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Abstract: This paper describes the estimation of the body weight of a person in front of an RGB-D
camera. A survey of different methods for body weight estimation based on depth sensors is given.
First, an estimation of people standing in front of a camera is presented. Second, an approach
based on a stream of depth images is used to obtain the body weight of a person walking towards
a sensor. The algorithm first extracts features from a point cloud and forwards them to an artificial
neural network (ANN) to obtain an estimation of body weight. Besides the algorithm for the
estimation, this paper further presents an open-access dataset based on measurements from a trauma
room in a hospital as well as data from visitors of a public event. In total, the dataset contains
439 measurements. The article illustrates the efficiency of the approach with experiments with
persons lying down in a hospital, standing persons, and walking persons. Applicable scenarios for
the presented algorithm are body weight-related dosing of emergency patients.

Keywords: image processing; machine learning; perception; sensor fusion; segmentation; RGB-D;
thermal camera; kinect; human body weight; stroke

1. Introduction

When it comes to the treatment of ischemic stroke patients, it is crucial to solve the blood clot
in the brain vessel as fast as possible. For the treatment of ischemic strokes, the medicament rtPA
was approved in 1996 by the U.S. Food and Drug Administration [1]. The medicine has to be given
with a dosage of 0.9 mg per kilogram of the patient’s body weight. Furthermore, a maximum dose
of 90 mg is specified for patients weighing more than 100 kilograms. It is best used within the first
hour after the appearance of stroke symptoms. After three hours, side effects can prevail over the
solving of the blood clot. Because of this narrow time window, physicians are in a hurry for treatment.
Weighing a patient on a common standing scale is often not possible because the patient is in pain or
is not able to stand due to other symptoms of stroke, e.g., paralysis. The obvious way to determine
the body weight of someone quickly is to ask the person. However, if it comes to stroke, only half
of the patients are knowledgeable and are not handicapped by stroke symptoms [2]. Additionally,
elderly patients might suffer from dementia and cannot provide a reliable value for their body weight.
Furthermore, relatives who could be asked might not be available in the trauma room or do not
know the body weight of the patient. In addition, anthropometric methods exist, where lengths and
circumferences of body parts are measured with a measuring tape. Based on an empirical equation,
e.g., the equation for stroke patients presented by Lorenz et al. [3], gives an estimation of body weight.
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The disadvantage of those anthropometric methods is that the patient has to be moved and the
measuring is time-consuming.

Therefore, visual estimation of the patient’s body weight by the attending physician in
the emergency room has become routine worldwide. In a registry with 27,910 stroke patients,
only 14.6 percent were weighed [4]. However, several studies [5–7] illustrate that such a weight
estimation by a visual guess from a physician is often not sufficient for dosing: Every third patient
receives a dosage out of the ±10 percent bound. This result can be improved if the average estimation
of several persons from medical staff is taken. Furthermore, the estimations from nursing staff are
more reliable than the visual guesses by physicians [2].

The observation of body weight is also essential in elder care: People with a healthy weight can
recover better from sickness than people who are underweight or obese. However, older people often
have a reduced appetite, coupled with a decline in biological and physiological functions [8]. In elder
care, people are weighed on common standing scales to observe changes in body weight. Multiple
approaches with 3D sensors are being tested in the field of elder care, especially since the release of the
low-cost Microsoft Kinect camera [9]. Some applications of these approaches are fall detection or the
monitoring of breathing [10,11]. The contact-less body weight approach can be combined in context with
these other approaches to monitor changes in body weight to improve elder care.

In contrast to the scenario of patients being measured on a stretcher, the weighing of standing
people can be easily done on a spring scale. However, the automatic weighing of several people in
a short time can bring a benefit in some applications: Since 2017, the Finnish airline Finnair weighs
passengers to determine the total weight of an airplane for take-off. While the weight of baggage
is measured with a scale, the weight of the passengers is only roughly rated with standardized
weights [12]. The precise knowledge about the weight gives possibilities to optimize fuel requirements
and therefore operating costs [13]. In 1985, a McDonnell Douglas DC-8 jetliner crashed with 256 people
on board. One reason for the crash might have been the underestimated onboard weight, which was
mentioned in the occurrence report [14]. Furthermore, the motivation for a visual weight system
is gained as objects that the subject is wearing or carrying, e.g., a backpack, can be filtered out for
weight estimation.

The presented approach is an extension of Pfitzner et al. [15]: While this previous work had
the clear focus on clinical use, the work presented here extends the approach towards standing and
walking people. First, this article contributes a summary about the visual body weight estimation for
various situations. The settings for the different approaches are compared, as well as the results of
the experiments. Second, the article shows that the feature set from previous work is also suitable
for body weight estimation of standing or walking subjects. To obtain the body weight of walking
subjects, a clustering method is presented, combining the estimations from each frame, to a single and
also a more robust estimation. Finally, the article provides the 3D data used for experiments so that
other research groups can contribute to this topic.

The paper is structured as follows: First, the related work concerning the body weight
estimation based on a camera system is presented, focusing on lying, standing, and walking people.
Second, the here applied and published dataset for body weight estimation based on RGB-D-T
(color, depth and thermal) data is explained. In the following section, the approach for body weight
estimation is presented and separated for standing and walking persons. Experiments with the here
applied dataset and a dataset from related work demonstrate the efficiency of the developed algorithm.
The results are examined in comparison to other approaches for visual weight estimation from related
work. Finally, the paper concludes with a discussion and plans for future work.

2. Related Work

The related work is subdivided for lying, standing and walking people and further provides
a summary of weighing and estimation devices for clinical usage.
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2.1. Common Weighing and Medical Estimation Devices

Scales come in a wide range. The most common type is standing scales. Analog scales use
a reference weight or a spring to obtain the body weight, while modern digital scales use strain
gauges and a change in resistance to get a value for body weight. In the clinical scenario, chair scales
exist, so a patient does not need to stand for the process of weighing. Different types of bed scales
are available to weigh patients who are lying down. First, scales can be designed as a single plate
integrated into the floor where the bed is placed. Second, bed scales are available with multiple
weighing devices, which are attached to each wheel. The sum of all weight is the total weight of
the bed, including the patient. In both scenarios, the tare weight of the empty bed has to be known.
Consequently, either the bed is weighed in advance without the patient or the tare weight of the bed
has to be identified. Choosing the wrong type of bed can result in a high degree of error concerning the
patient’s weight. Furthermore, different attachments, such as medical devices or handrails, can cause
a change in tare weight. In addition, it is possible to integrate multiple strain gauges directly into the
mattress. This solves the issue of determining the tare weight of the bed. It is also possible to integrate
weighing directly into the computer tomography to speed up the process of weight acquisition [16].

