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Abstract: The prediction of internal defects of metal casting immediately after the casting process
saves unnecessary time and money by reducing the amount of inputs into the next stage, such as
the machining process, and enables flexible scheduling. Cyber-physical production systems (CPPS)
perfectly fulfill the aforementioned requirements. This study deals with the implementation of CPPS
in a real factory to predict the quality of metal casting and operation control. First, a CPPS architecture
framework for quality prediction and operation control in metal-casting production was designed.
The framework describes collaboration among internet of things (IoT), artificial intelligence,
simulations, manufacturing execution systems, and advanced planning and scheduling systems.
Subsequently, the implementation of the CPPS in actual plants is described. Temperature is a major
factor that affects casting quality, and thus, temperature sensors and IoT communication devices
were attached to casting machines. The well-known NoSQL database, HBase and the high-speed
processing/analysis tool, Spark, are used for IoT repository and data pre-processing, respectively.
Many machine learning algorithms such as decision tree, random forest, artificial neural network,
and support vector machine were used for quality prediction and compared with R software. Finally,
the operation of the entire system is demonstrated through a CPPS dashboard. In an era in which most
CPPS-related studies are conducted on high-level abstract models, this study describes more specific
architectural frameworks, use cases, usable software, and analytical methodologies. In addition, this
study verifies the usefulness of CPPS by estimating quantitative effects. This is expected to contribute
to the proliferation of CPPS in the industry.
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1. Introduction

Today, due to short product lead times, small-quantity batch production, diversification of
consumer needs, and irregular demand fluctuations, manufacturing companies are trying to
achieve innovation, such as flexible and predictive production, in contrast to the mass production that is
a typical manufacturing method [1,2]. In terms of technologies that support manufacturing innovation,
information and communication technologies (ICT) including enterprise resource planning,
manufacturing execution systems (MES), and programmable logic controller automated factories
significantly improve productivity. However, they are unable to satisfy current production needs such
as reducing manufacturing lead times and producing small and customized products [3]. Therefore,
beyond the third industrial revolution based on electronics and ICT, the fourth industrial revolution is
emerging and is centered on Internet of things (IoT), big data, and artificial intelligence (AI).
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The newly emerging fourth industrial revolution commenced in Germany and is termed as
Industrie 4.0. Along with Germany, several advanced countries are actively pursuing studies in the
area of manufacturing [4]. The primary goal of Industrie 4.0 is to build advanced smart factories
by combining various ICT tools with typical manufacturing methods [4,5]. The basic characteristics
of smart factories include smart networking based on IoT technologies (such as wireless or smart
sensor/smart actuators), uncertainty of various factory situations based on big data, and the flexibility
of consumer needs [6]. Smart factories allow the collection of massive amounts of in-plant data through
real-time synchronization of the factory components and information systems, and they also improve
quality and productivity through smart and flexible responses to abnormal situations that occur in a
plant [5–7].

A variety of technologies are required to build smart factories. Among these technologies,
the cyber-physical system (CPS) is an extremely promising technology of Industrie 4.0 and an
essential component of a smart factory. Specifically, CPS is composed of collaborating computational
entities that connect the cyber world with the surrounding physical environments or processes
through data access in an internet environment [5]. A CPS includes embedded systems (such
as equipment, buildings, means of transportation, and medical devices), internet services, logistic,
coordination, and management processes [8]. The concept of a cyber-physical production system
(CPPS) is a manufacturing-centered version of a CPS that fuses computer science (CS), ICT,
and manufacturing-science technology [9]. The introduction of a CPPS allows the construction of
smart factories that aid in various decision-making processes by predicting the future based on past
and present situations [7,10].

Along with the CPPS, a few core technologies required to build a smart factory are IoT, big data,
and AI. The IoT refers to a wireless communication capability integrated with sensors and computing
that allows the collection of data related to uniquely identifiable objects through the internet [11,12].
Previous studies indicated that the common components of CPS or CPPS include physical-mechanical
systems such as factories, machines and products, sensors and operating systems, electronic hardware,
software, and digital twins connecting the real and virtual worlds [6,9,13]. Big data refers to a new
computing paradigm that allows the collection, processing, and analysis of fast, diverse and massive
amounts of data. Massive amounts of structured and unstructured data related to the physical systems
of factories are processed/stored through the IoT, and faster and more accurate quality and productivity
prediction models are created by using parallel processing support for the existing AI algorithms.

Conversely, although CPS, CPPS, IoT, big data, and AI are the core technologies in smart factories,
most studies have examined high-level reference models [11–14], including the architecture of
the smart factories and CPS. There is a paucity of studies that examine concrete fusion and,
particularly, the implementation of the aforementioned technologies. Meanwhile, extant studies
related to CPS/CPPS implementation have predicted the life or health of machines and tools that are
traditional CPS targets and demonstrated the usefulness of CPS/CPPS through a standalone system or
laboratory-level test bed [15–19].

