
sensors

Article

Spoofing Detection Using GNSS/INS/Odometer
Coupling for Vehicular Navigation

Ali Broumandan * and Gérard Lachapelle

Position, Location and Navigation (PLAN) Group, Schulich School of Engineering, University of Calgary,
Calgary, AB T2N 1N4, Canada; lachapel@ucalgary.ca
* Correspondence: a.broumandan@gmail.com

Received: 18 March 2018; Accepted: 20 April 2018; Published: 24 April 2018
����������
�������

Abstract: Location information is one of the most vital information required to achieve intelligent and
context-aware capability for various applications such as driverless cars. However, related security
and privacy threats are a major holdback. With increasing focus on using Global Navigation Satellite
Systems (GNSS) for autonomous navigation and related applications, it is important to provide robust
navigation solutions, yet signal spoofing for illegal or covert transportation and misleading receiver
timing is increasing and now frequent. Hence, detection and mitigation of spoofing attacks has
become an important topic. Several contributions on spoofing detection have been made, focusing on
different layers of a GNSS receiver. This paper focuses on spoofing detection utilizing self-contained
sensors, namely inertial measurement units (IMUs) and vehicle odometer outputs. A spoofing
detection approach based on a consistency check between GNSS and IMU/odometer mechanization is
proposed. To detect a spoofing attack, the method analyses GNSS and IMU/odometer measurements
independently during a pre-selected observation window and cross checks the solutions provided
by GNSS and inertial navigation solution (INS)/odometer mechanization. The performance of the
proposed method is verified in real vehicular environments. Mean spoofing detection time and
detection performance in terms of receiver operation characteristics (ROC) in sub-urban and dense
urban environments are evaluated.
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1. Introduction

Spoofing signals are designed to mislead GNSS receivers by generating fabricated synchronized
navigation signals leading to fake navigation solutions [1–3]. Hence, detection and mitigation
of spoofing attacks is critical for emerging applications such as autonomous vehicle navigation,
environmental monitoring and forensic applications [4,5]. Several related contributions have been
made with focus on different layers of the receiver including antenna, IF samples, acquisition, tracking
and navigation [6–12]. The spoofing detection techniques implemented in the pre-despreading
and signal processing layers of a receiver are effective and can detect spoofing attacks faster than
the methods implemented in the navigation layer [13]. However, these techniques require several
modifications to current receiver designs. Several spoofing detection methods implemented in the
measurement and navigation layers have been proposed. For example, Reference [11] implemented a
position solution authenticity verification technique based on clock bias variation analysis of a moving
receiver. A spoofing detection metric using carrier phase measurements with multiple receivers was
implemented in [12].

In addition to the above standalone approaches, spoofing attacks can be detected by checking the
consistency of the navigation solutions under test with other reference sources [13,14]. Consistency
checks can be performed in different ways including intra-system, inter-system, multi-frequency and
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multi-sensor approaches. In the intra-system consistency check, the presence of spoofing signals
can be detected by monitoring the consistency of the code and carrier Doppler or by monitoring
the carrier-to-noise ratio [1,13]. The emergence of different civilian GNSS constellations has led to
the availability of multi-constellation receivers. Such a receiver can be designed to perform various
inter-system cross-checks among different signal ensembles in order to verify the authenticity of
received signal sets [14]. Modernized GNSS systems transmit civilian signals in different frequency
bands. From a spoofer’s viewpoint, it is considerably more difficult/costly to simultaneously spoof
many frequency bands. Therefore, a multi-frequency receiver can perform some cross checks to verify
the authenticity of received signal sets. Augmenting data with auxiliary devices such as IMUs can
help the target receiver to discriminate against the spoofing threat [15–23]. In addition, a receiver can
compare the solution extracted from received signals to position and navigation solutions obtained
by other means, e.g., mobile networks or Wi-Fi access points [15]. Therefore, if the confidence region
of different solutions does not have an intersection, there is a high likelihood of a spoofing attack.
Another spoofing scenario rarely discussed in the literature is the case when the spoofer has access
to the GNSS receiver antenna and may deny authentic signal reception by covering the antenna and
feeding spoofed signals. In such a case, most proposed spoofing detection methods in various signal
processing layers of a receiver are not functional.

