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Abstract: This work discusses the advantage of using cross-correlation analysis in a data-driven
approach based on principal component analysis (PCA) and piezodiagnostics to obtain successful
diagnosis of events in structural health monitoring (SHM). In this sense, the identification of noisy
data and outliers, as well as the management of data cleansing stages can be facilitated through the
implementation of a preprocessing stage based on cross-correlation functions. Additionally, this
work evidences an improvement in damage detection when the cross-correlation is included as part
of the whole damage assessment approach. The proposed methodology is validated by processing
data measurements from piezoelectric devices (PZT), which are used in a piezodiagnostics approach
based on PCA and baseline modeling. Thus, the influence of cross-correlation analysis used in the
preprocessing stage is evaluated for damage detection by means of statistical plots and self-organizing
maps. Three laboratory specimens were used as test structures in order to demonstrate the validity of
the methodology: (i) a carbon steel pipe section with leak and mass damage types, (ii) an aircraft
wing specimen, and (iii) a blade of a commercial aircraft turbine, where damages are specified as
mass-added. As the main concluding remark, the suitability of cross-correlation features combined
with a PCA-based piezodiagnostic approach in order to achieve a more robust damage assessment
algorithm is verified for SHM tasks.

Keywords: piezodiagnostics; Baseline Models; Damage Statistical Analysis; principal component
analysis; structural damage detection

1. Introduction

“Structural health monitoring (SHM) is the integration of a sensory system, a data acquisition
system, a data processing and archiving system, a communication system, a damage detection
system, and a modeling system to acquire knowledge about the integrity and load worthiness
of in-service structures on either a temporary or continuous basis” [1]. Likewise, according to
Farrar and Worden [2], SHM can be defined as the process of implementing a damage identification
strategy for aerospace, civil, and mechanical engineering infrastructure. The benefits of implementing
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damage identification strategy through an SHM system are an avoidance of premature breakdowns,
a reduction of maintenance costs, continuous remote diagnosis, and economic benefits in terms of an
operational life extension. For instance, leakage detection systems, which can be designated through
an SHM paradigm, are of great importance in the oil industry, where pipes are critical for oil and gas
transportation [3]. Thus, by implementing an SHM scheme, it is possible to mitigate economical losses
and environmental damages. Several approaches for pipeline damage detection are detailed in the
review presented by Murvay et al. [4]. In [5,6], the applicability of technologies based on acoustic
emissions as part of an SHM system is demonstrated. Additionally, fiber optics techniques [7] and
statistical processing of pressure measurements [8] have been reported to be effective in SHM systems.
Some novelty methodologies for pipe leak damage detection includes piezoelectric measure processing,
as is shown in work developed by Feng et al. [9], where a crack detection and leakage monitoring
system on reinforced concrete pipe is evaluated. Another example is detailed in [10], where a method
for gas pipeline leakage detection based on PZT sensors is proposed.

As is illustrated above, many SHM approaches have been reported in the literature, where a
trade-off between efficiency and accuracy in the diagnosis is one of the main objectives. According to
Ooijevaar [11], structural damage diagnosis algorithms include elements summarized in Figure 1.
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Figure 1. Components of a structural health monitoring (SHM) process for damage diagnosis according
to Ooijevaar [11].

In general terms, the sensor system obtains the signal signature describing the current state of
the monitored structure. Data collected by the sensor network is then characterized through features
in order to get a sensible representation to different conditions. These features are exploited by
classification, regression, or clustering algorithms with the ability to identify abnormal conditions
(i.e., possible damage). Thus, by implementing the scheme depicted in Figure 1, basic SHM levels can
be achieved: diagnosis constituted by damage detection (Level 1), location (Level 2), quantification
(Level 3), and prognostics by estimating the damage evolution (Level 4), where feature extraction
receives most of the attention in the literature [2]. Since the SHM process requires features with
high sensitivity to distinguish between undamaged and damaged conditions, this process should be
robust to noisy measurements. Thus, feature extraction can be complemented using data cleansing and
preprocessing techniques in order to improve diagnosis response of the whole system and consequently
to minimize effects due to variable operational and environmental conditions as well as sensor drifts.