Furthermore, rulers exist to approximate body weight for medical usage: Approximation rulers
are common to estimate the body weight of young children; the Broselow tape was developed in
1985 by James Broselow and Robert Luten. It provides nine different weight groups for children
younger than 12. A colored scale on the measuring tape relegates to different medical sets, prepared for
emergency treatment of the different weight groups in case of an emergency. Several studies illustrate
that the Broselow tape is reliable for first aid personnel [17]. However, for children, the estimation of
the parents can be even more reliable, if available [18].

2.2. Estimation from Lying People

The body weight estimation of lying people is important mainly in the scenario of clinical usage.
Most patients are already lying on a stretcher or a bed. Furthermore, the here presented approaches
are suitable for bedridden patients.

Pirker et al. [19] employed 16 stereo cameras around a stretcher. Additional projectors are
needed for complete illumination. A parametric human model complements the back side of the body.
Composed images are filtered for noise reduction and, finally, the volume is calculated with the help
of cross-sections along the body. Because of the high amount of cameras around the patient’s bed,
physicians would be constricted during treatment.

The here presented algorithm for the estimation of lying, walking and standing people is the
continuation of preceding work: In 2015, Pfitzner et al. [20] showed an approach for body weight
estimation with a depth camera. The algorithm extracts only the volume of a subject lying on a medical
stretcher, multiplying it with a fixed value for the density. Color and depth gradient achieve the
segmentation. The focus of this application was set on the body weight estimation of stroke patients
within the treatment process in the trauma room. Although the approach is straightforward, the system
was more reliable than the visual guess performed by the medical staff: 79 percent of all patients
received a sufficient body weight estimation, while the visual guess from a physician could only
provide a sufficient estimation in 68 percent of patients.

Figure 1 shows the scene in the trauma room with a patient on the stretcher and the complete
system, as presented in Pfitzner et al. [20]. The setup with the patient lying on a medical stretcher and
the sensors integrated into the ceiling is the same as in the following previous work.

The approach was extended in 2016 by the work of Pfitzner et al. [15]. An additional thermal
camera improves the segmentation, and the patient in the fused field of view can be clearly segmented
from the mattress that the subject is lying on. Furthermore, this paper introduced an extended feature
extraction, as well as a machine learning approach—here an ANN—to improve the outcome in body
weight estimation, by minimizing outliers and improving the standard deviation for the relative error.
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In total, 89.9 percent of all subjects received an estimate of ±10 percent. For this approach, a patent
exists [21].

(a) (b)

Figure 1. Clinical integration of sensors into the trauma room, as shown in [15]. Within the scenario
of trauma room in which physicians mostly treat emergency patients, the sensor system is integrated
into the ceiling (a); The system does not hinder the physician while treating the patient, who is often
lying on a medical stretcher. Besides the sensors in the ceiling, the system consists of a computer
system—including a keyboard and a mouse for interaction, a monitor for visualization and a barcode
scanner to identify patients with their ID (b). The connection between the sensors and the computer is
achieved by USB cables. (a) Trauma room with sensors integrated into the ceiling; (b) Schematic of the
sensor system and its connections to a computer.

Pfitzner et al. [22] presented a comparison of different depth sensors for the scenario of
body weight estimation. In conclusion, the Kinect One can provide better results in body weight
estimation—95.3 percent for the ±10 percent range—compared to the estimation based on the data of
the Kinect with 94.8 percent. Additionally, this work also presents a correlation analysis of the extracted
features, and how a different configuration of the available features can provide a reliable result.

2.3. Estimation from Standing People

In contrast to the estimation of lying people, the scenario for standing or walking people is more
complex: The person is not aligned to a fixed surface on the back. Furthermore, the posture and the
position of the subject changes in a sequence of frames.

Robinson and Parkinson [23] developed an approach for the body weight estimation of standing
people. Here, anthropometric features are extracted from a scene’s point cloud and the raw sensor
data from an RGB-D sensor with a person standing in front of it can be seen. This approach also
demonstrated that these raw features from the point cloud could lead to a bias because of un-calibrated
sensor or noise. Furthermore, even thin clothes can confuse the extraction of the features, like the
circumference of a body part, e.g., waist or hip circumference.

Cook et al. [24] presented a framework based on a structured light sensor for radiation dose
estimation in CT examinations. In preliminary experiments, they showed results for five persons
standing in front of a structured light sensor. The measured volume of the patient differs due to
different positions of their arms.

With the help of skeleton tracking, Velardo and Dugelay showed a computer vision system to
prove the health of a person with the help of a structured light sensor [25]. Apart from sensing the age
of the subject, the sensor measures anthropometric features from arms, legs, and the body. The authors
provide a trained statistical model from a medical database, containing anthropometric measurements
from more than 28,000 subjects, as well as the ground truth body weight. This approach has the benefit
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of a large sample size for training. However, the estimation of the anthropometric features based on
the RGB-D data is hard due to the sensor’s noise. Additionally, the system provides information about
obesity and nutrition to the user.

Based on a side-view feature, Nguyen et al. [26] developed a method to estimate the human body
weight of standing people captured with an RGB-D camera. A model is trained based on regression.
Together with handling the gender data, the algorithm can reach the mean average error of 5.20 kg over
300 subjects. In an additional experiment, the authors proved that the body weight estimation based on
RGB-D data is more reliable compared with the human estimation. Furthermore, the utilized dataset
with 300 subjects is published as an open-access source, containing the RGB-D data, the ground truth
gender, and the ground truth body weight. This dataset is also applied to the following experiments.

2.4. Estimation from Walking People

Beside the body weight estimation from a single frame, it is also possible to estimate it by
a sequence of sensor data. Labati et al. [27] developed a body weight estimation suitable for walking
persons. The focus was set on a contact-less and low-cost method. The method is based on frame
sequences from two cameras, which are placed to get a frontal and a side-view of the walking
person. The feature vector consists of the height of a person, an approximation of the body volume,
an approximation for the body shape and the walking direction. The extracted features are forwarded
to an ANN to obtain body weight. Experiments are performed with 20 subjects, walking in eight
different directions. A maximum absolute mean error was recorded with less than 2.4 kg.

Arigbabu et al. [28] demonstrated the extraction of soft biometrics, e.g., body height and weight,
based on video frames from a single monocular camera. Due to a homogeneous background,
the people’s silhouette can be extracted easily with state of the art image processing techniques
like background subtraction. The silhouette is converted into a binary mask, where 13 features are
extracted depending on the pixel density in segmented regions. The feature vector is finally forwarded
to an ANN to estimate the body weight. In experiments with 80 subjects, they reached a mean average
error of 4.66 kg the estimation of body weight. The update rate of the extraction of all described soft
biometrics was about 1 Hz. The approach was compared with the previously presented approach by
Labati et al. [27] and Velardo and Dugelay [25].