GNSS and inertial navigation systems (INS) have complementary error characteristics: GNSS has
good long-term accuracy whereas INS has good short term accuracy. INS is self-contained, operates
continuously and provides navigation solutions with low short-term noise. However, it suffers from
accuracy degradation over time due to the integration of biases and drifts of the inertial measurement
units (IMUs). Along with navigation solutions, attitude information can also be estimated from the
INS, which is important for many applications. The complementary features of GNSS and INS make
them a good choice for integration especially when GNSS observability is poor. Advantages and
performance of loosely, tightly and ultra-tightly coupled GNSS/INS integration methods have been
studied and reported by a number of researchers [24–26]. In a typical GNSS-INS system, an IMU with
three orthogonally mounted accelerometers and three gyroscopes is used. For land based vehicular
applications, to reduce the cost associated with a full INS, a reduced number of sensors can be used,
also known as a reduced inertial Sensor system (RISS) [27–29]. Even though integration of GNSS and
INS provides robust navigation, performance will be degraded under spoofing attacks. Under such
attacks, GNSS measurements will be erroneous which in turn makes the integrated solution unreliable.

In an integrated GNSS-INS system, since only GNSS measurements are potentially erroneous due
to spoofing, INS measurements can be used in an integrity monitoring role to detect an attack. Authors
in [19] proposed an integrated GPS/INS navigation system to detect a spoofing attack based on the
receiver autonomous integrity monitoring (RAIM) concept. The integrity risk has been evaluated in
the presence of high-end and low-end INS systems and it is shown that the proposed approach is
able to successfully detect spoofing attacks that do not have previous knowledge of the receiver’s
trajectory. A shipboard IMU measurements in [18] was used to detect the presence of spoofing signals;
their approach compares the relative platform motion estimates provided by a shipboard receiver to
the ones provided by the onboard IMU. It was shown that high frequency pitch/roll motion of the
ship caused by mild sea conditions can lead to successful spoofing detection. In [17] a tightly coupled
GNSS/INS approach to detect spoofing signals was proposed. The method detects spoofing attacks by
monitoring the residuals and sets the spoofing detection based on minimum detectable blunder test
statistics. It assumes that a subset of visible PRNs is spoofed at a given time which limits its practicality.

Herein, a spoofing detection approach based on a consistency check of GNSS and INS/odometer
(odo) mechanization is proposed. To detect a spoofing attack, the proposed method analyzes GNSS and
IMU/odo measurements during an observation window and compares the two solutions (trajectories).
The INS-vehicle odometer integrated solution is self-contained and therefore not vulnerable to external
signal jamming and spoofing. However, like all dead reckoning devices, it is susceptible to sensor
induced errors, especially drift. The spoofing detection observation window is defined based on the INS
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characteristics and the specific application. GNSS signal authenticity is verified if its navigation solution
is consistent with the corresponding solution provided by INS/odo. If GNSS signal authenticity is
verified, the GNSS/INS/odometer loose coupling solution is performed to estimate and remove
IMU errors.

2. GNSS Spoofing Detection Using IMU and Odometer

INS and their solutions are self-contained and provide high rate measurements. They have
good short-term accuracy. However, long term errors grow without bound as the inertial sensor
errors accumulate due to intrinsic integration in the navigation algorithm. Navigation solutions based
on GNSS need a direct line of sight to at least four satellites, which is not always possible due to
satellite signal blockages by tall buildings, trees and tunnel entrances and exits. Taking advantage
of the complementary characteristics of these systems, their integration overcomes their individual
drawbacks and provides a more accurate and robust navigation solution than neither could achieve.
The integrated navigation solution is a continuous high data rate system that provides a full navigation
solution (position, velocity and attitude) with improved accuracy in both the short and long term.
GNSS prevents the inertial solution from drifting and INS provides continuity in the navigational
solution. In the loosely coupled integration case, GNSS navigation solutions and INS mechanization
operate independently and provide separate navigation solutions. To improve the solution, the
position and/or velocity from GNSS is fed to an optimal estimator, usually a Kalman Filter (KF).
The INS solution is also supplied to the filter, which takes the difference between the two and, based
upon the error models, estimates the INS errors. In general, two types of feedback approaches are
implemented, namely open-loop and closed-loop. In the open-loop configuration, the position, velocity
and attitude corrections are performed in the integrated navigation solution (external to the INS) where
the estimated errors are subtracted from the INS solution at each iteration. In such a case, the corrected
KF states are not fed back to the INS to correct for its drift. In the closed-loop configuration, the
error estimates from KF are fed back in order to correct the INS errors. The output of the INS forms
the integrated solution. KF position, velocity and attitude estimates are reset to zero after the error
estimates are fed back. In the conventional implementation of GNSS/INS, the integration filter runs
in prediction mode with the predicted values of the INS during the GNSS outages. In open sky
conditions when the receiver antenna has access to Line-Of-Sight (LOS) signals, either the integrated
or the unaided GNSS solution can be used. More specifically, under nominal operation conditions
the signal and measurement quality of GNSS are high and the KF puts more weight on the GNSS
measurements than on prediction. As mentioned previously, the integration of GNSS/INS is beneficial
in GNSS outage scenarios. However, in the case of a spoofing attack the reasonable assumption is
that the receiver antenna receives spoofed GNSS signals with a high signal strength, resulting in a
fake navigation solution. In such a case, GNSS/INS integration under a closed loop scenario with an
update rate of a few Hz will not be effective in detecting the spoofing attack. This is due to the fact that
in the closed-loop integration, the integrated KF solution’s estimated accelerometer and gyroscope
errors are fed back to correct the IMU measurements. These errors are applied on every iteration
of mechanization, with feedback from KF periodically updating the accelerometer and gyroscope
errors. Since the relative dynamics between spoofed GNSS solutions and that of INS are probably not
significant for a vehicle during a typically short update interval (a few Hz), the spoofing attack may
not be detected.

