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Abstract: This paper presents a new wireless sensor structure based on a substrate integrated circular
waveguide (SICW) for the temperature test in harsh environments. The sensor substrate material
is 99% alumina ceramic, and the SICW structure is composed of upper and lower metal plates and
a series of metal cylindrical sidewall vias. A rectangular aperture antenna integrated on the surface of
the SICW resonator is used for electromagnetic wave transmission between the sensor and the external
antenna. The resonant frequency of the temperature sensor decreases when the temperature increases,
because the relative permittivity of the alumina ceramic increases with temperature. The temperature
sensor presented in this paper was tested four times at a range of 30–1200 ◦C, and a broad band
coplanar waveguide (CPW)-fed antenna was used as an interrogation antenna during the test process.
The resonant frequency changed from 2.371 to 2.141 GHz as the temperature varied from 30 to
1200 ◦C, leading to a sensitivity of 0.197 MHz/◦C. The quality factor of the sensor changed from
3444.6 to 35.028 when the temperature varied from 30 to 1000 ◦C.

Keywords: substrate integrated waveguide; wireless temperature sensor; harsh environment;
resonant frequency; CPW-fed antenna

1. Introduction

As a basic physical parameter, temperature plays an important role in the aerospace and
automotive industries, mine operations and other industries. Temperature monitoring in harsh
environments has attracted a large number of researchers to explore it in depth, because an appropriate
environment temperature can achieve higher energy efficiency and apply a higher safety factor.
Many kinds of temperature sensors have been developed, thus far.

The most common temperature sensors include optical fiber temperature sensor [1–3],
thermocouple, surface acoustic wave (SAW) temperature sensor [4,5], inductive capacitive (LC)-based
resonant temperature sensor [6,7], microwave-based scattering temperature sensor [8,9], etc. For the
optical fiber-type temperature sensors, the main attractive features are miniaturization, immunity
to electromagnetic radiation, high stability, and extraordinary resistance to corrosive environments;
however the requirement of high fabrication precision makes it difficult to be popularize [1–3]. For the
SAW temperature sensors, the measured signal can be easily contaminated, and the chemical instability
of the substrate material severely limits the test range of the sensor [4,5]. Nowadays, new piezoelectric
materials are available, e.g., La3Ga5SiO14. They have no phase change in the temperature range
from room temperature to the melting point; however, these piezoelectric materials are extremely
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expensive. In [6], a temperature sensor based on an inductive capacitive (LC) resonance circuit
has been successfully tested at 700 ◦C, using low temperature co-firing ceramic (LTCC). Moreover,
in [7], a temperature sensor based on an LC resonance circuit has been successfully tested at 900 ◦C,
which was fabricated based on high-temperature co-firing ceramic (HTCC). However, this type of
sensor cannot be used near metal surfaces because the magnetic field will be absorbed by the metal
surface. In addition, these sensors have low quality factor. In [8], a wireless passive dielectrically
loaded resonator temperature sensor was presented, which has been successfully tested at 800 ◦C.
In [9], two dielectric resonance temperature sensors based on Si6B1 and Si4B1 ceramics are measured
up to 1050 ◦C and 1300 ◦C, respectively, sensors structure in these two literatures are very similar,
and the thickness of these sensors are about five millimeters, which makes it less convenient to install
inside an engine.