Thus, the present study introduces the implementation of a CPPS for real-time quality prediction
and operation control at an actual factory. The target factory produces pistons that are used as
components in vehicle engines, and the main process involves metal mold casting. In the metal
mold-casting process, the internal quality of products due to the casting process is known in the
subsequent process, and thus it is difficult to achieve quality verification and management at the
moment of casting. In the factory, the internal quality problem of products occurring in the casting
process is only detected in the next process step, machining process, and those defects are scrapped
after finishing the step. If it is possible to predict the internal quality problem in the casting process with
various technologies implemented in the CPPS, it can significantly improve both quality of products
and productivity of the factory. Although the study does not address all manufacturing processes and
operational issues, it provides a more realistic understanding of how the CPPS that is composed of
multiple components is organically connected and its effect in terms of manufacturing operations.
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The remainder of the study is organized as follows. Section 2 describes studies conducted on
CPS and big data in manufacturing industry. Section 3 defines the CPPS architecture framework for
quality prediction and operation control. Section 4 details the application and implementation of the
CPPS architecture framework proposed in Section 3 as applied in actual factories. Finally, Section 5
summarizes and describes the significance of the present study.

2. Related Research

2.1. Cyber-Physical Systems in Manufacturing

Most studies conducted on a CPS or CPPS in manufacturing industry have focused on the
architecture and reference models for application to a manufacturing system. This subsection presents
studies conducted on reference models related to a CPS, studies conducted on a digital twin that is a
core component of a CPS, and actual industry applications of CPS or CPPS.

Studies on CPS reference models described the role of a CPS in Industrie 4.0 and various
architectures showing the connection between CPS components. Jazdi [5] defined the main
characteristics of a CPS in relation to Industrie 4.0 and presented the connection between a CPS,
smart sensors, actuators, and the Cloud in the form of the system architecture. Lee et al. [13] proposed
an architecture model that was composed of five levels to build a CPS in a manufacturing system
based on Industrie 4.0 and presented phased guidelines for the development and construction of
a CPS in smart factories. Monostori et al. [14] defined the maturity of the components required to
construct a CPS in a stage-by-stage manner and presented a phased case based on the application of a
CPS in manufacturing industry. Bagheri et al. [12] proposed a unified framework for integrating CPS
in manufacturing. They also described adaptive clustering methods for interconnected systems and
demonstrated self-aware machines integrated by using CPS.

Subsequently, studies related to a digital twin that is a component of a CPS presented either data
schemes for the application of a digital twin to actual factories and processes or the necessity and
effects of a digital twin. Lee et al. [7] defined a data schema of the components of a digital twin to
construct a big data-based prediction of a manufacturing industry by using a CPS. Rosen et al. [20]
defined the role and significance of a digital twin in future manufacturing industry by comparing a
digital-twin based design with a design based on a simple simulation. Gabor et al. [21] presented an
architectural framework of a digital twin based on a simulation linked to the physical world inside a
CPS configuration environment and defined the digital twin instance models and classes required by
the architectural framework. Uhlemann et al. [22] proposed a method to minimize the digital twin
generation time delay through a multimodal data acquisition approach. They also presented concepts
for the composition of the database and guidelines for implementing digital twins in small business
production systems.

The last involves the study of the practical implementation of CPS or CPPS. Specifically,
we investigated cases related to the environment by using IoT/sensor or predictive manufacturing systems.
Morgan and O’Donnell [15] applied CPS to the computerized numerical control (CNC) turning process
to form a system to monitor the measurement of process conditions by using sensors in real time.
They applied cyber-physical process monitoring systems to the CNC turning process to achieve a series
of internal and external individual process analyses by using vibration and electric motor current data.
Lee et al. [16] presented CPS frameworks for predictive manufacturing systems and validated the
same by applying them to ball-screw prognostics. They verified the predictability of a cyber-physical
system to ball-screw prognostics to reduce unplanned downtime through predictive analytics of the
components of the process. Guo et al. [17] studied the implementation and verification of a basic
diagnostic system for failure detection with CPS. They proposed a cyber-physical failure-detection
model by using a data-fusion algorithm and tested the performance metrics for fusion effects on
the bandwidth of a mailbox. Alippi et al. [18] investigated the implementation of technologies to
detect changes in sensor acquisition by CPS units from the perspective of self-adaptive cyber-physical
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systems (CPSs) at the sensor level. In order to apply a suitable configuration for embedded systems,
they used an augmented reality (AR) predictive model, the ICT-based change-detection test working
in the residual space, and a change-point method with the aim of reducing the occurrence of false
positive detections and providing an estimate of the time instant when the change occurred, and they
validated this in a laboratory environment. He et al. [19] designed cyber-physical test beds to access
the performance of mechanical design and system implementation. They used the ultra-wide band
channel emulator and body sensors to validate the test beds and argued that it aids in virtualizing
the environment of wireless access and localizing the body sensor network. Chen et al. [23] proposed
a method for the creation of a CPS model of a CNC machine tool based on electronic data analysis.
They collected and analyzed work task data, manufacturing-resources data, and operation status data
in order to accurately represent the relationship between input and output variables in the CPS model
of the CNC machine tool while it was working. They also argued that task status data can be used
to realize intelligent tasks such as task-process optimization, manufacturing-resource optimization,
and machine-design assurance in a CPS environment. Niggemann et al. [24] set out the challenges
of a data-driven approach to control, monitor and diagnose cyber-physical systems, and proposed a
cognitive architecture to address these challenges. They provided comparative schemas of the cognitive
architecture and verified it by applying it to industrial case studies divided in the manufacturing site,
energy analysis and big data analytics domains.

