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Abstract: In the present work, we systematically investigate the sensing abilities of two recently
literature-reported two-photon fluorescent NO probes, i.e., the o-phenylenediamine derivative of
Nile Red and the p-phenylenediamine derivative of coumarin. The recognition mechanisms of
these probes are studied by using the molecular orbital classifying method, which demonstrates the
photoinduced electron transfer process. In addition, we have designed two new probes by swapping
receptor units present on fluorophores, i.e., the p-phenylenediamine derivative of Nile Red and the
o-phenylenediamine derivative of coumarin. However, it illustrates that only the latter has ability to
function as off-on typed fluorescent probe for NO. More importantly, calculations on the two-photon
absorption properties of the probes demonstrate that both receptor derivatives of coumarin possess
larger TPA cross-sections than Nile Red derivatives, which makes a better two photon fluorescent
probe. Our theoretical investigations reveal that the underlying mechanism satisfactorily explain the
experimental results, providing a theoretical basis on the structure-property relationships which is
beneficial to developing new two-photon fluorescent probes for NO.

Keywords: two-photon fluorescent; photoninduced electron transfer; density functional theory

1. Introduction

Nitric oxide (NO), a widely existing signal transduction molecule in biological systems, plays an
important role in various physiological and pathological processes [1–3]. It takes part in many living
activities, such as neurotransmitters in the central nervous system and as a mediator in the immune
system [4–8]. Studies have shown that the misregulation of NO is implicated with diverse diseases,
like cardiac disorders, gastrointestinal distress, and neurodegeneration [9,10]. In order to investigate
the role that NO plays in biological systems, it is important to detect the distribution of NO. In the
past decades, developing applicable methods to monitor NO in living cells has become an attractive
subject [11]. Among various approaches that have been employed to detect NO, fluorescent imaging
technique is regarded as one of the most promising one in view of its simplicity, high sensitivity, and
real-time detection [12–16]. Thus, the design and synthesis of fluorescent probes for NO has drawn
great attention.

To date, many fluorescent probes that are capable of detecting NO changes in living cells have
been developed [17–19] and one-photon fluorescent probe has been widely utilized. As is known,
the one-photon fluorescence microscopy is easily interfered by photodamage and photobleaching
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due to the short wavelength excitation. Simultaneously, the penetration depth and the spatial
resolution are relatively limited [20,21]. In contrast to the one-photon fluorescent probe, a two-photon
fluorescent probe takes two photons with lower energy for the excitation can overcome the above
shortcomings [22–24]. Therefore, the development of two-photon fluorescent probe has been of great
interest in many fields at present.

In general, the sensing performance of a two-photon fluorescent probe depends crucially on the
two major parts of a fluorescent probe, namely, the receptor and the fluorophore. The receptor of a
probe serves as the reaction site of the analyte, and the fluorophore acts as a fluorescent signal reporter.
It is noted that an effective fluorophore of two-photon fluorescent probe shows large two-photon
response [25]. Except for the receptor and fluorophore, the recognitional mechanism is another factor
that must be taken into account to design a fluorescent probe. A number of strategies, including
intermolecular charge transfer (ICT), photoinduced electron transfer (PET), fluorescence resonance
energy transfer (FRET), and through-bond energy transfer (TBET), have been adopted to the probe
design [26–29]. Thereinto, PET has been extensively investigated and successfully applied to live-cell
imaging of NO due to its induced fluorescence off-on transform [30,31].

Recently, Liu et al., synthesized a far-red emissive probe(renamed as Pro1 in this paper
instead of the original name NRNO in the experimental paper), using Nile Red as the fluorophore
and the o-phenylenediamine as the receptor, for NO detection and imaging [32]. Then, after
considering the deficiencies of the o-phenylenediamine moiety with interference from some reactive
carbonyl/oxygen/nitrogen species, they designed a new fluorescent probe (renamed as Pro2 in this
paper instead of the original name NCNO in the experimental paper) with mono alkyl substituted
p-phenylenediamine as the recognition group for NO [33]. Both Pro1 and Pro2 show fast fluorescence
response toward NO with a low detection limit in the experiments. In particular, these two probes
can be successfully applied in two-photon microscopy imaging for NO in living cells. In the
present work, not only are the two experimental probes selected for the theoretical investigation,
we have also designed two novel probes (named hereafter as Pro3 and Pro4) by employing the same
fluorophores of Pro1 and Pro2. On basis of the systematic study on the one-photon absorption (OPA),
one-photon emission (OPE) and two-photon absorption (TPA) properties of the molecules, their
sensing performances are compared. More importantly, the recognition mechanisms of the probes
are discussed by analyzing the molecular orbitals distribution diagrams. The effect of receptor and
fluorophore on sensing performance of the probes is, thus, demonstrated. We hope the study can
provide helpful information on the structure-property relationships for further investigating and
designing two-photon fluorescent NO probes.