The thickness of the substrate integrated waveguide (SIW) is thinner than these structures. It can
be easily integrated with other planar circuits and has a high-quality factor [10–12]. In addition,
the substrate integrated waveguide also has a good performance for transmitting electromagnetic
waves. At present, the substrate integrated waveguide is widely used in filters, antennas, directional
couplers, and wavelength devices; it is also an important part of the resonator [13]. However, there are
still few studies on RF-based sensors using SIW, only few sensors have been reported to detect gas
concentration, humidity and fluid composition, etc. In [14], an SIW resonator was integrated with
a micro-strip line to prepare a gas sensor for hydrogen detection. In [15], the resonant technique was
applied to the analysis of an SIW sensor for humidity detection. In [16], a novel microfluidic-integrated
microwave sensor was designed based on the resonance method and implemented by using an SIW
structure combining with a rectangular slot-antenna, and which has shown some of its potential to
accurate quantification of liquid mixtures and further liquid characterization through measurement
of the relative permittivity. In [17], a novel SIW resonator sensor with high-unloaded quality factor
was designed for fast and reasonably accurate complex permittivity measurements. The resonant
characteristics of the sensor are influenced by liquids through a slot opened on the top plane. In [18],
a Microfluidic sensor based on the SIW structure was presented to achieve a real time characterization
of fluids across the lower Ultra-wideband frequency band. In [19], a high-Q and miniaturized
complementary split ring resonator (CSRR)-loaded substrate integrated waveguide (SIW) microwave
sensor for the detection of cracks in metallic materials was presented.

In this paper, a wireless passive resonator based on the substrate integrated waveguide (SIW)
structure is presented. The SIW sensor is used for temperature detection. The relative permittivity of the
substrate material changes with the temperature [20], correspondingly the sensor resonant frequency
varies monotonically with the temperature. The sign of the frequency shift of the temperature sensor
is tested by a network analyzer, and the quality factor is also recorded during the test.

This paper is organized as follows. Section 2 presents the principle of the SIW temperature sensor.
Section 3 describes the parameters and the sensor preparation. The measurements of the fabricated
sensor are presented in Section 4. The performance of the temperature sensor is analyzed in Section 5
and a conclusion is given in Section 6.

2. Working Principle of the Temperature Sensor

The traditional substrate integrated waveguide (SIW) structure is composed of upper and lower
metal plates along with a two-row metal through-hole cylinder of the substrate material. The cavity is
filled with media material as shown in Figure 1. The transmission performance of the electromagnetic
wave in an SIW is similar to that in rectangular waveguide structures. The upper and lower metal
surfaces of the dielectric substrate can be regarded as the upper and lower waveguide walls of the
corresponding rectangular waveguide. The two rows of the metal through-hole cylinders constitute
the two metal sidewalls of the conventional rectangular metal waveguide which limit the external
radiation of the electromagnetic waves. The geometry of the traditional substrate integrated waveguide
is shown in Figure 1.
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Figure 1. Geometry of a substrate integrated waveguide. TE: transverse-electric wave mode.

Because of the discontinuity of the metal sidewall through-hole cylinder of the SIW, the transverse-
magnetic (TM) mode wave cannot form a stable current through the metal sidewall through-hole; thus,
the TM mode wave cannot be transmitted efficiently in the SIW. In contrast, the transverse-electric
(TE) mode of the wave can form a stable current through the sidewall; therefore, only the TE mode
wave can be propagated in the SIW. In addition, the gap between the metal through-hole in the SIW
sidewalls causes the electromagnetic wave to leak during the propagation.

In [21,22], the authors concluded that in order to reduce the electromagnetic leakage in the SIW,
its parameter size should meet the following conditions:

D < 0.1λg, b < 4D, D < 0.2We f f (1)

where D represents the diameter of the sidewall metalized through-hole cylinder; b represents the
center-to-center spacing of two adjacent metalized through-hole cylinders in the same horizontal
section, λg represents the effective wavelength of the guided wave along the cylindrical wall of the
SIW, and Weff represents the effective width of the equivalent rectangular waveguide.

The temperature sensor presented in this paper is composed of a substrate integrated circular
waveguide (SICW) resonator and an aperture antenna. For the SICW, Reff replaces the Weff parameter of
the traditional SIW structure; it represents the equivalent radius of the SICW resonator. The relationship
between the effective radius and the actual radius of the (SICW) resonator can be determined by
Equation (2) [23].