2.2. Big Data in Manufacturing

Research on big data is actively conducted in the manufacturing sector and in different sectors
such as information, security, and business. Among these, big data-related studies that center on
manufacturing industry have focused on the creation of data values through an analysis of big data
and the resolution of issues related to the processing of massive data in the manufacturing sector.
Chien et al. [25] applied big data analysis to determine the root cause of sub-batch processing systems
in the semiconductor industry and proposed a big data-based framework that can analyze massive
amounts of data generated in the semiconductor industry. Tekiner and Keane [26] proposed a big data
architecture and framework composed of a system layer, a data collection layer, a processing layer,
a modeling/statistical layer, a service/query/access layer, a visualization layer, and a data layer to
manage massive amounts of data, and presented components of the sub-layers. Zhong et al. [27]
designed and verified a framework that includes algorithms for the stages of data cleansing,
compression and classification to classify and store radio frequency identification (RFID)-based logistic
data and indicated the feasibility and practicality of storing and classifying big data. Zhang et al. [28]
proposed an architecture for large data-driven analysis of the product lifecycle based on the
product lifecycle management (PLM) perspective. They developed big data analysis focused on the
manufacturing and maintenance process of the product lifecycle. Wan et al. [29] proposed a cloud-based
system architecture for manufacturing big data systems in preventive maintenance, algorithms for real-time
maintenance, and predictive management of data by analyzing the method of collecting data. Ji and
Wang [30] proposed a big data analytics-based fault-prediction approach for shop-floor scheduling.
They improved the availability of machining resources by mining potential fault/error patterns
including machining errors, machining defects, or maintenance condition problems generated from
the processing condition caused by an unsuitable schedule.

3. Cyber-Physical Production System (CPPS) Architecture Framework for Quality Prediction and
Manufacturing Control

In this section, we present a CPPS architecture framework to predict the quality of metal casting and
actively controlling manufacturing operations based on IoT, big data, AI, and simulation technologies;
and we describe the operation mechanism of the entire systems by using the data flow between
components. The CPPS analyzes data collected in real-time, predicts the quality and productivity
of products, and supports the process of dynamically requesting rescheduling given the occurrence of
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irregularities by connecting information systems including the IoT, MES, and advanced planning and
scheduling systems (APS). Figure 1 shows the entire CPPS architectural framework. The flow of data
is noted in chronological order as indicated by the circle numbers. Specifically, 1© to 9© correspond
to the phase of building-up quality prediction models, response action models, and reference key

performance indicator (KPI) models that should be performed prior to production, and to show
the process of comparing the past or reference data based on real-time data after the start of production
and actively changing the schedule when a problem occurs. Two circle numbers in an arrow denote
that data is generated from the same data source, and data is reproduced in order after time.
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Figure 1. Cyber-physical production system (CPPS) architecture framework.

The proposed CPPS is divided into three sub-systems, namely Big Data Analytics, a Detection
and Coordination, and a KPI Simulation systems. Table 1 shows the explanations for CPPS core
elements in detail.

Table 1. CPPS core elements.

Sub-System Component Explanation

Big Data Analytics
Big data Storage

This stores big data generated from IoT/sensor and manufacturing
execution systems (MES). Internet of Things (IoT)/sensor data may
include raw sensory data, such as temperature, pressure, vibration,
and process parameters, generated from machines and factories.
Process data from MES may include input materials for each
process, production status, location for work in process (WIP) and
product, and quality inspection results. Considering that IoT/sensor
data is large, NoSQL databases can be used to store real-time event
data, and distributes file systems such as hadoop distributed file
systems (HDFS) can be used for data analysis and old data storage.

Quality prediction model builder

Data exploring and data preprocessing are performed through a
parallel processing framework. Data learning, model generation,
and model verification are performed using a machine-learning tool.
Well-known parallel processing frameworks include Hadoop
MapReduce and Spark. Mahout, Spark MLlib, R, and Python can be
used as the machine-learning tools.