Most of the approaches presented here use neural networks as a machine learning approach to
generate a model for body weight estimation. The difference in the approaches can be found in the
types of features forwarded to a neural network. In contrast to related work, the approach in this
paper is not limited to a particular application. The selected features for machine learning are suitable
for the scenarios of subjects who are lying, standing or walking. They can be used in general for the
estimation of body weight. Furthermore, Table 1 compares the results of related work as a summary.
The approaches presented by Nguyen et al. [26], Velardo and Dugelay [25], Labati et al. [27] and
Arigbabu et al. [28] are compared in the experiment section.

Table 1. Results for contact-less human body weight estimation from related work in alphabetic order.
The results are not directly comparable due to different evaluation metrics.

Method Sensor Approach Constrains Results

Cook et al. [24] RGB-D
structured light

image processing to reconstruct
the volume

sample size 6 subjects only volume estimation

Pirker et al. [19] 8 stereo cameras image processing to reconstruct
the volume

scene has to be known only volume estimation

Nguyen et al. [26] RGB-D
structured light

machine learning with
l2-regularization and support
vector regression

5.2 kg MAE

Velardo and Dugelay
[25]

RGB-D
structured light

machine learning with multiple
regression analysis

sample size 15 subjects 2.7 kg for a single subject

Pfitzner et al. [20] RGB-D
structured light

image processing to reconstruct
the volume

person is lying on
a flat surface

79.1 % within relative
error of 10 %
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Table 1. Cont.

Method Sensor Approach Constrains Results

Pfitzner et al. [15] RGB-D
structured light

machine learning with ANN person is lying on
a flat surface

89.6 % within relative
error of 10 %

Pfitzner et al. [22] RGB-D structured
light and ToF

machine learning with ANN person is lying on
a flat surface

95.3 % within relative
error of 10 %

Labati et al. [27] 2 RGB cameras machine learning with ANN sample size 20 subjects 2.3 kg std error
Arigbabu et al. [28] RGB cameras machine learning with ANN 4.66 kg MAE

3. Approach for Visual Body Weight Estimation

The algorithm is subdivided into sections for sensor fusion, segmentation, and feature extraction.
It leads to a learning approach based on an ANN to obtain the body weight of a single person. Figure 2
illustrates the procedure in body weight estimation based on the previously segmented point cloud.

Segmented
Point Cloud

Extract
Features

Normalize
Features ANN De-

Normalize
Body Weight

Figure 2. Process of body weight estimation.

3.1. System Description

The system uses different sensors, depending on the recorded dataset. It was developed for
previous work [15,20] to be integrated into the clinical environment. There the system includes
a Microsoft Kinect, a Microsoft Kinect One and an Optris PI400 thermal camera. A single depth sensor
is sufficient for body weight extraction. However, the developed algorithm should not depend on the
applied sensor. Therefore, experiments are performed with different sensors. Table 2 compares the
sensors to each other.

Table 2. Property table of used sensors: The three sensors are selected for the body weight estimation
because of their similar FOV, which provides a total view of the patient on the stretcher. For the 3D
sensors, the measurement range is sufficient. The frame rate of at least 30 Hz is acceptable, while the
thermal camera provides a frame rate of 80 Hz.

Model Kinect Kinect One Optris PI400

Principle Structured Light Time-of-Flight Thermal Camera
Resolution 320× 240 512× 424 382× 288
Field of View 57◦ × 43◦ 70◦ × 60◦ 62◦ × 49◦

Frame rate 30 fps 30 fps 80 fps
Dimensions 73× 283× 73 mm3 249× 66× 67 mm3 46× 56× 90 mm3

Weight 564 g 1400 g 320 g
Power consumption 12 W 32 W <2.5 W via USB
Interface USB 2.0 USB 3.0 USB 2.0
Price $100 $200 $3500

Both the Kinect and the Kinect One are RGB-D cameras providing a color stream RGB, and a depth
per pixel D. The first Kinect camera was released in 2011 bringing a low-cost consumer product into
robotics. The sensor brought multiple applications and made an impact well beyond the gaming
industry [29]. The Kinect holds a sensor for infrared (IR) and a sensor for color. Both sensors are
calibrated to each other. The structured light principle obtains depth: A projector emits a known pattern
in the environment. This pattern is seen by the IR sensor from a different pose to calculate the depth for
an arbitrary pixel. Khoshelham and Elberink [30] illustrate the sensor’s characteristics in image quality
and noise.

In contrast to that, the Kinect One works by the Time-of-Flight (ToF) principle [31]: Having a highly
precise measurement device for the time, it would be possible to calculate the distance between a light
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source and an object by measuring the time. The range of a given point can be calculated by the time
t the light travels with the help of the speed of light c with d = 0.5 · t · c. Due to the fast traveling
light, the distance measurement is obtained by modulated light: A source emits a light pulse towards
an object. The frequency for modulation is known, and a phase shift can be measured from the
reflected signal.

The here applied depth sensors differ not only in their resolution, but also the different
principle provides a diverse characteristic of depth. Both sensors are compared to each other by
Sarbolandi et al. [32]. Today, there exist various types of RGB-D sensors, which are suitable for the
body weight estimation approach, e.g., Asus Xtion cameras from the Intel RealSense series [33].
The thermal camera is state of the art and is added to the sensor set to ease segmentation based on
a simple thermal threshold. In this presented sensor configuration, the thermal camera is the most
expensive part. It was used because it was already available from an earlier project. However, a
cheaper thermal camera with a lower resolution and frame rate can be used for the segmentation.
Pfitzner et al. [20] illustrated that the visual body weight estimation is possible without a thermal
camera, but outliers due to insufficient segmentation can occur.

The algorithm—including the sensor fusion, the feature extraction and the forwarding to
an artificial neural network—is implemented on a conventional desktop computer, which is installed
in the trauma room. The computer in the trauma room, which is equipped with an Intel i7 of the 4th
generation, can provide the result in body weight estimation within 300 ms, including the saving of
the sensor data. The software does not rely on specialized hardware, like a high-end graphics card,
although the processing speed could benefit from parallelization. For offline processing, a mobile
computer (Dell M4800) is used, having a maximum power consumption of less than 80 Watt [34].
Therefore, the complete hardware could be designed with less than 100 W, including the mobile
computer, the thermal camera (<2.5 Watt) and the Microsoft Kinect (12 Watt). Table 3 illustrates that
the processing time for the desktop computer and the mobile computer is similar. A small experiment
in our laboratory showed that the approach is also suitable for small size embedded computers, e.g.,
a Raspberry PI. With a reduced visualization, and without the saving of the sensor’s data to the
database, this configuration provided the estimation of body weight in around 5 s, see Table 3. The
system is then limited in real-time visualization, as well as process time, and the estimation of the
body weight is available with a higher delay. However, the embedded computer can have the benefit
of lower power consumption and a smaller footprint, which provides easier integration in the clinical
environment.