The advantage of the open loop configuration is that in addition to the integrated navigation
solution, the raw INS solution can support integrity monitoring and spoofing detection since the
inertial based navigation solutions are not affected by the attack. However, due to INS drift, the errors
in the INS grow with time to the point that the authenticity verification using this approach is no
longer reliable. Considering this, a possible approach to detect the spoofing attack and enhance the
performance of the authenticity verification procedure is to use a closed loop configuration with a
shorter error feedback update rate. In such a case, the receiver will operate under normal conditions
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and an additional loop will monitor the integrity of the solution. The integrity monitoring loop takes
raw IMU measurements and provides navigation solutions without the error correction from GNSS
measurements. In this case, the integrity monitoring loop error correction update rate is much smaller
than that of the KF integration update rate. The update rate of the integrity monitoring is based on
the IMU grade and specific application requirements. To avoid false spoofing detection due to IMU
drift, it is important to characterize the performance of the authenticity verification loop during the
observation interval and set a proper detection threshold.

A spoofing detection approach based on a consistency check of GNSS and INS/odometer (odo)
mechanization is now proposed. To detect a spoofing attack, the method analyzes GNSS and IMU/odo
measurements during an observation window and compares the solution provided by GNSS and INS
mechanizations. The two trajectories are compared and the Detection Statistic (DS) is calculated as:

DS = ‖pGPS
k − pIMU/odo

k ‖, p =

 pE
pN
pU

 (1)

where pGPS
k and pIMU/odo

k are GPS and IMU/odo position vectors at time k in the East-North-Up
(ENU) frame and ‖ ‖ is the norm operator. GNSS signal authenticity is verified if DS is below
a predefined threshold. The detection threshold is based on the INS/odo characteristics and the
specific application and should be determined based on a desired probability of false alarm under
authentic signal operation condition. If the signal authenticity is verified, a GNSS/INS/odometer
loose coupling solution is performed to remove IMU errors. Figure 1 shows the operation flowchart
of the proposed spoofing detection method. The IMU/odo mechanization process is initialized with
the GPS measurements. Then the consistency of a new set of GPS and IMU/odo measurements is
analysed. If the detection statistics (DS) is above the threshold, a spoofing attack is detected. Otherwise,
the detection process checks the length of IMU/odo data (i) processed without correction by GPS
measurements. If i is less than the length of the observation window (N) then consistency of a new
GPS and IMU/odo data is processed. When i = N and no spoofing is edetected, the monitoring loop
updates the IMU and odo errors with GPS measurements.

Figure 1. Operational flowchart of the proposed method.
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Reduced IMU and odometer (RIO) mechanization, which is suitable for any wheel-based platform,
is considered for GNSS navigation solution authenticity verification. RIO mechanization eliminates
several error sources that exist when using a full IMU, especially low-cost Micro-Electro-Mechanical
Systems (MEMS) grade sensors, and consequently reduces navigation solution divergence
during GNSS outages and enhances the performance of the authenticity verification procedure.
The significance and the importance of the RIO solution over the full IMU is discussed in [27].
Figure 2 shows the authenticity verification loop considering RIO mechanization with loosely coupled
RIO/GNSS integration. The forward velocity information along with raw accelerometer and gyroscope
measurements are fed to the RIO mechanization to provide relative position, velocity and heading
information. The authenticity verification unit compares the navigation solution of the GNSS with that
of RIO during the observation interval. If the solution authenticity is verified. RIO solutions will be
corrected by GNSS solutions and accelerometer and gyro errors will be corrected by the navigation KF.