On the other hand, there have been numerous recent studies for damage detection within a
statistical framework and specially focused on data-driven models. For instance, in order to accurately
simulate the complex dynamics of operational wind turbines a bi-component analysis tool is applied
on long-term experimental data [12]. Additionally, the authors of [13] propose the use of statistical and
modal damage detection methods for the damage detection problem in a small-scale wind turbine.
Other authors, such as those of [14], have presented the use of a time-series as a modeling approach to
provide an effective and compact global representation of the vibrational response of a structure under
a wide span of environmental and operational conditions. As a result, the state of the art indicates
that statistically based methods using data-driven approaches have been reported to be successful for
structural condition assessment.
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In the same way, algorithms based on principal component analysis (PCA) have been reported as
a promising approach to detect and locate damages in structures as pipes, civil structures, and aircraft
sections, among others. Recently, there have been many instances using PCA for damage detection
combined with other physics-based and data-based methods. For instance, a framework for parameter
estimation through proper orthogonal decomposition is presented in work developed by [15] validated
with simulated experiments on eight-story shear type building. Similarly, in [16], a reduced-order
model of a structure based on proper orthogonal decomposition and Kalman filtering is proposed
for the online health monitoring of damaged structures. Another example is proposed in [17], where
order-reduction of a numerical model is used to track the structural dynamics for thin flexible plates,
which are obtained by means of POD and Kalman filters. Thus, according to the existing literature,
PCA data-driven models have been suitable monitoring schemes for damage assessment.

In addition to the above damage detection schemes, some proposals have investigated the
application of correlation or covariance functions and PCA or SVD methods as a damage detection
algorithm with ability to remove data noisiness involved in the SHM process. For instance, the
authors of [18] discuss subspace-based methods to manage issues related to intrinsic uncertainty
due to finite data length, colored noise, non-stationary excitations, model order reduction, and
operational influences evaluated on a prestressed concrete road bridge. Another example is detailed
in [19], where detection and localization in a concrete bridge is developed by the application of
stochastic subspace-based structural identification. Additionally, the authors of [20] present a damage
detection method based on subspace identification concepts and statistical process techniques that are
sensitive to small-sized structural damages and suitable for online monitoring. Similarly, the authors
of [21] describes mathematical tools to address inverse problems in structural dynamics to develop
data-driven approaches for damage detection.

The above literature review motivates the exploration of data-driven approaches, cross-correlation
functions, PCA processing, and piezodiagnostic approach in order to improve the overall performance
of structural damage detection algorithms. Thus, this paper discusses the advantages of including
a preprocessing stage based on a cross-correlation technique as a useful tool for common noise
suppression, outlier filtering, and grouping damage types in a PCA-based piezodiagnostic framework.
This analysis is included in the developed methodology, which is tested in three experimental setups,
where each one has a PZT as an actuator and the others have PZTs as sensors. These data are
preprocessed through cross-correlation, and PCA is then implemented for damage detection in order
to discriminate the different damage levels. Next, a clustering learning tool is used to validate the
robustness of the proposed methodology.

The paper is organized as follow: Section 2 describes the methods used for damage identification,
where some details about instrumentation requirements as well as data organization and damage
indexes useful for damage monitoring are presented. Section 3 describes the experimental test
structures, while Section 4 presents and discusses the results of applying the whole methodology.
Finally, Section 5 concludes the main contributions of this work.

2. Damage Assessment Elements

The methodology for damage detection used in the present work is based on three main elements:
experimental setup, statistical processing, and clustering analysis. Because one of the main objectives
of this work is the application of cross-correlation to improve SHM diagnosis, the procedure for its
implementation is detailed in the next section. Thus, the necessary tools for condition monitoring
are presented.

