compared with the artificial labels. In order to
facilitate the analysis of the experimental data, the percentage of correct area (PCA) and the percentage
of false area (PFA) were used evaluate the results, as defined by Formulas (6) and (7):

Percentage of correct area =
grape pixels recognized correctly

all grape pixels
× 100% (6)

Percentage of false area =
pixels recognized falsely as grape

all pixels recognized as grape
× 100% (7)

The detection results and picking-point calculations are shown in Figure 10. Table 2 shows the
experimental results. For the PCA value, 275 images were over 90%; 12 images were between 70% and
90%; and the remaining 13 images were of lower accuracy. Regarding images over 90% as correct
results, the accuracy rate for night-time grape detection was 91.67%. For the PFA value, 271 images
were less than 5%; 16 images were between 5% and 15%; and the remaining 13 images were greater.
Regarding images over 5% as wrong results, the error rate for night-time grape detection was 9.67%.
Table 3 is the confusion matrix of grape fruit detection. The correct rate of fruit pixel detection is 91.70%,
while it was 93.66% for the background pixels. The experimental results show that the proposed
algorithm can detect the grape fruits effectively in the night-time natural environment and would be
good guidance for the night-time operation of green grape-picking robots.
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Table 2. Statistical results of grape-detection experiment.

Percentage of Correct Area Percentage of False Area

>90% 70~90% <70% <5% 5~15% >15%

Total image 300 275 12 13 271 16 13
Ratio 100% 91.67% 4.00% 4.33% 90.33% 5.33% 4.33%

Table 3. Confusion matrix of segmentation result.

Reality
Segmentation Result

Fruit Pixels Background Pixels

Amounts Ratio Amounts Ratio

Fruit pixels 34,545,372 91.70% 3,125,679 8.30%
Background pixels 179,314 6.34% 2,649,635 93.66%

According to the experimental results above, in the daytime environment the color and texture
feature of the fruit and the leaf change as the lighting condition does. The acquired images in this
environment have a complex background containing earth, sky and buildings, while in the night-time
environment, the intensity of the illumination is controllable. The influence of the surroundings can be
reduced greatly, which can improve the correct rate of visual detection effectively.

The error results of grape detection and picking-point calculation are shown in Figure 11. There are
two main reasons: (1) the captured grape image becomes blurred resulting in a detection error
because of relative motion between the camera and target grape cluster. (2) Some grape-detection
errors were caused by inappropriate control of the distance between the camera and target grape
cluster. A light spot appears in the grape image under conditions of relatively short distance
between the illumination equipment and the grape cluster, while dark images occur under condition
of relatively long distance. In order to reduce the possible grape-detection errors, the following
measures can be taken: (1) the distance between the illumination equipment and the target grape
cluster should be controlled well. In addition, the distance-measuring device can be added to the
image-capturing system and brightness of the LED lamp should be changed according to the measured
data. (2) The image-processing algorithm should be optimized for grape clusters with a disturbance in
our further study.
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4.2. Picking-Point Calculation Experiment

The picking-point calculation experiment was carried out using the proposed method with
240 night-time green grape images. When the calculated picking point is on the stem of the grape
cluster, or out of the stem but with a horizontal distance to the stem of less than or equal to 5 pixels,
the picking-point calculation is considered to be successful. Then, night-time images were captured
with a depth distance of 50 to 100 cm between the camera and the grapes. The distance was determined
by a laser rangefinder. A picking-point calculation was conducted using the proposed algorithm,
and the results are shown in Table 4.

Table 4. Accuracy of picking-point calculation.

Depth/mm Number of Images
with Visible Grapes

Pixels Error In Row Accuracy
Rate/% 1

0/Pixel 1~5/Pixel >5/Pixel

500 40 26 11 3 92.5
600 40 24 12 4 90.0
700 40 23 13 4 90.0
800 40 18 16 5 85.0
900 40 15 19 6 85.0

1000 40 10 22 8 80.0
1 A picking point with an error of fewer than 5 pixels (column 3 and 4) is regarded as a successfully recognized point.