Table 3. Tested hardware including time measurements for the estimation: The biggest part of
processing time is used to segment the patient from the environment. In contrast to that, the extraction
of the features and the processing via an artificial neural network is small. The total time includes
visualization and logging during the processing.

Desktop Computer Dell M4800 Mobile Computer Raspberry PI 3 Asus Tinkerboard

Processor Intel i7-4820K Intel i7-4900MQ ARM Cortex-A53 Rockchip RK3288
Nr. of Threads 8 8 4 4
max. Clock 3.90 GHz 3.80 GHz 1.2 GHz 1.8 GHz
TDP 130 W 47 W <3.7 W 5 W

Time for Segmentation 239 ms 245 ms 5321 ms 2661 ms
Time for Estimation 22 ms 23 ms 267 ms 212 ms
Total Processing Time 263 ms 270 ms 5604 ms 2885 ms

3.2. Sensor Fusion

All applied projective depth, color, and thermal sensors are calibrated intrinsically based on the
method presented by Zhang [35]. Therefore, a single calibration pattern is used, which is visible in
depth, color, and thermal frame. Gonzalez-Jorge et al. [36] present different types of suitable calibration
targets. The here applied calibration target consists of a metal plate on the back which is colored white
and a black wooden plate on top. The wooden plate has holes in a circular pattern. The metal plate
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can be heated. Because of a space between the metal and the wood plate, a thermal gradient is visible,
and the wholes appear to be warmer than the top surface. The circle pattern is therefore visible in the
spectrum of the thermal camera [15].

The results of sensor fusion can be displayed in different settings. Besides the typical
representation on the screen as a color image of the scene, the depth can be visualized by a color
mapping. Furthermore, it is also possible to illustrate the scene as a false-color representation for
temperature or fused with the color stream, similar to that presented by Vidas et al. [37]. This is
achieved by comparing the color channel of every point in the cloud. Figure 3 illustrates the sensor
fusion and its visualizations: In Figure 3c, the data from the color sensor of the Kinect camera is
fused with its depth stream. In the fused image, the color stream provides the intensity of each pixel
as a grayscale, while the color of a pixel arranges the depth in the scene, as shown in Figure 3b.
In addition, the color data and the thermal data are aligned to be visible at the same time, see Figure 3d.
From the given data, further data can be calculated to enhance the point cloud or the depth image,
e.g., with normals.

(a) Color (b) Depth (c) Color and Depth (d) Color and Therma

Figure 3. Visualization of sensor fusion: Figure (a) shows the raw color stream from an RGB-D camera.
The depth stream can be visualized using a colormap, here drawing blue values for far objects and
drawing white and orange for nearer objects (b). The stream from the thermal camera can be visualized
in several ways: either it is drawn with false-color representation (c) or can be combined with other
streams—here a combination of the color stream, highlighted with temperature (d). The here presented
image-based sensor fusion is achieved by intrinsic and extrinsic camera calibration, which is presented
in Figure 4.

Figure 4 presents the process of calibration for sensor fusion: The frames from the sensor are
differentiated by indices, K for the Kinect, K2 for the Kinect One and T for the thermal camera.
All three sensors are calibrated intrinsically. First, the raw streams from the sensors I are forwarded
to rectification based on the determined intrinsic parameters P and d [35]. Second, the rectified
images I are then calibrated extrinsically based on the previously estimated transformations T.
Third, the aligned data I is synchronized in time by the method presented by Lussier and Thrun [38]
with ∆tT , ∆tK, ∆tK2. Finally, a point cloud P = (p1 p2 . . . pn) containing n points, can be generated
with the help of the pinhole camera model.

The intrinsic calibration aims to remove the aberrations from the lens, bringing the image in the
form of the pinhole camera model. For the intrinsic calibration, the projection matrix P has to be
determined. The matrix contains the focal length , as well as the offset to the sensor’s center. Therefore,
based on the pinhole camera model, a point p = (x y z)T ∈ R3 can be projected onto the sensor as
a pixel q = (u v)T . For the extrinsic calibration, the world frame’s origin is set the same as the origin
of the infrared sensor of the Kinect. The extrinsic factory calibration of both Kinect cameras is left as it
is. The transformations between the two Kinect cameras and the thermal camera is estimated with the
help of the same calibration pattern.
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Figure 4. Process of sensor calibration: First, all projective sensors are calibrated intrinsically
to remove distortions from the image and to obtain the projection matrix for each sensor PT ,
PK and PK2. Furthermore, the coefficients for distortions d = (k1 k2 k3 p1 p2) are necessary for
rectification. The vector contains the parameters for radial distortion (k1, k2, k3), as well as the
parameters for tangential distortion (p1,p2) [35]. Second, the sensors are calibrated extrinsically,
estimating the transformations between the sensors T. The calibrated images are noted by I′T ,
I′K , and I′K2. Finally, the data from the sensors are synchronized in time based on ∆tT , ∆tK , ∆tK2.
The synchronized images are noted by I′′K , I′′K2, and I′′T . After this process of calibration, sensor fusion
can be applied and data is converted towards a Cartesian point cloud P ∈ R3 .

Figure 5 illustrates the transformation between the sensors. The extrinsic parameters—the rotation
R and the translation t —are combined to a pose AξB describing the relative pose of {B} with respect
to {A}. After sensor fusion, every point can contain the Cartesian coordinates (x, y, z), color (rgb) and
thermal data (t) with p = (x y z rgb t)T . For calibration and sensor fusion, OpenCV was applied [39].
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{T} Frame of the thermal camera

{Kc} Color sensors frame of the Kinect
{Ki} Infrared sensor frame of the Kinect
{Kp} Frame of the Kinect’s IR projector

{K2c} Color sensor frame of the Kinect2
{K2i} Infrared sensor frame of the Kinect2

Figure 5. Transformation tree for the system’s sensors: The infrared frame of the Kinect is used as
reference for the world coordinate origin {0}. The manufacturer already calibrates the 3D sensor’s
own sensor frames. To obtain the transformation between the Kinect V1 and Kinect One, the IR sensors
from both cameras are taken as a reference.
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3.3. Segmentation