Model repository

Building a machine-learning model is iterative because numerous
machine-learning models are generated in order to meet some
specific criteria. The model repository provides the ability to save
and search machine-learning models. The machine-learning model
can be saved as an XML-based format such as predictive model
markup language (PMML). ModelDB, Microsoft Azure Machine
Learning, and JBoss Drools can be used as the model repositories.



Sensors 2018, 18, 1428 6 of 17

Table 1. Cont.

Detection and Coordination
Real-time data listener

This collects IoT/sensor and process data in real time. It may poll
the event data stored in BigData Storage, and transmit it to the
Quality and productivity detector.

Quality and productivity detector

This detects quality and productivity problems of products in real
time based on advanced planning and scheduling system (APS)
schedules and quality prediction models. A warning is generated
when the quality defect prediction amount exceeds the reference
value or becomes smaller than the target production amount
calculated by the APS.

Coordinator

The module coordinates inputs and outputs between sub-systems
and modules. The main roles are as follows.

• explore response plans and response times according to
the problem;

• request reference KPI models such as production amounts and
production times for the KPI simulation sub-system;

• request APS for new schedule considering response plan and
current situation.

Key Performance Indicator
(KPI) Simulation

Cyber model builder

This generates a cyber model (digital twin) based on real-time
factory production status and the APS production schedule.
The cyber models is synchronized to physical facilities, processes,
systems, and factories. The cyber model has not yet been
standardized. According to different purposes and level of details,
the information that the cyber model can contain is very diverse.
It can include geometries, structures, attributes, interfaces, rules,
analysis models, and states. At the start of production or at the time
of the occurrence of the problem, the cyber models update
themselves from multiple sources, such as IoT and MES,
to represent near real-time status, working condition, or position.

Simulation engine

This carries out a productivity analysis using the cyber models
created by the Cyber model builder. For example, 3D models
created from computer aided design (CAD) software can be
converted to simulation models by a simulation software. Then,
productivity simulation is performed with parameters reflecting the
status of the factory. The result of this module may include
production amounts and times in the near future.

Reference KPI builder

This creates reference KPI models to determine productivity
problems based on simulation results. The result includes the target
amount per hour of each machine which is calculated from the
simulation result.

Subsequently, the operating mechanism of the entire CPPS architecture framework is described
by explaining the data flow between each module and sub-system as shown in Figure 1.

1© Collection of past data: sensor and process data are collected through the IoT and MES and stored
in the repository of the Big Data Analytics sub-system.

2© Creation of quality prediction models: the collected data are analyzed by using AI techniques to
create quality prediction models.

3© Storage of quality prediction/response models: the created quality prediction models and
response plans are stored in the Model repository. The response plans and times are entered
according to the operator’s experience.

4© Creation of production schedules: after production schedules are created in the APS, they are
delivered to the Detection and Coordination sub-system and MES. Schedule data includes target
outputs per machines or production lines. It could be specified to a timetable.

5© Request for reference KPIs: the Coordinator delivers the production schedules and current factory
situation to the KPI Simulation sub-system and requests reference KPIs that should be used in
the future as production-monitoring standards.

6© Creation of the cyber model: the Cyber model builder creates a cyber model for a KPI simulation
based on the schedule and current factory situation.

7© Transmission of simulation results: after conducting a productivity simulation, the results are
sent to the Reference KPI builder.

8© Transmission of reference KPIs: reference models of the production KPI values are created based
on simulation results and sent to the Coordinator. The reference KPIs serves as the criteria for
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manufacturing execution monitoring and include target quality and production per unit time
per process.

9© Loading of reference KPIs: reference models sent to the Coordinator are loaded into the Quality
and productivity detector for the real-time monitoring of quality and productivity.
Real-time data collection: sensor and process data generated in the production process are
collected in the Big Data Analytics sub-system.
Real-time data transmission: The collected sensor and process data are sent in real time to
Detection and Coordination sub-system.
Real-time data monitoring: real-time data listener sends data collected in real time to the Quality
and productivity detector.
Quality analysis and prediction: the Quality and productivity detector predicts the quality and
productivity in real time by using the quality prediction model and the reference KPIs.
Transmission of quality/productivity irregularities: given the occurrence of irregularities related
to quality/productivity, the corresponding information is sent to the Coordinator.
Request for analysis of response plans: the Coordinator requests the Model repository for analyses
of response plans for irregularities and receives the corresponding information.
Request for future KPIs: in order to predict future KPIs caused by responses to irregularities,
the current factory situation and production schedule is sent to the KPI Simulation sub-system.
Additionally, KPIs are created through the same process as explained in points 6© and 8©.
Request for new schedules: when the difference between the change in the initial reference KPIs
and the future KPIs (due to irregularities) is significant, the Coordinator requests a new schedule
to the APS.
Creation of new schedules: the APS creates new schedules by reflecting irregularities and sends

them to the MES and Coordinator. Subsequently, it is repeated from .
Transmission of visualization information: when the above actions are performed, the progress of
the entire systems is simultaneously sent to the dashboard in the form of visualization information
that is visible to the user through the visualization library and graphical user interface.