2. Theoretical Method and Computational Details

2.1. Theoretical Method

The transition probability for one photon absorption and emission can be specified by the
oscillator strength:

δOP =
2ωij

3 ∑
α

|〈i|µα|j〉|
2, (1)

whereωij denotes the excitation energy between the states i and j, µα is the Cartesian component of
the electronic dipole moment operator. The summation is performed over the x, y, and z axes.

The TPA cross-section is directly related to the imaginary part of the third order susceptibility of a
molecule. Alternatively, it can be obtained by calculating the two-photon transition matrix elements
Sαβ between the initial state i and final state f [34,35]:

Sαβ = ∑
s

[ 〈i|µα|s〉〈s|µβ| f 〉
ωsi −ω

+
〈i|µβ|s〉〈s|µα| f 〉

ωsi −ω

]
. (2)
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Here, ω represents the fundamental frequency of the incident light and 2ω = ωif, corresponding
to a resonant TPA process. The summation here includes all initial, intermediate, and final states.

The molecular TPA cross section is dependent on the polarization of the incident beams. When
excited by a linearly-polarized monochromatic beam, the orientationally averaged TPA cross-section is
given by [36]:

δTPA = ∑
α,β

[
2SααS∗ββ + 2SαβS∗αβ + 2SαβS∗βα

]
. (3)

Furthermore, the macroscopic TPA cross section directly comparable with the experiment is
defined as [35,37]:

σTPA =
4π2a5

0α

15c
ω2g(ω)

Γ f
δTPA, (4)

where a0 is the Bohr radius, c denotes the speed of light and α is the fine structure constant. The level
broadening of the final state Γf is set to 0.1 eV [38], which corresponds to lifetime of a few femtoseconds.

2.2. Computational Detail

In order to choose suitable functional to optimize the molecular geometries and calculate their
optical properties, the two experimental probes Pro1 and Pro2 were taken as examples to be calculated
with different functionals. In addition to the common hybrid functional B3LYP, the CAM-B3LYP,
M05-2X, M06-2X, PBE, and WB97XD functionals were also used for the test. Herein, all of the
functionals were implemented with the 6-31G(d,p) basis set. It is worth noting that, during the
experiments [32,33], the measurements were carried out in solution, so the influence of solvent was
important to reproduce the experimental results with reasonable accuracy. To achieve this objective,
the solvent effect of water was simulated using the polarizable continuum model (PCM) [39] in
all computations.

The ground-state geometries of the molecules were fully optimized. No imaginary frequency
was obtained, indicating that the equilibrium geometries were stable. On the basis of the optimized
structures, the OPA properties of the molecules were calculated and the corresponding absorption
wavelengths and oscillator strengths were shown in Table 1.

Table 1. The maximum OPA wavelength λOPA (nm) and oscillator strength δOPA (a.u.) of Pro1,
Pro1 + NO, Pro2, and Pro2 + NO with different functionals.

Functionals
Pro1 Pro1 + NO Pro2 Pro2 + NO

λOPA δOPA λOPA δOPA λOPA δOPA λOPA δOPA

B3LYP 495 0.91 495 0.92 446 0.43 459 0.64
CAM-B3LYP 451 1.05 451 1.06 380 0.93 383 0.91

M05-2X 451 1.09 451 1.09 381 0.98 383 0.95
M06-2X 451 1.07 451 1.08 384 0.96 387 0.94

PBE 485 0.96 485 0.96 428 0.39 442 0.70
WB97XD 449 1.05 449 1.06 373 0.92 376 0.90

Experiment 583 - 585 - 473 - 475 -

The results in Table 1 show that OPA maxima calculated by the B3LYP functional are in reasonable
agreement with the experimental values. Thus, the B3LYP functional combined with the 6-31G(d,p)
basis set was adopted to do all the calculations. The fluorescence properties were obtained by
optimizing the first excited state (S1) geometry of the molecules. All of the above calculations were
carried out in the Gaussian 09 (Gaussian, Inc., Wallingford, CT, USA) program package [40].