2.1. Hardware and Experimental Setup

Components of the whole piezoelectric system, whose implementation requires signal
conditioning and an acquisition system (i.e., amplifiers, signal generator, multiplexer devices, and
software integration, among others) as well as elements for mechanical coupling (i.e., materials to
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facilitate PZT attachment to the surface structure) are presented in Figure 2. In this research, PZTs
are attached to the testing specimens through an adhesive layer of cyanoacrylate. All components
of the instrumentation system are managed by means of programming software that controls the
command flow. The proposed methodology is experimentally validated in three structures: a carbon
steel pipe section, an aircraft wing specimen, and a blade of a commercial aircraft turbine. They are
equipped with piezoelectric devices in order to induce guided waves along the surface structure.
The carbon steel pipe section facilitates simulating leak and mass-added damage types, while in the
other two specimen non-reversible mass-added damage types were recreated. One PZT is excited with
a periodic high frequency burst type signal inducing a guide wave and the remaining piezo-devices
measure the guided wave response at different locations of the structure. A PicoscopeTM series 2000
and a 16-Channel multiplexer board comprises the acquisition hardware used to acquire the signals.
Arbitrary wave generation (AWG) such as burst type signals is effectuated by means of PicoScopeTM.
The system design considers exciting dominant wave modes by operating the actuator PZT element
at resonance frequency, which is intended to minimize dispersive behavior and with the purpose of
maximum amplitude performance. Guided waves in this study are generated by thin disks of ceramic
material (titanium lead zirconate) configured in radial mode. A five-cycle burst-modulated pulse is
used to excite the PZT actuator around its resonance frequency ( fr 102 kHz). In consequence, many
wave-packets corresponding to longitudinal and flexural modes are generated, which represents a
highly dispersive pattern as a result of the superposition of several guided waves.

Figure 2. The piezoelectric instrumentation system.

2.1.1. Pipe Section

This test structure is a carbon-steel pipe section with material properties similar to those used in
the local industry. Its dimensions are 1 m in length, 2.54 cm in diameter, and 3 mm in thickness with 4”
bridles welded at the ends. On one of the ends, a blind bridle is connected while on the other end,
an air source is coupled. The pipe section is equipped with piezoelectric devices distributed along the
structure to capture guided wave response. The actuator PZT transducer is located on one of the pipe
ends in order to demonstrate the ability of PCA statistical processing to manage the high dispersive
performance caused by guided wave bounces due to the elements near the bridles. Additionally, the
PCA-based piezodiagnostics approach described in this study is independent from the PZT actuator
location. In this pipe section, two types of damages can be studied: leaks and added mass.
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The pipe section is depicted in Figure 3. Leaks are induced through elements denominated as
Holei. Four quarter-inch holes are drilled along the pipe section wall by means of adjustable screws to
control where the leak is produced. A valve is used to set at 80 psi the air pressure from a compressor,
which recreates pre-stressed operational conditions and generates flow disturbances in the piezoelectric
system. Bolts and other elements used to recreate leak damages are included in the nominal state of
the structure and consequently in the statistical baseline model.

Hole 4Hole 4Hole 3Hole 3Hole 2Hole 2Hole 1Hole 1
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Figure 3. Leak damage type configuration.

In addition to leak conditions, experimental data from mass-added scenarios were used to validate
the effectiveness of the methodology. Figure 4 shows the configuration of this type of damage.

Mass
PZT

Amplifier
PicoScope

Figure 4. Mass-added experiment mock-up.

According to Figure 4, a special shaped accessory is added to the surface of the pipe section
to recreate mass-added damage. In this sense, damage cases are the mass accessory attached to the
structure at different locations. The mass occupies 5 cm of the pipe length, which is considered as a
source of uncertainty involved in the scenarios configuration.

2.1.2. Aircraft Wing Structure

An aircraft wing specimen hosted in the Universidad Politécnica de Madrid (UPM—Spain) was
also used to validate the proposed damage assessment methodology. This structure is an aircraft
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wing panel, which is divided by stringers and ribs as is illustrated in Figure 5a. Two sections of it
were equipped with 6 PZTs (two at the upper section, two in the lower section, and two at the rib).
Four reversible mass-added damage types were induced in the structure by adding a clay element at
different positions according to Figure 5b, where the x-tick symbolizes the damage location and Di is
the damage tag.

(a) (b)

Figure 5. Aircraft wing test structure. (a) Skin panel. (b) Mass-added damage.