The process of segmentation differs with the scene: A patient lying on a medical stretcher with
physicians on his side is harder to segment than someone standing in an empty room with a clear
distance to the wall behind him. The point cloud P is segmented in a set belonging to the person
P p and a set for the environment PE with P = PE + P p. Therefore, a point can only belong to the
person’s point cloud, or the environment. The segmentation for clinical applications is described
by Pfitzner et al. [15]. For the reader’s convenience, it is also presented as follows: The patient is
placed in a set range within the field of view (FOV) of the sensors mounted on the ceiling. This range
is visible with markers on the floor. In an initial step, the amount of data in the point cloud is reduced.
Therefore, the floor and all data outside the range of the markers on the floor is removed from the point
cloud. After this step, the point cloud should contain mostly the patient and the stretcher he or she is
lying on. Based on the available thermal data from the thermal camera, the segmentation can be done
with a threshold in temperature. Points having a higher temperature than a fixed limit are included
in the patient’s point set P p. Physicians or family members close to the patient can be removed by
finding the most significant contour easily under the assumption that the most significant part of the
remaining scene is the patient and the stretcher. Based on the Random Sample Consensus (RANSAC)
algorithm [40], the surface of the stretcher is obtained with a model for a plane. On one side, this is
necessary to improve the outcome of segmentation. On the other side, the surface of the stretcher is
necessary for the upcoming feature extraction. Morphological operations like erosion and dilation
improve the outcome of segmentation [41]. Finally, the scene’s point cloud P is segmented, and the
patient’s point cloud P p is available. To check if a patient is within the FOV of the camera, state of the
art algorithms like the histogram of oriented gradients can be used [42]. Further, the measurement
can be started by the medical staff by pressing a button attached to the wall in the trauma room.
The segmentation in this medical scenario is reliable and robust. The data from the thermal camera
provides good results in segmentation, sufficient for feature extraction. However, also without a thermal
camera, the segmentation can be achieved, but outliers can occur, as illustrated in previous work [20].

The segmentation of a standing or walking person is less complex: To segment the person from
the background, a reference frame Pref without the person is recorded in advance. The current
frame containing the person is subtracted from the reference frame PP = P − Pref. Due to the
sensor’s noise, a threshold in distance should be applied to get a good outcome of background
subtraction. Furthermore, to improve the outcome of the segmentation on the floor, the RANSAC
algorithm can be applied to detect points on the floor and remove them from the scene’s point cloud.
Therefore, the segmentation of the feet gets more accurate and robust. Outliers and jumping edge errors
can be removed by morphological filters or statistical outlier filters. Figure 6 illustrates the segmentation
based on background subtraction with a person walking towards the camera. This procedure is similar
as presented in related work by Labati et al. [27] and Nguyen et al. [26].
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Figure 6. Cont.
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Figure 6. Sequence of someone walking towards the camera: The first two rows in the table illustrate
the raw scene in color and depth representation, while the lower part of the table shows the segmented
person. The sequence was recorded over four to five seconds. The scene is recorded with the Kinect One.

3.4. Feature Extraction

Based on the segmentation, features are obtained from the person’s point cloud PP. The position
of a patient does not vary much in the clinical scenario with the patient on a medical stretcher in a
previously defined position of the bed and in a fixed distance from the sensors. In contrast to that,
the pose of multiple persons standing in front of a camera can vary more; while walking the pose
of the person changes from frame to frame. Therefore, it is necessary that the extracted features are
robust against changes in scale, translation, and perspective. The difference in posture is small for
most people standing in front of the camera or lying on a stretcher: most of them have their arms aside
their body and a few have their arms crossed over their stomach.

The extracted features are presented in Table 4. The correlation of those features to the ground
truth body weight is shown in Pfitzner et al. [22]. A good feature is invariant against scale (s),
rotation (r), translation (t), perspective (pe) and posture of the person (po) in front of the camera.
However, while most of the here presented features are invariant for scale, due to the applied 3D data,
no feature is invariant against changes in posture. Therefore, the data applied for training the model
should cover many different common postures for standing and walking people.

The features can be grouped: The features f1 to f4 are simple geometric features. The estimation of
the volume is only possible due to the stretcher the patient is lying on. The volume is calculated based
on a triangle mesh of the person’s frontal surface s. The not visible surface on the back of the person is
modeled by a single plane. The calculation of the volume is presented in detail in Pfitzner et al. [20].
Further, the triangle mesh is taken to calculate the frontal surface of a person. Although both features,
the volume, and the surface, are only estimations and can be far from ground truth values, they can be
a hint for an estimator: A person having a higher value for volume tends to be heavier compared to
someone having a lower volume value. In addition, this first feature group contains the number of
points belonging to the person’s point cloud |PP| and the calculated density of the scene, setting the
number of points from the person in relation to the number of points of the whole scene |P|.

The second group of features ( f5 to f10) is based on eigenvalues and the eigenvalues itself:
The normalized eigenvalues have the benefit that they are invariant against coordinate transformations like
scale, rotation, and translation. Therefore, the features based on these eigenvalues — sphericity, flatness,
and linearity — are also invariant against transformations.

The third group consists of features from statistics: Compactness and kurtosis are normalized
and therefore invariant against scale, rotation, and translation.

Features from the silhouette of a person are grouped in the fourth section: The area and length
of the contour and the convex hull are invariant against rotation, and translation, but not against
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scale. However, a small change in posture can change the outcome from the calculation of contour and
convex hull.

Table 4. List of features for body weight estimation ∀ pj ∈ PP. The table further lists the invariance
of each feature by scale (s), rotation (r), translation (t), perspective (pe) and posture of the person (po)
with + (invariant), 0 (invariant with limitations) and - (not invariant). The equations in the table are
taken from the previous work [22].

Invariance

Feature s r t pe po Equation

f1 volume + + + 0 - v
f2 surface + + + 0 - s
f3 number of patient’s points - + + 0 - |PP|
f4 density - + + 0 - |PP |/|P|

f5 1. eigenvalue + + + 0 - λ1
f6 2. eigenvalue + + + 0 - λ2
f7 3. eigenvalue + + + 0 - λ3
f8 sphericity + + + 0 - λ3/∑j λi

f9 flatness + + + 0 - 2·(λ2−λ3)/∑i λi

f10 linearity + + + 0 - (λ1−λ2)/∑i λi

f11 compactness + + + 0 -
√

1/n ∑i(pj − p̄)2

f12 kurtosis + + + 0 - 1/n ∑j ||pj − p̄||
f13 alt. compactness + + + 0 - ∑j(pj−p̄)4/ f9

f14 distance to person + + + + 0 d

f15 contour length - + + - - lc
f16 contour area - + + - - ac
f17 convex hull length - + + - - lh
f18 convex hull area - + + - - ah

f19 gender + + + + + g

Related work showed that the body weight estimation could be improved if the gender
is known [26]. The gender was here taken from ground truth, but could also be estimated by
algorithm [26,43]. Apparently, the gender does not change in any way with applied transformation.
Further, the cited algorithms are robust in detecting gender [43].