In addition, apart from investigating the OPA and OPE properties of the studied molecules, the
other main task of this work is to explore their TPA features. Thus, the TPA cross-sections which can
represent the TPA characteristics are evaluated by means of the quadratic response theory implemented
in the Dalton2013 program [41].
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3. Result and Discussion

3.1. Molecular Structure

A typical fluorescent probe contains a fluorophore (the fluorescent signal reporter) connected to
a receptor (the recognition site of the analyte). As shown in Figure 1, the fluorophore Nile Red and
coumarin derivate are connected with the reporter o-phenylenediamine and p-phenylenediamine,
forming the probes Pro1 and Pro2, respectively. The rigid linkers of oxygen-containing carbon chain in
Pro1 and amide bond in Pro2 can provide a suitable distance between the fluorophore and receptor to
avoid the static fluorescence quenching. Based on the referenced molecule of Pro1 and Pro2, we have
designed two probes (Pro3 and Pro4) by taking the same fluorophores and linkers of Pro1 and Pro2
accordingly and changing the receptors (see Figure 1).
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Figure 1. Molecular structures of the studied molecules. 
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whereas this leads to a slight change on the noncoplanar conformations of the molecules. 
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unchanged upon the addition of NO. To better explain this phenomenon, the OPA properties of all 
the studied molecules have been calculated based on the optimized geometries. The calculated 

Figure 1. Molecular structures of the studied molecules.

Optimized ground state molecular geometries are presented in Figure S1. As is shown, there is
large tortuosity between the probes’ fluorophore and receptor, namely, the probes are in noncoplanar
conformations. Moreover, the presence of NO induces transformations in the receptors, whereas this
leads to a slight change on the noncoplanar conformations of the molecules.

3.2. One-Photon Absorption Property

In the experiments, the maxima absorption wavelength of Pro1 and Pro2 remained nearly
unchanged upon the addition of NO. To better explain this phenomenon, the OPA properties of
all the studied molecules have been calculated based on the optimized geometries. The calculated
results, including OPA wavelengths, the corresponding oscillator strengths and the transition natures
are depicted in Figures 2 and 3. The detailed and the reported experimental data are listed in Table S1.

In Figure 2, the absorption maxima of the chromophores Pro1 and Pro2 are located at 495 nm and
446 nm, respectively. With the presence of NO, the absorption peak of Pro1 + NO remains 495 nm
while that of Pro2 + NO slightly redshifts to 459 nm, which is in reasonable agreement with the
experimental observations. However, compared with the experimental values (583 and 585 nm for
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Pro1 and Pro1 + NO measured in PBS buffer containing 10% DMF as co-solvent, 473 and 475 nm for
Pro2 and Pro2 + NO measured in PBS buffer containing 10% CH3CN as the co-solvent), the calculated
values show redshifts, especially for Pro1 and Pro1 + NO. This discrepancy may results from several
aspects: first, the solution environments are different for the experiments and the calculations; second,
intermolecular interaction in the solution, including solvent-solute interaction and solute-solute
interaction has not been considered in the calculation.

Careful inspects on the transition natures of Pro1 and Pro2 with the absence and presence of NO
show that the maximum OPA states of both Pro1 and Pro2 are the second excited states, whereas those
of Pro1 + NO and Pro2 + NO are the first excited states. In particular, the maximum OPA states of
Pro1 and Pro2 are originated from the HOMO – 1 to LUMO transition (HOMO represents the highest
occupied molecular orbital and LUMO represents the lowest unoccupied molecular orbital), and those
of Pro1 + NO and Pro2 + NO are resulted from the HOMO to LUMO transition. Given that molecular
orbitals involved in the absorption processes of the molecules are mainly localized on the fluorophore
moiety, the absorption of Pro1 and Pro2 are mainly distributed there both in the absence and presence
of NO.
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With regard to Pro3 and Pro4, similar absorption wavelengths as Pro1 and Pro2 are respectively
shown (see Figure 3), which is attributed to the fluorophore-localized transitions that mainly contribute
to the absorption peaks. Although the receptor part for Pro1 and Pro3, as well as for Pro2 and Pro4 are
different, the OPA properties of the molecules are similar. This indicates the OPA of these molecules is
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mainly contributed by the fluorophore, revealing that there is no strong electronic interaction between
the molecular fluorophore and receptor.
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3.3. One-Photon Emission Property