Figure 2. Loosely coupled RIO mechanization for spoofing detection.

3. RIO Mechanization

RIO mechanization and the loose coupling model used are described in this section. The local-level
frame is the East-North-Up (ENU) frame with axes along east, north and vertical (up) directions.
The sensors measurements provided by the gyroscope, the two accelerometers and the odometer
comprise the control inputs represented by the vector:

ui =
[
vo

i , ao
i , f x

i , f y
i , ωz

i

]
T (2)

where vo
i is the speed from the odometer output, ao

i is the acceleration from the vehicle odometer output,
f x
i and f y

i are the x and y accelerometer outputs and ωz
i the vertical gyroscope output. The vertical

gyroscope is mounted in alignment with the vertical axis of the vehicle and two accelerometers are
mounted in the transversal and forward directions. The rate gyroscope is used to measure heading
change of the vehicle and two accelerometers to measure changes in roll and pitch of the vehicle.
The vehicle attitude information along with odometer derived forward speed are used to compute
the user velocities in the ENU frame. Subsequently, the user position is obtained by integrating the
velocity solution.

The state vector for the mechanization is:

xk =
[

ϕk, λk, hk, vE
k , vN

k , vU
k , pk, rk, Ak

]
T (3)

where {ϕk, λk, h} is the position vector in the geodetic coordinate frame,
{

vE
k , vN

k , vU
k
}

is the velocity
vector in the East-North-Up (ENU) coordinate frame, and {pk, rk, Ak} is the pitch, roll and azimuth
angles of the vehicle. The pitch angle is computed from the forward accelerometer. When the vehicle is
in motion, the accelerometer measures the forward acceleration as well as the component due to gravity.
In order to compute the pitch angle, this forward acceleration needs to be removed from the forward
accelerometer measurement. Similarly, for roll angle computation, the transversal accelerometer
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measurement needs to be compensated with the normal component of the acceleration. The azimuth
angle is computed from the vertical gyroscope and its measurement is compensated with earth rotation
as well as the rotation of the local level frame with earth’s curvature. Thus, the mechanization equations
to compute the vehicle attitude information is given by:

ri = − sin−1
(

f x
i + vo

i ωz
i

g cos pi

)
pi = sin−1

(
f y
i − ao

i
g

)
Ai = Ai−1 −ωz

i ∆t + ωe sin ϕi−1∆t +
vE

i−1 tan ϕi−1
RN + hi−1

∆t

(4)

where r, p, A are the roll, pitch and heading of the vehicle, and g is gravity. The user velocity in ENU
frame can be obtained as:

vE
i = vo

i sin Ai cos pi
vN

i = vo
i cos Ai cos pi

vU
i = vo

i sin pi

(5)

User coordinates can be obtained as:

ϕi = ϕi−1 +
vN

i
RM + hi

∆t

λi = λi−1 +
vE

i
(RN + hi) cos ϕi

∆t
hi = hi−1 + vU

i ∆t

(6)

where ϕ, λ and h are latitude, longitude and height. In the loose coupling approach, GNSS and
RIO navigation solutions are combined in a navigation KF. Both system and measurement model are
nonlinear. Since linearization is performed, only the perturbations in the states are computed in the
filter. The linearized discrete system model is given by:

δxk = Φk−1δxk−1 + Gk−1Wk−1 (7)

where δxk is the 9 × 1 error state vector at time epoch k given by δxk ={
δφk, δλk, δhk, δvE

k , δvN
k , δvU

k , δAk, δSod
k , δωz

k

}
.

δφk, δλk, δhk are the position vector components in the geodetic coordinate frame, δvE
k , δvN

k , δvU
k

are the velocity vectors in East-North-Up (ENU) coordinate frame, δAk is the azimuth angle, δSod
k is

the scale factor of odometer, δωz
k is the vertical gyroscope drift, Φk−1 is the state transition matrix from

time epoch k − 1 to k, Gk−1 is the shaping matrix or noise coupling matrix and Wk−1 the zero mean
unity variance white noise.