Table 5 demonstrates the changes in the feature values with different postures: The first scene
shows a subject standing straight with the arms aside. The features are listed and calculated by the
previously presented equations. In the second scene, the subject raises both hands a bit. The values
for surface and density do not change much. In addition, the first eigenvalue nearly stays the
same. However, the value for the third eigenvalue changes, due to the arms raised in front of the
person. Flatness and sphericity—which correlate with the third eigenvalue—also change significantly.
Compared to the third scene, where the subject stands with legs apart, the second eigenvalue changes
most. Therefore, flatness and also linearity change. Comparing the first and the fourth scene, the subject
crosses the arms: The surface lowers, as well as all features from contour and convex hull. The second
eigenvalue lowers while the third eigenvalue increases. In the last scene, the subject is wearing a
backpack. Comparing the features from this scene with the first scene, most of the features are within
the same range. However, there are differences due to slight differences in posture. Apparently,
the body weight estimation can ignore such objects as backpacks, if not visible to the sensor.

Concerning all the poses presented here, the features from contour and convex hull are able to
vary the most: A subject having the arms aside can cause a much higher length in contour when there
is a small gap between the body and the arm. However, as shown in [22], the length and area of the
contour correlate with the body weight and therefore it can be useful to enclose such features for body
weight estimation.
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Table 5. Changes in features with different poses: Five different scenes illustrate the change in feature
values depending on the posture.

Features Scene 1 Scene 2 Scene 3 Scene 4 Scene 5

Surface 9.5× 10−1 9.7× 10−1 9.6× 10−1 8.6× 10−1 9.7× 10−1

Density 1.1× 10−1 1.1× 10−1 1.2× 10−1 1.0× 10−1 1.3× 10−1

1st eigenvalue 4.7× 103 4.7× 103 5.1× 103 4.5× 103 5.4× 103

2nd eigenvalue 3.9× 102 4.6× 102 6.9× 102 2.5× 102 5.2× 102

3rd eigenvalue 7.1× 101 3.2× 102 7.9× 101 9.4× 101 7.7× 101

Sphericity 4.1× 10−2 1.8× 10−1 4.0× 10−2 5.8× 10−2 3.8× 10−2

Flatness 1.2× 10−1 5× 10−2 2.0× 10−1 6× 10−2 1.4× 10−1

Linearity 8.3× 10−1 7.7× 10−1 7.5× 10−1 8.8× 10−1 8.1× 10−1

Compactness 4.6× 10−1 4.6× 10−1 4.6× 10−1 4.7× 10−1 4.5× 10−1

Kurtosis 5.4× 103 5.5× 103 6.2× 103 5.0× 103 6.0× 103

AltCompactness 8.6× 10−1 8.7× 10−1 8.6× 10−1 8.6× 10−1 8.7× 10−1

Contour length 1.0× 103 1.4× 103 1.4× 103 1.1× 103 1.4× 103

Contour area 2.5× 104 2.5× 104 2.8× 104 2.1× 104 1.4× 103

Convex hull length 8.2× 102 8.3× 102 9.3× 102 8.0× 102 8.8× 102

Convex hull area 3.0× 104 3.5× 104 4.3× 104 2.6× 104 3.7× 104

Distance 1.8 1.8 1.7 1.8 1.6

color

segmented depth

Machine learning minimizes the invariances in selected features. However, a suitable set for
training and testing should cover most of the various poses, especially when the subject is moving
during body weight estimation.

3.5. Weight Estimation Based on a Single Frame

The previously extracted features are forwarded to an ANN. The network is designed as
a three-layer feedforward network, having one layer as input, one hidden layer, and a single output
layer. The output layer consists of a single neuron representing the body weight in kilograms.
The number of input units is set by the number of features forwarded to the network. For every
element of the feature vector, an input unit exists.

The network is trained with a subset of the available data. For the upcoming experiments,
70 percent of a dataset is forwarded to the neural network for training. The remaining 30 percent of
each dataset is used to evaluate the network. Those data are never used for training so the network
cannot overfit for the training data. Learning is achieved by resilient propagation [44]. Regularization is
applied with weight decay to improve the outcome. First, the error of training and testing decreases.
After a while the error in testing dataset increases while the training error is still decreasing. This is the
moment to abort the training to prevent an over-fitting. Due to randomized starting points, the learning
via the neural network approach can come to different solutions for every trial.
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3.6. Estimation of a Sensor Stream

The FOV, the person’s height, and the maximum distance for 3D data acquisition mark the starting
and end markers on the floor, see Figure 7b. Figure 7a illustrates the poses of all people walking
towards the camera. Due to different settings for the experiments, the path people tend to walk differs.
Further, the camera did not always have the same orientation towards the floor and was not always
mounted at the same height.
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(a) Position of subjects while walking. (b) Setting for walking subjects.

Figure 7. Poses of people walking towards the camera (a): The complete datasets consist of several
independent experiments. Therefore, the poses of the people walking differ, depending on the
orientation of the camera. The people stand at the first marker (b). While walking towards the second
marker close to the camera, every frame from the sensor is saved for offline processing. The recording
is stopped when the second marker is reached.

First, the person is segmented from the background by the methods described in the previous
section. Second, for every frame of the dataset, the body weight estimation is applied. In a scatter plot
together with the ground truth body weight, a line becomes visible for every single person. Some of
the estimations are close to the ground truth body weight. Even outliers of more than 30 percent occur.
Therefore, taking an arbitrary frame from a person’s dataset will likely lead to a close to random result.
Third, a clustering method is applied, so not only an arbitrary frame from a person’s dataset provides
an estimation of the body weight. A Euclidean clustering method is applied to improve the outcome.
The clustering is applied as follows: A dataset of a person D consists out of N frames from the sensor
D0, D1, . . . , DN . Every frame consists of a point cloud P .

1. For every frame in the dataset Di ∈ D estimate the body weight based on the calculated features
wi(Di → f).

2. Calculate the mean distance d̄ for every estimation of a dataset D to all other estimations by

d̄i(Di) =
1
N

N

∑
j=1
|wi − wj| where i 6= j (1)

and store the calculated average distances in a vector d̄.
3. Sort the calculated distances in an ascending order d̄0 ≤ d̄1 ≤ . . . ≤ d̄N .
4. Remove values with the highest distances. Keep a fixed amount of distances, e.g., 20 percent.
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5. Calculate the centroid of the remaining estimations containing n0.2 = 0.2 · N estimations

w̄ =
1

n0.2

n0.2

∑
i=1

wi (2)

which is the result of the body weight estimation based on a stream of data.

The principle in clustering is demonstrated in the upcoming section with experiments.