An efficient fluorescent probe exhibits observable change in its fluorescent signal after reacting
with the analyte. To investigate the fluorescent properties of the studied molecules, the geometries
in the first excited state S1 are optimized and shown in Figure S2. It can be seen that compared with
the ground state geometries, the first excited state geometries have slight changes for Pro1 and Pro3.
However, the torsion angles between the fluorophore and the receptor for Pro2 and Pro4 are obviously
increased for the first excited state than the ground state. Upon excitation, the molecule reaches
the excited state. Then, the subsequent fast and non-radiative internal conversion and vibrational
relaxation processes lead the molecule to be located at the lowest vibrational level on the first excited
state according to Kasha’s rule. During this process, the molecular configuration will change rapidly
through the conformation transformation process.

In Figures 4 and 5, the OPE processes of the studied molecules are shown, and the detailed OPE
wavelengths, the corresponding oscillator strengths, and transition natures are given in Table S2. It can
be seen from Figure 4a that the S1 to S0 transition of Pro1 results from the LUMO to HOMO transition,
denoting an electron transfer process from the fluorophore to the receptor moiety. The calculated
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oscillator strength for this transition is 0. Thus, the first excited state of Pro1 is a dark state, meaning
that the direct S1 to S0 transition is forbidden and the molecule is non-fluorescent.

Figure 4a shows that the emission of Pro1 + NO originates from the LUMO to HOMO transition,
which is localized on the molecular fluorophore moiety. As the transition probability between two
molecular orbitals depends on their orbital distribution overlap [42], a greatly-enhanced emission
intensity of Pro1 + NO can be achieved. Thus, when it reacts with NO, an emissive S1 state is observed
for Pro1 + NO with a wavelength of 583 nm and an oscillator strength of 1.12. Considering the emission
oscillator strength of Pro1 and Pro1 + NO, the fluorescence off-on switching ability of Pro1 for NO is
rationalized, which is in good accordance with the experimental observations.

Although the molecular orbitals contributed to the emission of Pro2 is partly overlapped, leading
to a small intensity of its emission (see Figure 4b), the OPE wavelength of 831 nm is beyond the range
of visible light. Thus, the free Pro2 is also non-fluorescent. However, the addition of NO changes the
emission of the probe. A fluorophore moiety localized S1 to S0 transition is observed for Pro2 + NO,
thus, the molecule is emissive with a wavelength of 549 nm and an oscillator strength of 0.79. The
fluorescence off-on effect is also shown in Pro2 for NO, finely according with the experiment [33]. It is
worth noting that our calculations agree well with the experimental fluorescent wavelength trends
whereas quantitative differences still exist, which might be contributed by the vibrational components
of the emission that have not been considered in our calculation.
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With the same fluorophore moiety of Pro1, the fluorescence of Pro3 is totally different
(see Figure 5a). As the inverse process of OPA (see Figure 3), the OPE of Pro3, originating from
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the LUMO to HOMO transition, is mainly localized on the fluorophore. With the presence of NO,
the transition nature of Pro3 + NO is similar as that of Pro3. In addition, the HOMO and LUMO
distributions of Pro3 and Pro3 + NO are extremely alike. Thus, the emission wavelength and intensity
of Pro3 before and after reacting with NO are almost unchanged, indicating that recognizing NO
through the fluorescent variation cannot be achieved by Pro3.

In Figure 5b, the similar transition natures as Pro2 are shown in Pro4. Namely, the free probe
exhibits an invisible emission wavelength with weak intensity, and when reacting with NO, a 550 nm
fluorophore-localized fluorescence is greatly enhanced. Therefore, this probe can act as a promising
candidate for the off-on typed fluorescent chemosensor.
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As is well-known, a large Stokes shift can efficiently avoid the interference between the absorption
and emission spectra, which is useful to improve the sensitivity and accuracy of the detection. In this
study, the Stokes shift of the probes after reacting with NO is calculated. The results are 88 nm, 90 nm,
88 nm, and 90 nm for Pro1 + NO, Pro2 + NO, Pro3 + NO, and Pro4 + NO, respectively. This exhibits
that molecules with coumarin derivate as the fluorophore have a larger Stokes shift, revealing the
superiority of this fluorophore.