4. Implementation and Case Study

This section describes the application and implementation of the CPPS architecture framework
described in Section 3 to the metal-casting process of an actual piston engine factory. The purpose
of the system is to predict the quality as soon as metal-casting process is completed and to actively
change the production schedule after the machine is repaired if the number of defects exceeds the
permissible number of defects. Section 4.1 explains the metal-casting process and quality issues of
engine pistons. Section 4.2 describes the process of extracting features from the data collected from
the IoT/MES by using Spark (which is a big data processing technology). Section 4.3 introduces the
process of creating quality prediction models. Sections 4.2 and 4.3 correspond to the Big Data Analytics
sub-system in Figure 1. Section 4.4 explains the operation of quality problem detection, productivity
simulation, and new schedule request based on a scenario by using a CPPS dashboard. It corresponds
to the Detection and coordination sub-system and the KPI Simulation sub-system in Figure 1.

4.1. Metal-Casting Process and Quality Issues

Given the characteristics of engine pistons, a permanent mold-casting method that employs metal
molds is used in the target factory for mass production and precise management of the dimensions.
First, the aluminium is heated and melted at high temperature inside the furnace, and additional
elements are added to create an alloy. When the melting/alloy process is completed, the molten metal
is divided into charge units, moved to the holding furnace of the specific casting line, and maintained in
a stabilized state. Following this, the molten metal is injected into a casting machine and is transformed
into casting after undergoing the solidification and cooling stages. The casting is transformed into a
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piston after the follow-up processes of heat treatment, surface treatment, machining, and assembly.
Figure 2 summarizes the entire process of the target factory.
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Figure 2. Overall process of the casting factory.

The main product defects in the target factory are generated in the metal-casting process.
These defects are caused by various factors. Interview results revealed that excluding human errors,
cold shuts and bubbles account for more than 90% of all metal-casting defects. However, it is not
possible to detect metal-casting defects immediately after metal casting, and this is confirmed in
subsequent processes. The reason it is difficult to confirm the defect is because it is a problem
inside the product. The problem is only identified by cutting in the subsequent machining process.
This implies that the products that should not be processed are machined. Considerable time
and money is saved if the quality is predicted as soon as the metal-casting process is completed.
The description of cold shuts and bubbles is given and their causes are summarized as follows.

• Cold shut: the defect occurs when the molten metal is poured into the mold and generates
a boundary at the contact point where the molten metal joins. Generally, it occurs when the
temperature of the molten metal is excessively low, when the pouring speed is excessively slow,
or when the cross-section of the mold cavity is excessively thin.

• Bubble: the defect occurs when small bubbles are generated due to partial shrinkage cavities in
the molten metal. Typically, bubbles are caused when the pouring speed of the molten metal is
excessively fast, or when the solidification and cooling stages last an excessively long period after
the molten metal is poured into the mold.

4.2. Data Collection

As summarized Section 4.1, the main causes of the casting defects have a lot to do with temperature.
Therefore, we intended to collect and analyze temperature by attaching sensors to the mold in the
casting machine to predict cold shuts and bubbles of products. Considering working temperature of
casting process, we used k-type thermocouple (Chromel/Alumel) sensors that can measure a wide
range of temperatures used in power plants or steel plants. Thermocouple sensors were installed on
the mold and connected to the controllers to collect the temperature of casting process. Table 2 shows
the specifications of the sensor. Figure 3a shows the sensor installed in the mold, and Figure 3b shows
the controller connected to the sensors.

Table 2. Specification and image of the sensor.

Specification Image

Thermocouple type K
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Figure 3. Installation of sensor and controller in the factory: (a) thermocouple sensor attached to the 
mold; (b) controller. 

Line diameter Ø (mm) 3.2

Service temperature (◦C) 1000

Maximum temperature (◦C) 1200
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In addition to the temperature data, operational data such as the start and end times of the casting
process are collected by each PLC (programmable logic controller) that controls the casting machines.
Because existing PLCs of casting machines are different, we used open platform communication (OPC)
which is well-known interoperability standard in industrial automation. If sensor data are generated,
the data are aggregated through the OPC and are classified based on the master data of MES and
CPPS. The aggregated data are sent in real time to the MES and CPPS, respectively. Figure 4 depicts
the interface of sensor data. LS and Yokogawa are PLC manufacturing companies in Korea and
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Data that are collected through IoT and MES to predict metal-casting defects are divided into
holding furnace data, casting machine data, product data, and schedule data. Table 3 summarizes the
collected data based on each category.
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Table 3. Data classification of the casting process.