A calculated picking point with a distance of fewer than 5 pixels to the horizontal bearing branch
is marked as a successfully recognized picking point, while others are marked as erroneous picking
points. The accuracy rate is the ratio of the successful calculation number and the total image number.
There is a different accuracy rate of picking-point detection for images captured at different depth
distances. The highest accuracy rate is 92.5% for a depth of 500 mm, while the lowest is 80.0% for
a depth of 1000 mm. It can be seen from the experimental results that the proposed method effectively
calculates the grape picking point in the night-time natural environment.

The error results of picking-point calculation are shown in Figure 11. The specific reasons for
calculation errors of picking-point determination are found as follows: (1) grape fruit detection
failure leads to picking-point calculation errors. (2) The light intensity decreases with increase of the
shooting distance, by which the quality of night-time images is influenced, resulting in a picking-point
calculation error. The following measures can be taken for avoiding picking-point calculation errors:
(1) the image quality can be improved by optimizing the lighting system; (2) the grape fruit-detection
algorithm can be improved to increase the accuracy of detection in further studies.

4.3. Algorithm Running Time Experiment

In order to evaluate the running time of the algorithm, this study designed a real-time experiment.
MATLAB 2016a was used to test the given algorithm on a PC running 64-bit Windows 7 with 8 G RAM
and 4 cores 3.4 GHz CPU. Fifty night-time images of grape fruit were used for recognition employing
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the proposed, traditional and improved algorithms. The average running time of the segmentation
procedure was 135.4 s using the traditional C–V level-set model in segmenting 300 × 450 pixels
images, while the average running time using the improved C–V level-set model was 11.8 s. Both the
above algorithms cannot meet the requirement of robot-picking jobs. The idea of the pyramid theory
“Coarse to fine” is used in our algorithm by the 50 × 75 R component image first being processed with
the improved C–V level-set model, with its iterative result being amplified, second, to obtain a rough
contour as the initial contour of the C–V level set, and finally iterative computation being continued
with the improved C–V level set model to obtain the accurate contour. This algorithm can greatly
shorten the average running time of grape detection while maintaining a good segmentation effect.
The average running time of our algorithm was 0.46 s, satisfying the requirement of robot-picking
jobs. From image input to result return (the coordinates of picking point or the cessation command),
the average running time of the night-time images was 0.58 s.

5. Conclusions and Future Work

The accurate detection of grape fruits and the precise location of picking points are both critical to
the successful operation of grape-picking robots. Green grape fruit detection and the picking-point
calculation method were studied in this paper to avoid daytime grape-detection errors influenced
by mutable natural light conditions. The effectiveness and feasibility of the proposed algorithm was
proven by the experimental results.

(1) Color models of the night-time grape images are analyzed using the exploratory analysis method
with a result that the R component of the RGB grape image is suitable for implementation of
night-time image detection of the green grape cluster.

(2) Based on the R component of the night-time grape image, the background of the grape image
is removed by the improved C–V level-set model combined with morphological treatment.
The visual-detection experiment results show that the accuracy of grape fruit detection was
91.67% or more, and the average running time of the proposed algorithm was 0.46 s.

(3) According to the growth characteristics of the grapes, the Hough line detection method was used
to fit the fruit stem above the fruit, and the picking points on the fruit stem were determined.
The experimental result of picking-point calculation of the night-time grape cluster showed
that the highest accuracy rate was 92.5% for a depth of 500 mm while the lowest was 80.0% for
a depth of 1000 mm. From image input to result return (the coordinates of the picking point or the
cessation command), the average running time of the night-time images was 0.58 s. This study
provides technical support for grape-picking robots in a natural environment.

In conclusion, the given algorithm can make grape detection and picking-point calculation
successful and effective. However, the overlap phenomenon and the moving disturbances have not
been solved. Further study will be conducted and 3D modelling of the scene will be constructed to
solve these problems in the future.
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