The linearized discrete system model is given by:

δxk =

 δpk
δvk
δek

 =

 I3×3

03×3

03×3

F1

I3×3

03×3

03×3

F2

F3


 δpk−1
δvk−1
δek−1

+

 03×1

03×1

δσk

 (8)

where:

δpk =

 δφk
δλk
δhk

,δrk =

 δvE
k

δvN
k

δvU
k

,δek =

 δAk
δSod

k
δωz

k

,δσk =

 0√
2γodσ2

od∆t√
2γωzσ2

ωz∆t

,

F1 =

 0 ∆t
Rm+hk−1

0
∆t

(Rn + hk−1) cos(φk−1)
0 0

0 0 ∆t
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F2 =

 vod cos(Ak−1) cos(pk−1)∆t vod sin(Ak−1) cos(pk−1)∆t 0
vod sin(Ak−1) cos(pk−1)∆t vod cos(Ak−1) cos(pk−1)∆t 0

0 vod sin(pk−1)∆t 0



F3 =

 1 0 −∆t
1 1− γod∆t 0
0 0 1− γωz∆t


where γod and γωz are the inverse of autocorrelation time for odometer and gyroscope stochastic
errors, σ2

od and σ2
ωz are the variance of odometer and gyroscope noise [26]. The linearized discrete

measurement model is given by:
δzk = Hδxk + εk (9)

where δzk is the measurement vector given by:

δzk =



φGPS
k − φRIO

k
λGPS

k − λRIO
k

hGPS
k − hRIO

k
vE,GPS

k − vE,RIO
k

vN,GPS
k − vN,RIO

k
vU,GPS

k − vU,RIO
k


(10)

H is the design matrix and εk represents measurement noise.
The design matrix is given by:

H =



1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0
0
0

0
0
0
1
0
0

0
0
0
0
1
0

0
0
0
0
0
1

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0


(11)

4. Data Collection Scenarios

Actual GPS and IMU data was collected using a vehicle in urban and suburban areas of Calgary.
The experimental setup used is shown in Figure 3. Data was collected using tactical and MEMS grade
IMUs whose specifications are given in Table 1. A navigation grade GNSS antenna was mounted on
the vehicle roof and GNSS signals were passed to a two-way splitter. One branch was connected to a
SPAN/LCI GNSS/INS system (NovAtel, Calgary, Alberta, AB, Canada) using the NovAtel’s Inertial
Explorer™ software in dual-frequency RTK mode with forward and backward smoothing to provide a
sub-metre reference trajectory. The other branch was connected to a u-blox (EVK-6) receiver to provide
GPS measurements. The IMUs used consist of 3-axis accelerometers and rate gyroscopes orthogonally
mounted to each other.

The z gyroscope was aligned with the vertical axis of the vehicle body frame and used for
computing the azimuth angle. The x and y accelerometers were aligned with the forward and
transversal axes of the vehicle body frame and used to calculate pitch and roll. The inertial sensors
measurements are in the body frame. A rotation matrix from the body frame to the local level frame
was estimated at the beginning. An on-board diagnostics (OBD) device was connected to the car OBD
port and used to collect vehicle speed via a LG G3 cell phone. A cell phone application named Torque
was used to collect vehicle speed. During the data collection process, the cell phone’s various sensor
outputs including GNSS navigation solutions and raw IMU values were also logged. The cell phone
containing the MEMS IMU was installed on the back seat below the tactical IMU which was mounted
on the vehicle roof.
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Figure 3. Data collection setup.

Table 1. IMU characteristics.

IMU Parameter Value

Tactical NovAtel SPAN IMU-LCI

Accelerometer bias 0.5 mg
Accelerometer white noise 40 µg/

√
Hz

Gyro drift 0.3◦/h
Gyro white noise 0.001◦/s/

√
Hz

Cell-phone grade MEMS MPU 6500 (LG G3)