Re f f = R− D2

0.95b
(2)

The actual radius R of the SICW resonator represents the distance between the center of any of
the metalized through-holes in the same horizontal section and the geometric center of the SICW
resonator. As shown in Figure 2, this new temperature sensor is based on the SICW resonator, and the
proposed structure is designed on a sheet of alumina ceramic substrate with a dielectric constant εr of
9.8 (at room temperature). The resonant frequency of the SICW can be expressed by Equation (3) [24].
The electromagnetic field distribution (Eigen-modes) of the sensor is shown in Figure 2.

fr =
c

√
µrεr

· P11

2πRe f f
(3)

where c represents the speed of light in vacuum, P11 represents the first zero-point of the First-order
Bessel function, which equals 2.4048; µr represents the permeability of the dielectric substrate material;
and εr represents the relative permittivity of the dielectric material. The top view of the temperature
sensor is shown in Figure 1b. Through Equations (2) and (3), it can be concluded that the resonant
frequency of the sensor is affected by the relative permittivity of the dielectric material. The dielectric
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constant of the alumina ceramic material increases with the increasing temperature [25,26], causing
the resonant frequency of the temperature sensor to decrease.
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3. Design and Fabrication of the Temperature Sensor

In this study, we set the resonant frequency of the sensor at around 2.4 GHz. The parameter size of
the SIW resonator can be calculated according to Equations (1)–(3). The initial dimensions parameters
of the SIW calculated by Equations (2) and (3) are shown in Table 1, where L and W represent the
length and width of the substrate.

Table 1. The initial dimensions parameter of the substrate integrated circular waveguide (SICW) (mm).

L W R D b h

35 35 15.5 1 2.44 1

The thickness of the substrate material is substantially unrelated to the resonant frequency of the
SIW sensor, while it has a great impact on the quality factor. The High Frequency Structure Simulator
(HFSS) was used to determine the thickness of the SIW. The resonant frequency and the quality of the
sensor can be obtained through the Eigen-mode simulation in the HFSS. When the thickness of the
SIW varies from 0.7 to 1.3 mm, the corresponding changes of the resonant frequency and the quality
factor are shown in Table 2.

Table 2. The resonant frequency and the quality factor of the sensor under the different thickness of
the substrate material.

The Thickness of the SIW (mm) Resonant Frequency (GHz) Quality Factor

0.7 2.39427 498.121
0.8 2.3948 563.360
0.9 2.39488 628.554
1.0 2.39529 690.88
1.1 2.39556 753.529
1.2 2.39545 815.395
1.3 2.39539 875.384

The simulation results show that the sensor resonant frequency has almost no change when the
thickness changes from 0.7 to 1.3 mm, while the quality factor increases as the thickness of the substrate
material increases. These results are consistent with the conclusions mentioned above. However,
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when the substrate thickness exceeds one millimeter, it becomes more difficult to machine the sidewall
through-hole cylinder in the substrate material; thus, we chose the alumina ceramic h = 1.0 mm as
the substrate material of the sensor. A rectangular aperture was integrated onto the surface of the
SIW resonator; it works as a response antenna to couple the electromagnetic signal into the SICW
resonator. Then, the HFSS drive-mode simulation was used to determine the location and size of the
aperture antenna.

A broad band coplanar waveguide (CPW)-fed square-slot antenna connected with a SMA
connector was used as an excitation source during the simulation process. The parameters of the
CPW-fed antenna used in the HFSS simulation were presented in [27], and the electromagnetic field
distribution of the antenna is shown in Figure 3. By comparing the electromagnetic-field distribution
of the sensor (Eigen-modes), it can be concluded that when the relative position between the CPW-fed
antenna and the sensor is as shown in Figure 3a, the sensor produces the best resonance performance
under the electromagnetic excitation of the antenna, the near-field radiation pattern of the slot antenna
along the direction of the electric field line as shown in Figure 3b. The electromagnetic-field distribution
inside the sensor is shown as Figure 4.
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Figure 4. The electromagnetic field distribution cloud of the SIW temperature sensor excited by the
coplanar waveguide (CPW) antenna: (a) Electric field distribution; (b) Magnetic field distribution.