4. A Dataset for Body Weight Estimation

In addition to the here presented algorithm, a dataset is published to boost research in this
field. Public datasets, as provided by Nguyen et al. [26] help to improve models for body weight
estimation. Furthermore, developed algorithms and models can be applied to the dataset to generate
comparable results. Depending on the recorded dataset, different sensors are used for recording.
First, the Microsoft Kinect camera from the first generation of the XBox is used to obtain 3D data from
the environment. Another sensor used for data acquisition is the second generation Kinect camera,
the Kinect One. Additionally, a thermal camera is added and fused to the 3D data. This should ensure
an easy segmentation approach based on a thermal threshold.

Table 6 illustrates the characteristics of the subjects in the dataset. The datasets are the following:

• HospitalNoThermo: From May 2014 to September 2014 a dataset was recorded from the
Universitätsklinikum Erlangen, Germany, for preliminary testing. In this early dataset only RGB-D
data is available without thermal data. The thermal camera was added after this experiment.
The dataset contains 192 measurements.

• Hospital: This dataset includes feature values from trauma room patients from the
Universitätsklinkum Erlangen, Germany. The dataset contains 127 measurements from people
lying on a medical stretcher, recorded with a Microsoft Kinect. For this dataset a proper
distribution is achieved consisting of people of different ages, body weights and shapes, see
Table 4. Additionally, this dataset contains the patients’ self-estimation, age, sex, as well as
anthropometric features like body height, abdominal girth, and waist circumference. The distance
between the sensors and the subjects was around 2 m.

• Event: The features from this dataset were recorded at a public event, called Long Night of
Science in 2015 in Nuremberg, Germany. People in this dataset were visitors of the public
event. This dataset contains 106 people. For this public event, it was not convenient to take
anthropometric measurements. Ground truth was validated with a standard digital scale.
The dataset consists of sensor values from Kinect and thermal camera. Additionally, this dataset
includes point clouds from Microsoft Kinect One.

• Walking: Based on the results of the previous three datasets, experiments with people standing
and walking in front of the camera are complemented. The dataset consists of 14 people,
mostly employees, and students from the laboratory.

For the first three datasets, the camera is mounted over a stretcher. The stretcher at the event and
the hospital datasets are different. Furthermore, the installation of the sensors did not pay attention to
the same height or distance to the stretcher. Therefore, the distance to the stretcher differs between
the datasets.
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Table 6. Datasets applied for this article: The first two datasets are recorded in a trauma room of the
University Hospital Erlangen, Germany. The third dataset is based on a public event in a laboratory,
containing visitors of this event. The fourth set is recorded with employees and students of the
laboratory. For comparison, the average body weight of the German population in 2009 is 73.9 kg [45].
This average value is close to the first three datasets. The last dataset W8-300 is recorded by [26],
showing people standing in the front of a Kinect camera.

Dataset Sensors Scenario
Real Weight in kg Gender

Total
min max Mean σ Female Male

HospitalNoThermo K lying 48.8 165 78.3 17.3 93 99 192
Hospital K, T lying 48.6 129 77.8 17.1 72 55 127
Event K, K2,T lying 48.8 114 78.6 12.0 24 82 106

Walking K2 walking 68 134 84.2 16.4 0 14 14
W8-300 [26] K1 standing 40 104 67.2 14.7 97 207 299

Due to privacy issues, the datasets only contain the depth and the thermal information.
The datasets are available via https://osf.io/rhq3m/ [46]. Each frame from the sensors is stored
as a point cloud within the common PCD file format, used by the point cloud library [47]. An arbitrary
point in the cloud contains the Cartesian coordinates p and three values for color—red, green and blue
channel. The data can be enhanced with temperature values t.

The name of each frame contains the metadata of each person in front of the camera.
The data name is structured as follows GENDER_GROUNDTRUTH_PERSONID_FRAME_ID.pcd. Besides the
raw data from the sensors, an already segmented version of each frame exists within the repository.
Furthermore, the parameters from intrinsic and extrinsic calibration are available. The authors
gratefully acknowledge collaboration and joint work to improve the outcome of body weight estimation
based on RGB-D data, especially for the clinical application.

5. Experiments and Results

For the upcoming section, the presented algorithm is evaluated for standing and walking people.
Experiments for lying people are presented and discussed in the previous work [15,20].

The validate the experiments, different metrics are used for comparison: For each measurement
the absolute error e can be calculated, having the ground truth value x̂ as well as the estimated value
x̃ by ei = x̂− x̃. The absolute error would be good to compare a group of people having the same body
weight and differ only in their visual appearance. The here presented group of people for testing has
a high variety of body weight and visual appearance. Therefore, the absolute error is not sufficient
for comparison. Better for comparison of variant datasets is the relative error which is defined for
an arbitrary dataset with

ε=
x̂i − x̃i

x̂i
=

ei
x̂i

(3)

Another way to prove and benchmark the body weight estimation approach is the mean absolute
error (MAE). The absolute error of each dataset ei is summed up and divided by the total number of
datasets for benchmarking. It is defined by

emae =
1
N

N

∑
i=1
|ei|. (4)

Further, the mean square error (MSE) can be used for validation. Here the absolute error is
squared before summation. It is defined by

emse =
1
N

N

∑
i=1

e2
i . (5)

Compared to the mean absolute error, outliers were weighted stronger.

https://osf.io/rhq3m/
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5.1. Standing

In contrast to experiments for people who were lying down, the most correlating feature—the
volume—cannot be used because no reference surface for the back of a person exists. Therefore,
the body weight estimation has to rely on the remaining features. A previous experiment with the two
datasets from a hospital and the event dataset illustrated that the body weight estimation gets worse if
the volume is missing. Nevertheless, the decrease in accuracy can be sufficient for other applications.

For the experiment, the dataset W8-300 generated by Nguyen et al. [26] is applied. It contains
299 people standing in front of a Microsoft Kinect camera. The color and the depth frame are saved
separately with a resolution for each channel of 8 bit. The segmentation has been done in advance
based on ground detection with RANSAC model [40]: The images in the dataset are already segmented,
only containing the person’s data as a depth and color image; the background is not visible. The file
name of each dataset contains first the gender, second the ground truth body weight, and lastly the
surname of the person. The ground truth body weight varies within a range starting from 40 kg up to
104 kg. In the experiments, 202 males and 97 females participated.

Figure 8 illustrates the result from the dataset: First, the ground truth ordered datasets are shuffled.
For training of the ANN, 70 percent of the dataset were used; the other 30 percent were applied for testing.
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Figure 8. Results of the experiment with people standing in front of the camera based on the here
proposed algorithm and the W-300 dataset contributed by Nguyen et al. [26]. The orange area marks
the range for the relative error of ±10 percent.