2.1.3. A Blade of a Commercial Aircraft Turbine

The third specimen used to validate the proposed methodology is a blade of a commercial aircraft
turbine, which has an irregular form and includes stringers in both faces (Figure 6). Ten PZTs were
attached to its surface, but only 7 of them, located at intermediate positions between the stringers and
labeled in Figure 6 as PZT1, PZT2, . . . , PZT6, were used. The remaining PZT devices are assumed
to be part of the structure and taken into account at the baseline model. Four mass-added damage
types were simulated in the turbine blade by attaching coins of different denomination and labeled in
Figure 6 as D1, . . . , D4.

Figure 6. Mass-added damage in the turbine blade structure.

According to Figure 6, the damage configuration considers scenarios of different positions,
severities, and potential barriers for guided waves. For example, D2 is the addition of two masses at
different positions of the surface structure.
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2.2. Statistical Processing

The second element, the statistical processing of piezoelectric measurements, is developed
by preprocessing through cross-correlation analysis and principal component analysis (PCA).
The cross-correlation is used as a preliminary cleansing procedure, which is included as a data
preprocessing stage in order to minimize the presence of outliers and consequently to improve the
discrimination between different types of damage. The statistical processing also includes removing
noise and low frequency disturbances from piezoelectric measurements by means of linear detrending
analysis. Thus, after statistical processing, PCA is implemented for data fusion, data normalization, and
baseline statistic model building, which facilitate the identification of abnormal structural conditions.

2.2.1. Preprocessing through Cross-Correlation Analysis

Several applications for structural damage assessment have demonstrated the effectiveness of
using cross-correlation signals [22]. For example, in [23], the authors use damage identification
methods based on the natural excitation technique (NeXT), which employ cross-correlation signals
for modal analysis, which has been useful for damage identification in civil structures. Likewise, the
advantage of processing data correlation in the discrete frequency domain with methods such the eigen
realization algorithm (ERA) is exploited for damage condition assessments in civil structures, where
changes in stiffness and damping properties are identified regardless of the influence of hysteretic
and non-linear responses [24]. Another proposal [25] includes the estimation of the time of flight of
wave packages by means of cross correlation signals to locate defects within a large area of a thin-plate
specimen. The cross-correlation function between two signals Y(t) and Z(t) is defined as in Equation (1).

RYZ(t, t + τ) = lim
N→∞

1/N
N

∑
k=1

Yk(t)Zk(t + τ) (1)

where N is the number of signal samples, and τ is the lag time interval used to compute the
cross-correlation signal. In our case of the PCA-based piezodiagnostics approach for damage detection,
the cross-correlation is computed between the actuating signal Y(t) and the respective PZT sensor
measurement Z(t). An example of cross-correlation signals corresponding to four different PZTs are
illustrated in Figure 7.

(a) (b)

Figure 7. The results of the preprocessing stage of the guided wave structural response. (a) Raw data.
(b) Cross-correlated signals.
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The signals presented in Figure 7 belong to PZT measurements of increasing positions (i.e.,
PZT4 is further than PZT3, and PZT3 is further than PZT2, and so on). The profile of the computed
cross-correlated signals indicates that information about the time of flight is preserved from raw time
measurements. If the smoothed tone-burst signal generated by the piezoelectric actuator device is
stated in the form of Equation (2), it can be deduced that the implicit arrival time is present in the PZT
sensor response and can be mathematically represented by Equation (3) [25].

ST(t) = S0(t)cos(2π fct)(2) (2)

where S0(t) is a short-duration smoothing window applied to the carrier signal of frequency fc between
0 and tp. The total signal received at point P by a PZT sensor can be expressed by Equation (3).