In general, analyses on the OPE properties of the molecules indicate that, except for Pro3, other
molecules feature obvious off-on fluorescent response to NO, and Pro2 and Pro4 have more obvious
Stokes shifts compared with Pro1. The influence of structure on the fluorescent properties is thus
demonstrated, indicating the importance of choosing a suitable molecular fluorophore and receptor.
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3.4. Recognition Mechanism

As reported in the experiments [32,33], the recognition of NO for Pro1 and Pro2 pertains to the
PET mechanism, However, theoretical elucidations on the mechanism for both the experimental and
our designed probes have not been carried out to date. On the basis of the OPA and OPE properties of
the molecules, we intend to further investigate the recognition mechanisms of the probes by using
the molecular orbital distribution diagrams. Some frontier molecular orbitals of Pro1 are given in
Figure 6a. One can see that a part of orbitals, such as HOMO − 1and LUMO, are mainly constrained
on the fluorophore moiety, while others, including HOMO and LUMO + 5, are on the receptor part.
Hereby, these molecular orbitals can be divided to the fluorophore’s orbitals and the receptor’s orbitals,
respectively [43], as shown in Figure 6b. That is, the HOMO − 1 (and HOMO) and LUMO (LUMO + 5)
of the whole molecule are, respectively, the HOMO and LUMO of the fluorophore (and receptor). The
energies of the corresponding orbitals are labeled in Figure 7. It is clear that the energy of the receptor’s
HOMO is −5.07 eV, and it is higher than the energy of the fluorophore’s HOMO of −5.29 eV. As a
consequence, when excited by the light, the electron in the HOMO of the fluorophore is promoted to
the LUMO of the fluorophore, following by the electron transfer from the HOMO of the receptor to
that of the fluorophore, which causes fluorescence quenching of the fluorophore.
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However, after reacting with NO, the frontier molecular orbitals and the separation of the orbitals
for the fluorophore and receptor of Pro1 + NO are shown in Figure S3. In Figure 8, one can see that, for
Pro1 + NO, the energy of the HOMO for the receptor (−6.76 eV) is lower than the energy of the HOMO
for the fluorophore (−5.29 eV). Thus, the electron only can transfer between the HOMO and the
LUMO of the fluorophore, which inhibits the PET process and a significant fluorescence enhancement
is achieved.
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In the case of Pro2, the mechanism can be illustrated in terms of molecular orbitals by Figure 9.
According to the approach mentioned above, orbitals with distribution mainly located in the
fluorophore and receptor part are picked out to form orbitals of the fluorophore and receptor,
respectively. Then the HOMO − 1 (and HOMO) and LUMO (LUMO + 3) of the whole molecule
Pro2 corresponds with respect to the HOMO and LUMO of the fluorophore (and receptor). This
shows that the HOMO energy of the fluorophore (−5.06 eV) is higher than that of the receptor
(−6.18 eV). Upon light excitation, the electron will transfer from the receptor to the fluorophore and
the fluorescence is quenched, which induces the PET process. With the presence of NO, the HOMO
energy of the receptor is lower than that of the fluorophore. Consequently, the PET process is inhibited
and the emission of the fluorophore is recovered.
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In the case of the designed probe, the PET and inhibited PET processes of Pro4 and Pro4 + NO are
depicted in Figure S4, which resembles that of Pro2 as we have discussed above.

3.5. Two-Photon Absorption Property

It has been demonstrated that Pro1, Pro2, and Pro4 can effectively identify NO through the
PET process. In order to further investigate the utility of these probes as two-photon fluorescent
chemosensors, their TPA properties, including the excitation energy, the corresponding TPA
wavelength, and the TPA cross-section of the lowest ten excited states are summarized in Table S3, and
the data in the range of 700–900 nm are listed in Table 2. Here the TPA properties of Pro3 and Pro3 + NO
are also calculated to make a comparison. From the data in Table 2, it can be seen that Pro1 and Pro3
do not have significant two-photon responses both in the absence and presence of NO (σTPA < 50 GM).
However, the maximum TPA cross-section is slightly increased when the probes react with NO. For
Pro2 and Pro4, the maximum TPA cross-sections are 171 GM and 116 GM, respectively, which increase
to 183 GM and 173 GM upon the addition of NO. The trend of enhancement in the TPA cross-section of
Pro1 and Pro2 with the presence of NO is consistent with the experimental measurements. Nevertheless,
theoretical values are somewhat different from the experimental ones (see Table 2). The main reason
for this is that the experimental values are the two-photon action cross-section, which is defined as the
product of two-photon absorption cross-section and the fluorescence quantum yield.

Table 2. The two-photon absorption energy ETPA (eV), the corresponding TPA wavelength λTPA (nm),
TPA cross-section σTPA (GM = 10−50 cm4·s/photon) for the studied molecules in the range of
700–900 nm.