All people were not told to hold a fixed posture but most of them were standing normally with
their arms aside.

Nguyen et al. [26] compared the MAE in their publication: They reached a MAE of 4.62 kg for
female and 5.59 kg for male persons. Without the discrimination in gender, the algorithm performs with
a MAE of 5.20 kg. This experiment also includes the ground truth of the gender for the applied model.
Compared to their results, the here performed experiment reaches an MAE of 4.3 kg. The approach
presented by [25] can outperform the here presented results with a MAE of 2.7 kg. However, the sample
size in the published article contains only six subjects.

5.2. Walking

In addition to the previous experiments, walking people should also be estimated for their body
weight. Therefore, a dataset was recorded with students and employees of the Technische Hochschule
Nürnberg, Georg Simon Ohm, walking in front of a Microsoft Kinect One. The person is walking
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towards the sensor, starting at a fixed distance. A marker on the floor shows the limitation of the recorded
scene, due to the FOV of the sensor. The sensor is mounted on a tripod in a height of around 1.5 m.

The setting for this experiment is described in detail in the previous section. Figure 9 illustrates
the results of this experiment as a scatter plot:
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Figure 9. Results of the experiment with people walking towards the camera: The estimations for
every frame for an arbitrary person generate a set of estimations, formed as a line together with the
ground truth value in the scatter plot. Based on Euclidean clustering, 80 percent of the estimations
are removed from the dataset. The final estimation is given based on the centroid of the remaining
estimations. The orange area marks the range for the relative error of ±10 percent.

The estimations for an arbitrary person lead in the scatter plot points, aligning on a horizontal
line. Often, most of the estimations are outside of the ±10 percent bound. However, some estimations
appear to be more dense to other estimations than some outliers. The previously presented approach
for clustering now minimizes the set of estimations of an arbitrary person (here marked in bigger
points) and calculates the centroid of these sets. For this small sample size of 14 subjects, all of the final
estimations were within a range of ±10 percent.

The results provided by Labati et al. [27] outperform the here presented approach when comparing
the standard deviation. In contrast to that, the proposed approach outperforms the estimation for
walking people presented by Arigbabu et al. [28].

6. Discussion

All presented experiments rely on the same set of features. Table 7 compares the result from
walking and standing people for body weight estimation: The estimation works best if the subject is
lying on a medical stretcher, comparing the results for the relative error and the percentage of in range
estimations. This result occurs because in this configuration the volume of the subject can be extracted
easily. Further, the variety of posture and position of the subject is low in the overall datasets [22].
The algorithm works with different types of sensors, e.g., a structured light sensor (Kinect) as well as a
time of flight sensor (Kinect One). Figure 10 illustrates the relative error in a cumulative plot for lying,
standing and walking subjects.
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Figure 10. Comparison between the different settings for body weight estimation: Although the results
for the estimation with standing people from the W8-300 dataset is the worst in this cumulative plot,
the results can be sufficient for a certain applications. Due to the clustering approach, the estimation
of walking subjects outperforms the other settings within the range of ±5 percent. The results for the
lying patients are taken from Pfitzner et al. [22].

Table 7. Results from experiments for standing and walking people. Additionally, the results from
Pfitzner et al. [22] are added for comparison. The lower part of the table illustrates the results from
related work, when available in detail. The best result is marked in bold for each category.

Dataset Size
Relative Error in % In Range in % Error in kg / kg2

min max Mean σ 5 10 20 MAE MSE

Lying [22] Event 106 −8.7 14.3 0.90 4.80 75.6 95.3 100 2.86 13.8
Standing W8-300 299 −28.8 16.76 −0.1 5.80 70.5 91.3 99.3 4.31 33.5
Walking Walking 14 −6.7 9.38 0.32 3.88 78.5 100 100 3.30 20.5

Nguyen et al. [26] W8-300 299 5.2
Velardo and Dugelay [25] 6 3.6 2.7
Labati et al. [27] 20 2.3
Arigbabu et al. [28] 13 4.66

The results for subjects standing in front of a camera are less accurate in nearly every
category. However, over 90 percent of the body weight estimation is within a range of ±10 percent.
Comparing the here presented approach with the algorithm presented by Nguyen et al. [26],
the experiment performs better for the dataset W8-300 with a MAE of 4.31 kg, facing 5.20 kg. In contrast
to that, the estimation of subjects walking towards the camera is outstanding. However, the results
rely on a small set of subjects. Therefore, the experiment is far from being statistically significant, but it
proves the concept.

Although the system with its features is suitable for body weight estimation of lying, standing and
walking subjects, there are some limitations. The previously trained ANN can only provide a sufficient
result for the body weight estimation when a similar subject has been seen in advance, which is
common for machine learning approaches. At a public laboratory event, children were estimated with
relative errors in body weight of up to 50 percent—due to not being seen before. The used model was
trained with patients from the hospital, where subjects younger than 18 years were excluded in the
dataset. While the pose of the subjects lying in the clinical scenario is similar, the pose for walking
subjects can vary strongly from frame to frame. For the here presented small experiment, all subjects
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are facing the camera and walking towards it. In a scenario with the people walking differently,
e.g., walking sideways, the algorithms would not provide sufficient estimation results.

7. Conclusions and Future Work

This paper presented a novel approach for the estimation of body weight. In contrast to related
work, the approach with its feature vector was tested for lying, standing and walking subjects.
Experiments proved that the estimation is possible within a given range. The algorithm and the
extracted features previously presented in [15] are also able to provide an estimation of standing and
walking people. The missing volume—which correlates with the body weight the most [22]—is the
reason the estimation for a single frame of a walking subject is worse than for a lying person.
However, the estimation on a sequence of frames combined with the presented clustering provides
a sufficient body weight estimation. In direct comparison with the approach for body weight
estimation approach from Nguyen et al. [26], the approach presented here can outperform the results,
while being applied to the same dataset.

For future work, it is the aim of the here presented project to obtain a bigger dataset: The estimation
of standing people should be expanded to an approach where people do not need to face in the direction
of the sensors. Further, the path for the estimation of walking people should be made more variable so
people can move freely in front of the camera. This approach needs a higher demand for varying data.
The authors gratefully acknowledge future joint work to improve the outcome of the algorithm and to
develop a bigger dataset for experiments and modeling.
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The following abbreviations are used in this manuscript:

ANN artificial neural network
FPV field of view
IR infrared
MAE mean average error
MSE mean square error
RANSAC random sample consensus
RGB red green blue
RGB-D red green blue depth
RGB-D-T red green blue depth thermal
PCD point cloud data
rtPA recombinant tissue plasminogen activator
TDP thermal design power
ToF time of flight
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