SP(t) =
M−1

∑
m=0

Ar,mST(t− td,m) (3)

where Ar,m represents the decreasing of the wave amplitude due to the omni-directional 2-D radiation,
and td,m is the arrival time delay due to the travel distance between the reference PZT (m = 0, i.e.,
actuator) and the point P with no dissipation (i.e., the wave energy conservation is assumed). It is
assumed that a distance d between two consecutive PZT’s of the array, which is much smaller than the
distance r to a generic far-distance point, P(d << r). Additional advantages of using cross-correlation
signals relies on frequency interpretation, which can also be analyzed as a convolution filter. In terms
of cross power spectral density, the cross-correlation function between two time discrete signals Y(n)
and Z(n) is defined as in Equation (4), where N is the number of points in the cross correlation function

RYZ(n) =
1
N

N

∑
k=1

SYZ(k)e
j2πnk

N . (4)

According to Equation (4), the cross-correlation function is an average sum of N cross-spectral
densities SYZ(k), which filters out high frequency disturbances caused by outliers. Thus, a smoothed
version of the dynamical structure response is obtained, with cleansed data and outliers removed
or minimized.

2.2.2. Principal Component Analysis: Baseline Model Building

The objective of PCA is to reduce the dimensionality of a data set by preserving the data variation
as much as possible. In this sense, a large number of interrelated variables can be represented in a
new reduced space of coordinates with minimal redundancy. This reduced representation achieves a
baseline model respect to a reference state, which has been referred to as the undamaged stage [26].
In this work, PCA is used to represent the cross-correlated signals in the reduced space, regarding
the dynamical response of the structure in the undamaged state, which allows for a comparison to
unknown states (possible damages). The application of PCA is performed through the following
five levels:

1. Level 1—Data Organization: In this part, cross-correlated signals of each PZT sensor belonging to
several repetitions of the undamaged structural state are organized in an unfolded data matrix
(X) (Figure 8).

The collected data are arranged in an n×m ·K matrix, which contains information from m sensors
and n experimental trials. K is the number of time samples recorded in the i-th experiment
repetition. Thus, each row vector (xi) represents measurements from all sensors (experiment
trial), and each column vector (vj) represents measurements from one sensor in the whole set of
experiment trials at a specific time instant.
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2. Level 2—Data Normalization: The undamaged cross-correlated baseline matrix is normalized
in order to avoid scaling and bias issues and to reduce the influence of different sources of
variability. In this work, normalization is computed by means of group scaling (GS), where each
data point from the undamaged cross-correlated baseline matrix (X) is scaled by considering
changes between sensors and the nature of the data by estimating the standard deviation for each
block of piezo measurements [27]. Thus, a normalized data matrix X̄ is obtained by standardizing
X using the mean of each time sample for every experiment and the standard deviation of each
sensor sample vector, where each x̄ijk element is determined by Equation (5).

µ̂jk =
∑n

i xijk

n
; σj =

∑n
i ∑K

k xijk

n · K ; x̂ijk =
xijk − µ̂jk

σ̂j
(5)

where σj is the standard deviation per PZT sensor and µij is the mean value at a specific time
instant of undamaged cross-correlated baseline matrix X.

3. Level 3—Optimal Basis Representation: The next step is to find a set of r basis vectors (P) that
satisfies the extreme value problem established by Equation (6), in order to minimize the fitness
function ε2 [28].

min
Pi

ε2(r) = E{||X̂− X̂(r)||2}s.t.PT
i Pj = δi,ji, j = 1, 2, . . . , r. (6)

The basis vector P can be estimated by computing the singular value decomposition of the
covariance matrix Cx established by Equation (7), which can be solved by using NIPALS, POD,
or QR procedures [29].

CxP = Pλ, where CX =
1

M− 1
XTX (7)

where M is the number of trial records used to estimate the covariance matrix, and λ the
respective eigenvalues.

4. Level 4—Baseline modeling: As a result, a baseline model is obtained according to the PCA
procedure in Equation (8). The baseline model is a reduced representation of cross-correlated
piezoelectric signals of the pristine structure, arranged in the undamaged cross-correlated baseline
matrix (X), after the normalization procedure (X).

X = TPT + E = model + noise (8)

where the basis vectors P form the linear transformation matrix that relates the data matrix X to
the new coordinates, and they are known as the principal components. T is the projected matrix
to the reduced space, and the noise E-matrix describes the residual variance neglected by the
statistical model (Equation (8)). The variances of these new coordinates’ reduced space are the
singular values (λ).