Categories Data Name Explanation

Holding Furnace

Holding Furnace ID Identifier of the holding furnace in MES.

Charge ID Identifier of the charge in MES.

Charge Element Compositional elements of the charge.

Casting Machine

Casting Machine ID Identifier of the casting machine.

Front Mold Temperature Temperature collected from the thermometer installed in
the front of the mold.

Rear Mold Temperature Temperature collected from the thermometer installed in
the rear of the mold.

Product (Piston)

Product Serial ID Identifier of an individual product.
Quality Quality state of the products (good, cold shut, bubbling).

Production Time Production completion time of the product.

Schedule
Lot ID Identifier of the lot in MES.

Schedule Schedule, such as production volume, time, and worker.

4.3. Pre-Processing Using Distributed Parallel Framework

The IoT equipment installed in the casting machine and data obtained from MES are stored
in HBase, which is a NoSQL database. Since the data collected through the IoT/sensors in the casting
machine will be large-scale, storing it using the existing relational databases (RDB) is limited to
considering the volume, velocity, and diversity of the big data [31]. For this reason, a NoSQL database
supporting data distribution and parallel processing was chosen. All related data must be collected
based on the product ID unit to create quality prediction models, and a feature extraction process is
required to obtain time-series data of the mold temperature. In the study, Spark, which is widely used
for high-speed data analysis, was used for the feature extraction. Figure 5 shows the process of feature
extraction and prediction-model creation and storage. A Spark Map was used while collecting data
based on the product ID units, and Reduce was used while extracting feature vectors from time-series
data such as temperature.

Sensors 2018, 18, x FOR PEER REVIEW  11 of 18 

 

data based on the product ID units, and Reduce was used while extracting feature vectors from time-

series data such as temperature. 

 

Figure 5. Example of MapReduce. 

Quality-prediction models are created through learning by using the appropriate classification 

algorithms on pre-processed data. In the study, R software was used to create quality prediction 

models, and different classification algorithms including a decision tree, random forest, artificial 

neural network, and support vector machine were used as the analysis techniques. The created 

quality prediction models are stored in a rule base (in the study, Drools 7 from JBoss was used), and 

finally utilized to identify defects by monitoring the data created in the IoT/MES in real time. Section 

4.3 describes the process of creation of quality-prediction models in further detail. 

4.4. Creation of Quality-Prediction Model 

The quality of metal casting is mainly affected by the variable corresponding to mold 

temperature. In order to generate a quality-prediction model, features must be extracted from metal-

casting temperature data recorded by the time-series. Figure 6 describes the features extracted from 

the mold-temperature data. 

 

Figure 6. Extracting features from mold-temperature data. 

The maximum/minimum mold-temperature values and the difference between them were 

extracted in conjunction with the cumulative temperature of the rising sections, cumulative 

temperature of the decreasing sections, and entire cumulative temperature values. In addition, the 

deviations and symmetry of the distribution were identified and included in the features by using 
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Quality-prediction models are created through learning by using the appropriate classification
algorithms on pre-processed data. In the study, R software was used to create quality prediction models,
and different classification algorithms including a decision tree, random forest, artificial neural network,
and support vector machine were used as the analysis techniques. The created quality prediction
models are stored in a rule base (in the study, Drools 7 from JBoss was used), and finally utilized to
identify defects by monitoring the data created in the IoT/MES in real time. Section 4.3 describes the
process of creation of quality-prediction models in further detail.
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4.4. Creation of Quality-Prediction Model

The quality of metal casting is mainly affected by the variable corresponding to mold temperature.
In order to generate a quality-prediction model, features must be extracted from metal-casting
temperature data recorded by the time-series. Figure 6 describes the features extracted from the
mold-temperature data.
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The maximum/minimum mold-temperature values and the difference between them were
extracted in conjunction with the cumulative temperature of the rising sections, cumulative
temperature of the decreasing sections, and entire cumulative temperature values. In addition,
the deviations and symmetry of the distribution were identified and included in the features by using
the average, median, standard deviation, and distribution skewness of the entire section. Furthermore,
differences exist in melting/alloying elements for each product, and thus they were included in the
input variables used to create the prediction model. Table 4 shows all input variables used to create a
quality-prediction model.

A dataset was created by collecting and pre-processing approximately three months of production
data after constructing the CPPS. Table 5 shows the number of datasets of good-quality products,
cold shuts, and bubbles based on the training and test sets used in the creation of the
quality-prediction model.