Molecule ETPA λTPA σTPA Molecule ETPA λTPA σTPA

Pro1

2.98
3.02
3.09
3.39

832
818
801
731

0
25
7

13

Pro1 + NO 3.00
3.09
3.30
3.39

826
801
750
730

0
29
8

10
38 *

Pro2 2.77
3.42

892
724

171
6

2.4 *

Pro2 + NO 3.26
3.36
3.44

758
736
719

3
183

0
54 *

Pro3

2.98
3.09
3.18
3.39

829
801
779
731

0
28
6

13

Pro3 + NO

2.99
3.09
3.29
3.35
3.39

826
801
753
740
730

0
29
0
1

13

Pro4
2.76
3.39
3.43

896
729
722

116
56
6

Pro4 + NO 3.36
3.51

737
706

173
42

* Two-photon action cross-section measured in the experiments [32,33].

As shown in Equation (3), TPA response can be estimated by the value of the two-photon transition
matrix element. To interpret the origin of TPA properties of the studied molecules, the corresponding
two-photon transition tensors are listed in Table 3. It is found that the larger two-photon transition
tensor leads to an increased TPA cross-section, suggesting the transition dipole moments and frequency
detunings between the incident light and the excitation energy are critical factors influencing the value
of the TPA cross-section.

Importantly, the maximum TPA cross-sections of Pro2 and Pro4 are about four times larger
than those of Pro1 and Pro3, which can be ascribed to the fluorophore. One can thus predict that
the coumarin derivate is a preferable fluorophore than Nile Red in a two-photon fluorescent probe.
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Although both Pro2 and Pro4 exhibit enhancement on the TPA cross-section when reacted with NO,
the increment of Pro4 (57 GM) is much larger than Pro2 (12 GM), showing the influence of the receptor
on the TPA properties of the probes. The above result confirms the superiority of the designed probe
Pro4 on two-photon microscopy imaging for NO in living cells.

When excited by a source with a wavelength of 869 nm, Pro4 will be elevated to the excited state.
However, no fluorescence is emitted because of the PET-induced fluorescence quenching. With the
presence of NO, the PET process is impeded in Pro4 + NO and strong fluorescence from the fluorophore
can be observed after the excitation of incident light. As a result, the identification of NO is achieved
by Pro4.

Table 3. The two-photon transition tensors (a.u.) for the studied molecules.

Molecule Sxx Syy Szz Sxy Sxz Syz

Pro1 4.4 16.6 127.3 −1.8 −22.5 −12.5
Pro1 + NO −5.0 −19.4 −133.8 1.9 22.7 17.9

Pro2 0.8 −4.6 −354.9 −2.1 1.9 43.8
Pro2 + NO −0.5 −1.7 −340.8 −0.9 −18.5 −11.6

Pro3 3.5 17.5 133.6 −1.6 −20.8 −12.7
Pro3 + NO 3.1 18.6 136.5 −2.1 −18.1 −14.4

Pro4 1.0 −0.4 −294.7 −0.7 −1.4 36.3
Pro4 + NO 0.3 1.6 329.1 −0.8 15.4 16.3

4. Conclusions

In summary, we theoretically investigate the optical performances of two newly-synthesized
and two designed two-photon fluorescent NO probes. The OPA property studies indicate that the
OPA of the molecules change slightly after reacting with NO, which agrees with the experimental
measurements. Especially, calculations on the emission property of the molecules suggest that, except
for Pro3, the fluorescence of other molecules is quenching and can be turned on by the addition of NO.
It shows that, apart from Pro3, the other molecules exhibit obvious fluorescence-off to fluorescence-on
transformation in the presence of NO, indicating them to be good fluorescent chemosensors for
NO. In order to further investigate the recognition mechanism of the probes, the molecular orbital
classifying method is used and the PET process is theoretically demonstrated. More importantly,
the novel probe Pro4 has a larger TPA cross-section than other probes. Therefore, it is deduced that
the coumarin derivate can act as a promising fluorophore in a two-photon fluorescent probe and
Pro4 possesses great potential to be an excellent two-photon fluorescent chemosensor for NO. Our
calculated results reveal in-depth insight into the NO probes with good TPA activity, providing a
theoretical basis on the structure-property relationships which is beneficial to synthesizing more
PET-based NO-responsive two-photon fluorescent sensors.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/18/5/1324/
s1.
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