5. Level 5—Damage Detection Indexes: The two statistical indexes are the squared prediction error
(Q-statistic) and the Hotelling T2 statistic. The Q-statistic, defined by Equation (9), is a lack of fit
measurement between the current experiment and the baseline records.

Q = ∑
j
(ej)

2 (9)

where ej is the residual error for each j-th principal component used to reconstruct the trial
experiment. The Hoteling T2 statistic, defined by Equation (10), indicates how far each trial is
from the center (T = 0) of the reduced space of the coordinates.

T2 =
r

∑
j=1

t2
sij

λj
= T

′
λ−1T. (10)
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The diagnostics can thus be achieved using T2vs.Q indexes. The scatter plot is an easy way of
representing the information obtained from these indexes; however, some types of damages and
possible boundaries can be masked. For this reason, a clustering learning algorithm is used to
evaluate the influence of the preprocessing stage in the damage detection procedure.

(a) (b)

Figure 8. Undamaged cross-correlated baseline matrix. (a) Snapshot representation. (b) Matrix notation.

2.3. Clustering Analysis: Evaluation of Condition Monitoring Quality

The last step is performed using one of the most commonly used unsupervised learning algorithm:
a self-organizing map (SOM). The clustering process by means of an SOM is implemented in order to
evaluate the results obtained through PCA-based piezodiagnostic approach when cross-correlation
preprocessing is included. The SOM network consists of N clusters, characterized by a prototype
vector (Codebook) or cluster center, which group similar cases. This clustering is achieved by means
of competitive learning and preserving topology. Accordingly, nearby data in the input space are
mapped into neighbor clusters [30]. Figure 9 deploys the operation of an SOM network, where the
input space or feature inputs is specified by T2 and Q-indexes.

Feature Inputs
(Scores and Indexes)

Figure 9. SOM clustering.

The SOM quality is evaluated with quantization, topographic, and distortion error measures.
The quantization error is the average distance between each experiment and its best matching unit
(BMU). The topographic error corresponds to the proportion between data vectors whose first and
second BMUs are not adjacent clusters and the total number of experiments. Finally, the distortion
measure can be interpreted as the energy function that is minimized by the SOM. In addition, the BMU
clusters are used to measure the similarity of damage types by means of validation error obtained
through majority voting. In this sense, similar cases are labeled in clusters, where each label keeps
only one instance and the number of stored cases. Similarly, the validation cases are ticked assigning
the label with the most instances and with the most similar clusters to find the BMUs. In consequence,
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the validation error can be estimated by majority voting. Thus, for training purposes, 70% of the data
are used for SOM parameter tuning and the remaining 30% are used to estimate the validation error.

3. Damage Assessment Methodology

Foundations of damage detection methodology used in this work are detailed in the previous
section. The non-intrusive structural damage assessment methodology based on the previous
constitutive elements is depicted in Figure 10. This methodology is composed of three main steps:
1. sensor signals recorded by piezoelectric instrumentation in the three experimental setups; 2. statistical
processing; and 3. clustering analysis.

D 1 D 2 D 3 D 4
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Figure 10. Damage assessment methodology.

Two main goals are developed by implementing the methodology in Figure 10: damage detection
and damage type clustering. The first task is achieved by means of statistical processing, while the
second is accomplished by unsupervised learning tools. The next section details the procedure to
manage these two previous goals.

3.1. Damage Detection Procedure

The integration of the first two tools (statistical processing and PCA) allows for damage detection
(depicted in Figure 11), where clearly the modeling and monitoring procedure can be identified.
The modeling phase builds the baseline model by applying PCA to the undamaged cross-correlated
baseline matrix, while the monitoring phase refers to the projection of current signals to the baseline
model. Since current measurements stands for unknown structural states, two statistical indexes
are computed to distinguish possible abnormal conditions, where abrupt changes of them can be
associated to a structural damage.
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Figure 11. The damage detection approach.
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3.2. General Scheme of Damage Assessment