For the aperture antenna, the three primary parameters—aperture length L1, width W1,
and distance d between the aperture and SICW resonator center—determine the impedance matching
between the aperture and the resonator; thus, affecting the coupling effect between the sensor and
the interrogation antenna. The sweep result of these parameters is shown in Figure 5. A sharper and
lower negative peak indicates a good match between the antenna and the sensor. Hence, L1 = 16 mm,
W1 = 2.0 mm and d = 9 mm were determined as the final dimension.
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After all the parameters were determined, laser-drilling technology was used to fabricate the
sidewall through-hole cylinders (D = 1 mm) on the alumina substrate material (h = 1 mm). The number
of sidewall through-hole cylinders was 36. Screen-printing technology with ESL5541A platinum paste
was used to prepare the lower metal plate and integrate the aperture antenna on the upper surface of
the SIW. The screen-printing process diagram is shown in Figure 6.
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2.1 mm; (c) d varies from 8 to 12 mm.

Sensors 2018, 18, x FOR PEER REVIEW  6 of 13 

 

After all the parameters were determined, laser-drilling technology was used to fabricate the 

sidewall through-hole cylinders (D = 1 mm) on the alumina substrate material (h = 1 mm). The 

number of sidewall through-hole cylinders was 36. Screen-printing technology with ESL5541A 

platinum paste was used to prepare the lower metal plate and integrate the aperture antenna on the 

upper surface of the SIW. The screen-printing process diagram is shown in Figure 6. 

 

Figure 5. The result of the parameters sweep. (a) L1 varies from 14 to 18 mm; (b) W1 varies from 1.7 to 

2.1 mm; (c) d varies from 8 to 12 mm. 

Alumina 

ceramics

Screen
Sparse hole

ScraperPlatinum 

paste

Force direction

 

Figure 6. Screen printing process diagram. 

The screen-printing technology is used in this study for its convenient operation. In comparison 

with metal-sputtering technology, the thickness of the metal layer is higher, the conductivity is better, 

and the metal layer does not easily fall off the alumina substrate in a high-temperature environment. 

The most important point is that the metal layer formed by sputtering contains nano-scale particles 

and cannot withstand extremely high temperatures, while the metal layer obtained by screen-

printing is robust in harsh environment with high temperatures. 

To fill the sidewall cylinder, ESL5541A platinum paste was used as the primer in the sidewall 

through-hole cylinder, then the structure was heated at 100 °C for 20 min. This operation was 

repeated several times to ensure a sufficient amount of platinum paste inside the sidewall cylinder. 

Finally, the sensor was placed in the furnace for sintering with the maximum temperature of 1350 °C, 

because the maximum sintering temperature of ESL5541A platinum paste is 1350 °C. The sintering 

curve of the platinum paste and the fabricated sensor are shown in Figure 7. 

 

Figure 7. The sintering curve of the platinum paste and the fabricated sensor (a) the sintering curve 

of ESL5541A platinum paste; (b) fabricated temperature sensor. 

2.37 2.38 2.39 2.40 2.41 2.42 2.43
-18

-15

-12

-9

-6

-3

S
1

1
/d

B

Frequency/GHz

L
1
=14

L
1
=15

L
1
=16

L
1
=17

L
1
=18

 

 

2.36 2.38 2.40 2.42 2.44
-18

-15

-12

-9

-6

-3

S
1

1
/d

B

Frequency/Ghz

 W
1
=1.7

 W
1
=1.8

 W
1
=1.9

 W
1
=2.0

 W
1
=2.1

 

 

2.37 2.40 2.43 2.46

-30

-25

-20

-15

-10

-5

0

S
1

1
/d

B

Frequency/GHz

 d
.
=8

 d
.
=9

 d
.
=10

 d
.
=11

 d
.
=12

 

 

(a) (b) (c)

0 100 200 300 400 500

0

200

400

600

800

1000

1200

1400

T
em

p
er

at
u
re

 (
℃

)

Time (min)

 sintering curve Aperture

Platinum paste
Sidewall 

metal vias(a) (b)

Figure 6. Screen printing process diagram.