In the study, we used R software to create the quality-prediction model. We used the Ctree library
for the decision tree model, randomForest library for the random forest model, the nnet library for the
artificial neural network model, and the e1071 for the support vector machine model. A training set
was used to create the quality-prediction model, and a test set was used to evaluate the accuracy of
the prediction. Table 6 shows the prediction results by using the decision tree, the random forest model,
the artificial neural network model, and the support vector machine model. Table 7 shows a comparison
of the prediction accuracy between all quality prediction models in Table 6.

In summary, all prediction models except for the decision tree model showed a high level of
prediction accuracy. Among them, the artificial neural network model showed the highest accuracy.
However, comparing the average model-creation time, the artificial neural network model was found
to require more time than the other models. Since detailed tuning was not done, it is likely that the
accuracy and the generation time of each model will be able to be improved through proper model
parameter tuning. As a result, it can be concluded that most classification models are suitable for
predicting the quality of metal castings.
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Table 4. Input variables for quality prediction.

Variables Description Source

Defect defect type of product MES
ProductID ID of product MES

FMax max value in the front mold temperature section IoT
FMin min temperature value in the front mold temperature section IoT

FStdev standard deviation value in the front mold temperature section IoT
FAverage average temperature value of the front mold temperature section IoT
FMedian median temperature value in the front mold temperature section IoT

FMax-Min difference between max and min value in the front mold temperature section IoT
FSkewness skewness of the front mold temperature section IoT

FintegralToMax accumulated temperature value of the rising temperature zone in the front mold IoT
FintegralToMin accumulated temperature value of the falling temperature zone in the front mold IoT
Ftotalintegral accumulated temperature value of the total temperature zone in the front mold IoT

RMax max value in the rear mold temperature section IoT
RMin min temperature value in the rear mold temperature section IoT

RStdev standard deviation value in the rear mold temperature section IoT
RAverage average temperature value of the rear mold temperature section IoT
RMedian median temperature value in the rear mold temperature section IoT

RMax-Min difference between max and min value in the rear mold temperature section IoT
RSkewness skewness of the rear mold temperature section IoT

RintegralToMax accumulated temperature value of the rising temperature zone in the rear mold IoT
RintegraloMin accumulated temperature value of the falling temperature zone in the rear mold IoT
Rtotalintegral accumulated temperature value of the total temperature zone in the rear mold IoT

ChargeElement compositional elements of charge (IAL, AL2, UG, SIH, FE, CU, MN, MG, CR, NI,
ZN, TI, CA, P, PB, SB, SN, SR, V, ZR, ALP) MES

Table 5. Configuration of the dataset for constructing the quality-prediction model.

Good Cold Shut Bubble

Training set 1047 978 970
Test set 482 386 416

Total 1529 1364 1386

Table 6. Prediction results of each quality-prediction model.

Predicted Predicted

Good Cold shut Bubble Good Cold shut Bubble

Actual
Good 286 90 106

Actual
Good 421 38 23

Cold shut 28 294 64 Cold shut 12 363 11
Bubble 25 26 365 Bubble 7 4 405

(a) Decision tree model (b) Random forest model

Predicted Predicted

Good Cold shut Bubble Good Cold shut Bubble

Actual
Good 442 21 19

Actual
Good 416 41 25

Cold shut 10 367 9 Cold shut 18 359 9
Bubble 6 4 406 Bubble 7 8 401

(c) Artificial neural network model (d) Support vector machine model

Table 7. Comparison of measurements between the quality-prediction models.

Class Precision Recall Overall Accuracy Average Model
Creating Time

Decision tree model
Good 0.8437 0.5934

0.7360 12 sCold Shut 0.7171 0.7617
Bubble 0.6822 0.8774

Random forest model
Good 0.9568 0.8734

0.9260 23 sCold Shut 0.8963 0.9404
Bubble 0.9226 0.9736

Artificial neural
network model

Good 0.9643 0.8963
0.9384 1 m 27 sCold Shut 0.9129 0.9508

Bubble 0.9355 0.9760

Support vector
machine model

Good 0.9433 0.8631
0.9159 21 sCold Shut 0.8799 0.9301

Bubble 0.9218 0.9639
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4.5. Problem Detection and Productivity Simulation

The section describes the process of quality problem detection, cyber model creation,
productivity simulation, and new schedule request through a dashboard. Figure 7 shows the main
screen of the dashboard, and Table 8 details each of its sections. The Detection and Coordination
sub-system and the CPPS dashboard in the CPPS architecture presented in Section 3 were developed
using C# language in NET Framework. In order to connect CPPS core components and MES/APS,
RESTFull, which is a lightweight, maintainable, and scalable communication protocol in terms of
heterogeneous applications, was used.
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Table 8. Description of each section of the main screen of the dashboard.