Accelerometer bias 60 mg max
Accelerometer white noise 300 µg/

√
Hz

Gyro drift 0.24◦/s
Gyro white noise 0.01◦/s/

√
Hz

5. Spoofing Detection Performance

The proposed spoofing detection performance is evaluated by comparing the reduced-inertial and
odometer (RIO) trajectory to that of the GPS-based trajectory. An open loop structure is used herein
and results in three solutions computed in parallel, namely GPS, RIO and GPS/RIO as discussed
in the sequel. In the GPS/RIO solution, the RIO errors at each update interval are corrected using
actual GPS measurements. Hence, in the presence of a spoofing attack, the GPS/RIO integration
can be easily spoofed. Comparing the GPS solutions with the RIO solutions over an extended
interval is not practical due to RIO initial errors and accumulated sensor drifts. Therefore, for GPS
authenticity verification purpose, the RIO correction update rate with GPS is adjusted as a function
of the application. Between RIO updates, the RIO position errors are therefore bounded and are not
contaminated by spoofed GPS measurements. To detect GPS signal spoofing, the trajectory provided
by the receiver is compared to that of the RIO trajectory over the intervals between updates. Spoofing is
detected if the difference is higher than a predefined threshold. Two data sets (Set 1 and 2) collected in
suburban and dense urban environments to test the above approach are analysed below to demonstrate
the performance of the approach.
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5.1. Results of Data Set 1 (Suburban Environment)

Figure 4 shows trajectories in a suburban residential environment. To emulate a spoofing attack,
the red trajectory, driven first with only a GPS receiver, is assumed to be the spoofed one. The GPS
measurements of that trajectory are then used when driving the authentic green trajectory with the
tactical and MEMS IMUs and use of vehicle odometer. Both trajectories started at the same location
and reached the same destination from the two paths shown. The two trajectories overlapped in
some parts of the initial path and then separated and joined again at destination. The two IMUs,
odometer and GPS receiver logged data simultaneously. A spoofing attack is detected when the GPS
red spoofed trajectory does not match that of the RIO trajectory on the green authentic trajectory
during the detection observation intervals and threshold selected as described below.

Figure 4. Data collection scenario in suburban environment. Green and red lines are the authentic and
spoofed trajectories.

The first step to assess the performance of the method is to evaluate its characteristics under a
null-hypothesis (absence of spoofing attack). This means evaluating the performance of the RIO for
each IMU configuration. Figure 5 shows the authentic trajectory in green as obtained by spoof-free
GPS and each of the RIO trajectories over the 350 s duration of the test. The GPS-free RIO trajectories
were initialized with correct position and heading information. The RIO solutions generally follow
the authentic trajectory pattern, however, the errors in the trajectory estimation differ for the two
IMUs as expected. Figure 6 shows their growing horizontal errors as a function of time and obtained
through a comparison with the spoof-free GPS trajectory. As expected, the RIO solution using the
tactical grade IMU results in better performance and maintains a horizontal accuracy better than 50 m.
The performance of the cell phone MEMS IMU-based RIO is comparable to that of the tactical one only
for the initial 150 s of data. The spoofing detection threshold of 10 m selected is arbitrary and can be
adjusted as required by the application.

The update interval should be tuned to avoid false spoofing detection caused by the IMU sensor
errors observed under the nominal operation conditions shown in Figure 5. The error pattern is a
function of the IMU drift rate. Assuming correct initial RIO heading and position values, Figure 5
shows that both solutions meet the stated performance (horizontal errors below 10 m) during the first
30 s. Hence, one may compare the two solutions and correct the RIO errors every 30 s during the
detection process. Figure 7 shows the MEMS IMU-based RIO errors for different update intervals (tu).
The errors are the differences between authentic GPS and RIO solutions.
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Figure 5. Standalone RIO mechanization for the two different IMUs used (350 s of data).

Figure 6. RIO mechnization errors for the two different IMUs shown in Figure 4.

Figure 7. RIO (Cell phone IMU and vehicle odometer) horizontal errors for various update intervals (tu).
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As expected, increasing the update interval increases the errors due to IMU drift. For tu = 20 s,
the error values exceed 10 m at a few epochs. However, a longer observation period results in better
detection performance as will be shown later. The above process is now implemented using the
spoofed GPS red trajectory of Figure 4 by driving the green trajectory with the RIOs to assess spoofing
detection effectiveness. Figure 8 shows the spoofed GPS trajectory, the spoofed GPS/RIO conventional
integration trajectory in which case the RIO solutions are continuously corrected, and RIO solutions
with correction intervals of tu = 20 s using the cellphone MEMS IMU and vehicle odometer. The actual
authentic trajectory is also shown. The GPS/RIO trajectory remains spoofed and its trajectory matches
the spoofed GPS one. This is because the Kalman filter puts more weights on normally high-quality
GPS measurements than on the high drift MEMS IMU measurements. Nevertheless, the RIO solutions
significantly deviate from the spoofed GPS and GPS/RIO trajectories, confirming spoofing detection,
an important warning to the user.