The screen-printing technology is used in this study for its convenient operation. In comparison
with metal-sputtering technology, the thickness of the metal layer is higher, the conductivity is better,
and the metal layer does not easily fall off the alumina substrate in a high-temperature environment.
The most important point is that the metal layer formed by sputtering contains nano-scale particles
and cannot withstand extremely high temperatures, while the metal layer obtained by screen-printing
is robust in harsh environment with high temperatures.

To fill the sidewall cylinder, ESL5541A platinum paste was used as the primer in the sidewall
through-hole cylinder, then the structure was heated at 100 ◦C for 20 min. This operation was
repeated several times to ensure a sufficient amount of platinum paste inside the sidewall cylinder.
Finally, the sensor was placed in the furnace for sintering with the maximum temperature of 1350 ◦C,
because the maximum sintering temperature of ESL5541A platinum paste is 1350 ◦C. The sintering
curve of the platinum paste and the fabricated sensor are shown in Figure 7.
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Figure 7. The sintering curve of the platinum paste and the fabricated sensor (a) the sintering curve of
ESL5541A platinum paste; (b) fabricated temperature sensor.
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4. Temperature Measurements

In order to study the influence of the test distance on the sensor signal, the CPW-fed square-slot
antenna and the metal waveguide were used to test the sensor at room temperature, respectively.
Through testing, it has been found that when using a metal waveguide to passively feed the sensor,
the measured frequency signal is better, and we can see that when adjust the sensing distance to
about six centimeters, we can still detect valid sensor signals, as shown in Figure 8. However,
metal waveguides are not suitable for use in high temperature test experiments.
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To measure the response of the prepared sensor in a high-temperature environment, several
wireless test platforms were built. The schematic diagram of the test platform is shown in Figure 9.
The Nabertherm LHT 02/16 muffle furnace was chosen to provide high temperature conditions for
testing. It has a built-in thermocouple sensor to achieve real-time temperature monitoring. The built-in
control micro-system on the furnace allows the furnace to set the multistage heating curve. During the
test, the temperature sensor was placed at the center of the furnace. A CPW-fed square slot antenna
that connected to a coaxial line was used to transmit electromagnetic-wave signals to the sensor,
and also act as an integrated antenna to receive the reflected electromagnetic signals emitted by the
temperature sensor. An insulated door was used to protect the SMA of the CPW antenna from damage
caused by the high temperature environment. One end of the coaxial line was connected with the CPW
antenna, and the other end was connected to the network analyzer E5061-b, so the echo scattering
signal could be displayed in real time on the network analyzer’s display panel.

During the test process, it should be noted that the relative position of the interrogation antenna
and the aperture has a significant impact on the readout signal due to the directivity and polarization
direction of the interrogation antenna and aperture. When the aperture on the surface of the sensor is
parallel to the short side of the CPW-fed square-slot antenna, the coupling effect is optimal, and the
maximum sensor signal strength could be obtained. This is consistent with the results obtained from
the simulation.

The image of the temperature measurement is shown as Figure 10. The rise curve of the furnace
was set to increase 100 ◦C every 30 min, and to record the data at 50 ◦C, 100 ◦C, 150 ◦C, etc. At each
temperature point where the data needed to be recorded, the furnace temperature was held constant
for two minutes to ensure the accuracy of the test. In addition to the frequency-return loss S(1, 1)
curves, the quality factor of the sensor at each temperature point was recorded manually.
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5. Result and Analysis

During the first high temperature test, we adjusted the test distance between the sensor and
CPW-fed square-slot antenna to 20 mm. The recorded return loss frequency curves were transmitted
to the computer, the negative peak point represents the resonant frequency of the sensor at this
temperature. As shown in Figure 11, the |S(1, 1)| rapidly attenuates during temperature increase
when the sensing distance is 20 mm, and the peak value of the return loss frequency curves at 800 ◦C
has become very small. Then, we adjusted the distance between the temperature sensor and CPW-fed
square-slot antenna to five millimeters in order to obtain a much larger |S(1, 1)|, a higher quality factor
and make the sensor signals tolerant to higher temperatures. At the sensing distance of five millimeters,
we achieve the temperature test at 1200 ◦C, the return loss–frequency curves were recorded as shown in
Figure 11a, and then the negative points of each curve were extracted. In this paper, four temperature
tests (30 ◦C to 1200 ◦C) were conducted on the prepared sensor, as shown in Figure 12a.