No. Section Name Explanation

1 Product Information Information on target products.
2 Real-time Production Status Product status expected by the prediction model.
3 Quality Detection Expected defects.
4 Mold Temperature of a Product Mold temperature of the latest product.
5 Cumulative Mold Temperature Real-time mold temperature trend of casting machines.

As the production of a product progresses, the production status is updated in the dashboard
in real time. It shows the existence of defects in each product, and the results of the defect-type
prediction (Figure 8a). For this factory, if the cumulative number of quality defects exceeds the
standard defect rate of 2% a lot, the dashboard emits a warning alarm and shows the user-summarized
production and defect data (Figure 8b). After analyzing the detailed trends and variables that
caused the defect, the user predicts changes in the KPIs related to production (such as the output,
lead time and defect rate) by using a productivity simulation. (Figure 8c–e). Figure 8c shows the
factory layout, and Figure 8d shows a selected manufacturing line modelled as 3D in the factory layout.
Metal-casting machines are modeled by using Inventor, which is Autodesk’s 3D CAD program,
and are synchronized to the physical factory in the Unity engine. Unity is a cross platform game
engine developed by Unity Technology. It helps remote users in monitoring the manufacturing lines.
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Figure 8e shows a screen shot of a discrete simulation program for creating reference KPIs. For the
productivity simulation, Plant simulation 11.0.3 of Siemens PLM Software (Plano, TX, USA) was
used as simulation engine. Finally, the reference KPIs created prior to production are compared
with the KPIs predicted through a simulation after several defects occurred, and the individual in
charge requests a new schedule to the APS if the difference is significant (Figure 8f). For this factory,
if (remaining hours) × (maximum output per hour) + (cumulative output) is much less than the daily
target output, a new schedule is requested.
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For one production line in the factory, the average monthly production is approximately 500,000,
and the cycle time of subsequent process of the casting process was 37 s. Therefore, based on the number
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of monthly defect products which was approximately 10,000 (defect rate is about 2 percent), predicting
90% of the defect in the casting process can be concluded to save 92.5 h (37 s × 9000 = 333,000 s)
of the time spent on subsequent processes. This corresponds to about 18.5% of the total monthly
operating hours.

5. Conclusions and Future Work

Although factories in the past used specific automated production processes, future smart
factories will evolve into autonomous adaptive next-generation plants that allow real-time production
monitoring, real-time process optimization, customized flexible production, and real-time quality
diagnosis and prediction by analyzing big data collected through the IoT.

The study proposed an architecture framework to implement the cyber-physical production
systems (CPPS) cooperating with other manufacturing information systems for quality prediction
and operation control in metal-casting processes. It also described the process of applying and
implementing the proposed CPPS architecture framework to change dynamic production schedules
and predict quality defects in an actual piston-manufacturing plant. Finally, the proposed CPPS
architecture framework was verified through the implementation of the CPPS dashboard based on a
particular scenario. The CPPS monitors and predicts the occurrence of factory situations in real time
based on the technologies such as the IoT, big data, and simulations. Furthermore, a CPPS acts as
a coordinator to form optimal decisions related to the re-creation of production schedules through
cooperation between the APS and MES. The solution presented in the study can predict the quality of
the product as soon as the casting process is complete and reflect the process performance into the
production schedule.

This study contributes to two key aspects related to CPS/CPPS implementation in manufacturing.
First, this study shows technical examples of CPPS implementation in actual factories while research
on CPS/CPPS is still in its infancy, and most published studies in popular journals are mainly focused
on higher level architecture and reference models. In particular, this study presents more specific
frameworks and use cases than previous studies, and introduced usable software and technologies.
This can be referred to as a precedent implementation example for industry and academia considering
CPPS implementation. Second, this paper presents the quantitative effect of implementing CPPS by
estimating how much the subsequent process time can be reduced, even if estimated. It is expected that
companies implementing smart factories up to automation and communication stage can reconsider
their hesitation to build CPPS, and the result can have a positive impact on the industrial diffusion
of CPPS.

Although the study addressed CPPS implementation with specific examples in manufacturing,
a few issues persist with respect to CPPS implementation and diffusion. First, security issues in
the exchange of various data should be considered. In the near future, a highly connected smart
factory ecosystem across the global supply chain will be established by using CPPS. Security will
become a bigger issue when various companies are connected. Second, the standardization of
data formats and communication protocols among the various systems is required. There are
several heterogeneous devices and applications in a factory. They increase the time and cost of
system integration. The significance of this issue further increases if the factories are connected.
Third, studies to reduce the resources needed for synchronization between a physical world and
a virtual world are required. Most individuals expect a cyber model to correspond to a 3D model
synchronized with the physical world. The creation of a 3D model and assignment of real-time data to
predict the future consumes significant resources. With increases in the application range of CPPS,
it is necessary to examine technical support for the synchronization of real-time data and real-time
simulation of large-capacity 3D models.
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