Figure 8. Horizontal trajectories for spoofed GPS, GPS/RIO, RIO with 20 s correction updates for
MEMS (cell phone) IMU.

Figure 9 shows the RIO errors for different update intervals (tu) in the spoofing case. The errors
are the differences between GPS and RIO solutions. During the first 80 s, the receiver was not spoofed,
hence spoofing detection metric outputs (error values) are below the threshold. However, once the
spoofing attack begins, the errors significantly rise. As expected the longer the update interval, the
larger the errors, hence better correct spoofing detection. Detection performance is a function of the
relative authentic and spoofed trajectories and consequently the horizontal error values shown in the
figure vary as a function of time. For instance, during the time interval 240–260 s, the horizontal error
for tu = 5 s is below the detection threshold and the attack during this period cannot be detected. This is
because the spoofing trajectory matches the authentic one during this period. In general, a spoofing
attack using this approach cannot be detected during periods when GPS and RIO trajectories match.
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Figure 9. RIO horizontal errors for various update intervals (tu) in the spoofing case using the cellphone
MEMS IMU.

5.2. Results of Data Set 2 (Dense Urban Environment)

Figure 10 shows the trajectory analysed in downtown Calgary, which is surrounded by buildings
of up to 80 stories in height. The green and red plots show the correct reference and GPS-based
trajectories. The reference trajectory was provided by the NovAtel SPAN system described earlier with
accuracy of 1 to 2 m. The GPS trajectory was obtained with a u-blox receiver. In this dense area, the
GPS trajectory deviates from the reference one by up to 50 m horizontally due to GPS multipath, high
measurement noise and poor geometry. The data set includes repeated runs of the above trajectory.
The authentic scenario refers to the case when the GPS and RIO trajectories are synchronized both in
time and location. The spoofing case refers to the scenario where the GPS and RIO trajectories do not
match either in time and/or in location; this is done by deliberately introducing a time lag between
the GPS and RIO trajectory data. Different time lags (50 s to 200 s in 10 s intervals) were utilized to
generate detection statistics.

Figure 11 shows the RIO errors for MEMS IMU and different update intervals (tu) for the correct
reference (green) and GPS-based (red) trajectories. The errors significantly increase in the GPS-based
case due to multipath, measurement noise and geometry, which will increase spoofing detection false
alarm probability. The error values of the true-reference trajectory shown in Figure 11 are similar to
those of the GPS-based trajectory in open sky condition shown in Figure 7. To reduce a false alarm
probability of the spoofing detection metric, one can increase the threshold but at the cost of reducing
detection probability.

As expected, increasing the update interval increases the error values. For tu = 20 s, the errors
exceed 10 m after a few epochs in the case of the true trajectory. However, threshold crossing happens
in all tu cases in the GPS-based trajectory case. Poor GPS performance in dense urban environments
affects the performance of the proposed spoofing detection metric in the null-hypothesis.

Figure 12 shows the histogram of the detection metric using true and GPS-based trajectories.
This information will be used to determine the performance of the proposed method in terms of the
receiver operation characteristics (ROC) plots.

Figure 13 shows the mean RIO errors for various combinations of GPS and IMU sensors in the
authentic case. The Ref-Tactical case shown in Figure 13 refers to the true-reference trajectory and
tactical IMU. This case has the lowest errors compared to other cases and causes the lowest probability
of false detection. The worst performing scenario belongs to the GPS-MEMS case. In all the cases
increasing the update interval (tu) increases the error values.
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Figure 14 shows the horizontal trajectories for GPS and RIO solutions with tu = 20 s in the spoofing
case. The RIO solutions significantly deviate from the GPS ones.

Figure 15 shows the RIO mechanization errors for different update intervals (tu) in the spoofing
case. The errors are the differences between GPS and RIO trajectories. The error values significantly
rise compared to the results of Figure 11. As expected, increasing the update interval rises the error
values and results in better detection performance.

Figure 10. Test trajectory in dense urban environment with the correct reference trajectory (1–2 m
accuracy) in green and the GPS trajectory in red. The latter is degraded due to multipath, high
measurement noise and poor geometry.