As shown in Figure 12a, the resonant frequency of the sensor is 2.371 GHz at 30 ◦C,
which deviates slightly from the simulation result. According to the dielectric perturbation theory of
the substrate-integrated waveguide, the main reason for this deviation is that the dielectric constant
of the substrate material was not exactly equal to 9.8 at 30 ◦C. The other reason is processing errors
in the alumina ceramic substrate material. The resonant frequency of the sensor changed from 2.371
to 2.141 GHz when the temperature varied from 30 to 1200 ◦C as shown in Figure 8a. By extracting
the negative peak of these curves, the relationship between the temperature and the sensor resonant
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frequency can be obtained. Additionally, the sensitivity of the temperature sensor presented in this
paper can be expressed by Equation (4), and ∆fr represent the offset of the resonant frequency of the
sensor, and ∆T represent the temperature change. Four temperature tests were conducted to verify
the feasibility of the sensor, as shown in Figure 12b. For a more intuitive analysis of the repeated
temperature test results, the average resonance frequency with error bars varying with the temperature
is presented in Figure 13a.

S =
∆ fr

∆T
(4)
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As shown in Figure 13a, the maximum standard deviation on the error bar curve is 11.4 MHz,
appearing at 850 ◦C. Compared with the sensor in [8], the numerical variability between the four test
results is smaller, which means that the temperature test error is smaller Then we came to a conclusion
that the temperature sensor proposed in this paper has good test repeatability. Through the piecewise
linear fitting (30 to 500 ◦C, and 500 to 1200 ◦C) it was found that the sensor sensitivity is 0.124 MHz/◦C
at the range of 30–500 ◦C, 0.243 MHz/◦C at the range of 500–1200 ◦C, and the average sensitivity
at the range of 30–1200 ◦C is 0.197 MHz. As shown in Equation (2), the resonant frequency of the
sensor is not only affected by the relative dielectric constant of the material, but also by the relative
position of the sidewall metal cylinders. The thermal expansion coefficient of the alumina substrate
material increases with the increasing temperature, which was tested using the UnithermTM 1252
ultra-high temperature dilatometer. The results showed that the average thermal expansion coefficient
of the 99 alumina ceramic is about 6.8 (1 × 10−6/K) in the range of 30–400 ◦C, while in the range
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of 500–1200 ◦C, it is around 9.5 (1 × 10−6/K). Thus, the increasing temperature causes the relative
position of the sidewall metal cylinder to increase, which can explain why the test sensitivity of the
sensor is greater in the range of 500–1200 ◦C.
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During the test process, the sensor quality factor can be calculated and displayed in real time
by the algorithm that comes with the network analyzer. The algorithm is based on the following
Equation (5) to calculate the quality factor of the sensor, where f 0 represents the center frequency of the
sensor. Here the bandwidth f−3dB is defined as the frequency difference between the two frequency
points were selected where peak S11 lifted for three decibels. Then the quality factor of the sensor is
shown in Table 3.

Q =
f0

| f−3dB|
(5)

Table 3. The quality factor of the sensor at different temperature.

Temperature (◦C) Q Temperature (◦C) Q

100 770.64 600 148.58
200 374.12 700 113.20
300 314.18 800 91.331
400 253.11 900 66.990
500 206.4 1000 35.028

As shown in Table 3, the temperature sensor quality factor of the in this paper is 770 at 100 ◦C
and decrease to 35 at 1000 ◦C, because the dielectric loss of the substrate material increases with the
change of temperature. In addition, the sensor quality at the 30 ◦C is significantly greater than the
quality factor of the simulation result, which is mainly caused by the difference of the relative position
between the sensor and antenna.

Through the analysis, it can be concluded that the sensor proposed here has high sensitivity,
low profile, high quality factor, and a wide temperature sensing range. Table 4 shows the visualized
parameters of the SICW temperature sensor we fabricated and other kinds of wireless temperature
sensors available in literature.
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Table 4. Parameters of different temperature sensors.

Sensor Type Profile Sensitivity Temperature
Sensing Range Sensing Distance Working

Frequency

SICW sensor 35 mm × 35 mm × 1 mm 197 KHz/◦C 25–1200 ◦C About 60 mm Around 2.27 GHz

Slot radiation patch sensor
in [27] 40 mm × 40 mm × 1 mm 101.94 KHz/◦C 25–800 ◦C Maximum 14 mm Around 2.31 GHz

Resonator based
microwave sensor in [28] 22 mm × 22 mm × 1.5 mm 0.24 MHz/◦C 50–400 ◦C Maximum 30 mm Around 2.28 GHz

Inductive capacitive (LC)
resonance sensor in [7] 36 mm × 36 mm × 0.68 mm Maximum

16.67 KHz/◦C 25–700 ◦C 10 mm Around 33.5 MHz

Surface acoustic wave
(SAW) based sensor in [29] 20 (dia) / Maximum +250 ◦C Above 10 cm Around 2.44 GHz

Dielectric resonance
temperature sensor in [8] 29 mm × 29 mm × 5 mm 194 KHz/◦C 27–800 ◦C About 10 mm Around 2.44 GHz

As shown in Table 4, the SICW temperature sensor proposed here has great test sensitivity
compared with the slot radiation patch sensor in [27], and the SIW structure has great quality factor
than the sensor in [27]. Compared with the LC-based sensor, the SIW structure sensor can work at
a microwave frequency band with a small dimension, while the LC sensor works at a lower frequency
band in the 50–500 MHz range, and the SIW sensor is more sensitivity than the LC temperature sensors
in [6,7]. Compare with the dielectric resonance temperature sensor in [8], the thickness of the sensor
in this paper is lower, and the installation on the surface of the metal blade can be realized more
easily. Additionally, the sensor in this article has a great sensitivity at the high temperature (above
500 ◦C) than the sensor in [8], the quality factor at high temperature of the sensor in this article is
higher than the sensor in [8]. Besides this, compare the sensor in this paper with these conventional
microwave temperature sensors in [26–28]; this SICW sensor has great sensing range, and achieves the
temperature test at 1200 ◦C, because it was fabricated with Pt. For the sensing distance, here the sensor
test in this paper belongs to the near-field coupling for the using of slot antenna, and longer sensing
distances will be explored in future research.

6. Conclusions

The temperature sensor presented in this paper was based on the substrate integrated waveguide
structure, and the 99 Alumina ceramic was chosen as the substrate material. Platinum paste was used to
form the upper and lower metal plates of the SIW structure, and to fill up the sidewall cylindrical vias.
The high temperature test platform consisted of a furnace, a coaxial line, a CPW fed-slot antenna and
the network analyzer. Through multiple experimental tests, it was found that the resonant frequency of
the sensor changed from 2.371 to 2.141 GHz when the temperature varied from 30 to 1200 ◦C, leading
to an average sensitivity of 0.197 MHz/◦C. The quality factor of the sensor was about 35.028 at 1000 ◦C.
The performance of the sensor at 1200 ◦C showed that this type of sensor structure has the potential to
be tested in harsh environments with high temperatures.

The sensor presented in this paper was not tested above 1200 ◦C because the CPW-fed slot
antenna broke down at about 1240 ◦C during the first test. When the temperature was above 1200 ◦C,
the temperature difference between the parts of the antenna inside and outside of the furnace reached
the limit value, which produced a thermal stress sufficient to cause the antenna to break down. In future
work, we will focus on optimizing the interrogation antenna structure to support measurements at
higher temperatures. In addition, we will consider how to optimize the size and thickness of this type
of sensor so that it can be installed on engine blades.
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