Figure 11. RIO (MEMS IMU) horizontal errors for various update intervals (tu) in the authentic case
for true and GPS-based trajectories.
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Figure 12. Histogram of the detection metric values for reference and GPS trajectories for different
update intervals.

Figure 13. Mean trajectory errors for various combinations of GPS and IMU sensors for different
update intervals.

Figure 14. Horizontal trajectory for spoofed GPS, GPS/RIO, RIO with 20 s correction updates for
MEMS IMU.
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Figure 15. RIO horizontal error for various update intervals (tu) in the spoofing case for MEMS IMU.

Receiver operation characteristics (ROC) which shows the performance of a detector was
evaluated under different scenarios. Figure 16a shows ROC curves for the proposed detection metric
for various update intervals using the u-blox GPS trajectory. Increasing tu enhances both probability
of false alarm and detection. However, as shown, for a given false alarm probability, increasing tu

enhances the detection performance. Figure 16b shows ROC plots for tu = 10 s for true-reference
and GPS trajectories, demonstrating that spoofing detection performance is degraded in dense urban
environments due to satellite geometry, high noise and multipath as mentioned earlier.

A missed detection probability is calculated if in each observation interval (tu), in the spoofing
case, the detection metric is below the detection threshold. The measured missed detection rate for
GPS-based trajectory for tu = 5 s, tu = 10 s and tu = 20 s is 21%, 7% and 2% respectively. As demonstrated
increasing the observation period reduces the miss detection performance. The mean spoofing
detection time for the given data set is 3.2 s, 3.4 s and 3.5 s for tu = 5 s, tu = 10 s and tu = 20 s
cases respectively.

Figure 16. ROC curves (a) GPS-based trajectory (u-blox receiver) and different update intervals.
Increasing tu improves the detection performance. (b) ROC curves for true-reference and GPS
trajectories for tu = 10 s. The detection performance is degraded due to GPS measurement errors.
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6. Conclusions

A GNSS authenticity verification approach based on integration of an IMU and a vehicle odometer
outputs was proposed and tested. Contrary to conventional GNSS/INS coupling where the INS
corrections are updated at each mechanization interval (mechanization and error correction rates
are the same), the authenticity verification loop error correction rate in the present case is much
lower than that of the mechanization process. The IMU/odometer navigation solutions can then be
used to detect spoofing attacks at each correction interval. This approach is effective in detecting
spoofing attacks, especially in covered spoofing scenarios when the authentic signals are blocked.
For nominal operation scenarios and typical GPS and IMU sensors, a 20 s observation interval provided
an acceptable detection performance in terms of probability of detection and mean time to detect the
attack in the scenarios evaluated. Detection performance is a function of the relative authentic-spoofing
trajectories; when the vehicle is static or travels in a straight direction with a constant speed, no feature
can however be used to detect an attack. Some specific motion features such as continuous user
velocity and heading changes (e.g., stops at traffic control lights and turns) provide additional features,
resulting in better detection performance. Actual measurements in sub-urban and dense urban
environments using different IMUs provided promising results to detect spoofing attacks in practical
vehicular scenarios. GPS measurement quality affected by poor satellite geometry, signal attenuation
and multipath occurring in urban canyons, degrades spoofing detection performance. In an actual
implementation, these effects might be first detected using other metrics (e.g., C/N0) and then can
be used to adjust the detection threshold. For the given data and spoofing scenario described in the
papers, a mean spoofing detection time of 4 s was achieved.
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Abbreviations

DS Detection Statistics
vo

i speed from the odometer
ao

i acceleration from the vehicle odometer
f x
i x accelerometer outputs

f y
i y accelerometer outputs

ωz
i vertical gyroscope output

xk Mechanization vector
{ϕk, λk, h} position vector in the geodetic coordinate (latitude, longitude and height){

vE
k , vN

k , vU
k
}

velocity vector in the East-North-Up (ENU) coordinate frame
{pk, rk, Ak} pitch, roll and azimuth angles
g gravity
δxk error state vector
δSod

k scale factor of odometer
δωz

k vertical gyroscope drift
Φk−1 state transition matrix
Gk−1 shaping matrix or noise coupling matrix
Wk−1 zero mean unity variance white noise
γod inverse of autocorrelation time for odometer stochastic errors
γωz inverse of autocorrelation time for gyroscope stochastic errors
σ2

od variance of odometer noise
σ2

ωz variance of gyroscope noise
δzk measurement vector
H design matrix
εk measurement noise
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