Damage detection is achieved in the two first steps: sensor signals recorded by piezoelectric
instrumentation in three experimental setups and statistical processing based on PCA. The first step
consists in guided wave generation using PZT devices in order to distinguish between damaged
and undamaged states. Some applications of piezodiagnostics include the detection of damage in
aircraft joints [31], the detection of damage in composite panels [32], the detection of cracks and
corrosion in macro-fiber composites [33], and pipeline leak assessment [34]. Likewise, the second step
of PCA can be summarized as a mathematical tool widely used for feature extraction and pattern
recognition [35], with several proposed methodologies for structural damage detection, such as
the detection of damage and its location in structures such as pipes, wind turbines, and aircraft
sections [36–38]. In particular, this work acquires several repetitions of PZT measurements when
the structure operates in healthy conditions, and the initial trends of PZT measurements are then
removed in order to compute the cross-correlation between actuating signal and measurements from
PZT sensors. Thereafter, the cross-correlated data is organized in an unfolded matrix and normalized.
Afterward, the singular value decomposition is computed by PCA to build the baseline model. The first
r principal components are selected in order to obtain a reduced representation of the undamaged
structural condition. In this way, the methodology builds a baseline representation of the undamaged
condition of the structure, and the current condition is projected in order to determine the stage
of the structure. Scatter plots of damage indexes are used to distinguish between undamaged and
damaged conditions. Finally, a clustering analysis stage is achieved by using an SOM network, which
demonstrates the benefits of using cross-correlation as a preprocessing stage, evaluated through the
performance of clustering indexes.

4. Results and Discussion

To determine the consistency and effectiveness of structural damage assessment methodology,
data cleansing and filtering, and structural damage detection were performed.

First, spectra was analyzed to evaluate the data cleansing and filtering properties of the cross
correlation analysis. A preliminary test and was performed to detect data anomalies. Afterward,
different damage scenarios were evaluated according to the methodology explained in Section 3.
The main goal of this paper is to demonstrate cross-correlation functions at the preprocessing stage,
for a better boundary between damage cases. In the following sections, these experimental results are
presented and discussed.

4.1. Data Cleansing and Filtering

This item describes results intended to demonstrate the applicability of the preprocessing stage
based on cross-correlation in order to minimize the adverse influence of noisy data. For this purpose,
experimental data regarding the pipe section in Figure 3 were analyzed. In this experiment, four PZTs
were used to sense the guide wave produced by a PZT located at the end of the pipe section and excited
by an 80 KHz burst signal every second. One hundred repetitions of the experiment were conducted
and recorded for the undamaged state by using a sample time Ts = 56 ns. In this way, the potential
advantages of using cross-correlation for data cleansing and filtering were explored by analyzing the
measurements from the undamaged state.

4.1.1. Filtering

Spectra was analyzed in order to verify that information in the frequency domain was preserved.
Figure 12 presents an example of the recorded signals for each PZT and their respective cross-correlated
signals with respect to the actuation signal.
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According to Figure 12, it can be observed that cross-correlation reduced the offset signal.
The figure is a smoothed representation of dynamical behavior. The above result can be confirmed by
estimating the power spectrum, which is illustrated in Figure 13 for all 100 acquired signals.

(a) (b)

Figure 12. Experimental acquired signals. (a) Raw data from PZT sensors. (b) Cross-correlation signals.
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Figure 13. Power spectrum. (a) PSD from raw data PZT measurements. (b) Cross-PSD from
correlation signals.
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As shown in Figure 13, high frequency noise was reduced by the attenuation of the high-order
harmonics. Thus, the power density of secondary side lobules in the power spectrum was reduced. As a
result, the consistency of frequency information was preserved by means of an average spectrum with
the same central frequency. The common offset values are excluded from signal representation. In this
sense, the cross-correlation function is an effective filtering technique to be applied to piezoelectric
measurements.

4.1.2. Data Anomaly Detection

Cross-correlation analysis is also useful as a data anomaly detection tool. For this purpose,
information about the occurrence of maximum values of the cross-correlation signal can be used.
Thus, the locations at which maximum cross-correlations are found were plotted in order to find
possible outliers. Figure 14 shows the index location for maximum values of cross-correlation piezo
measurements, where each value is associated with only one of the 100 experiments.
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Figure 14. Indexes of cross-correlation maximum values.

In Figure 14 the maximum cross-correlation values are located in the same lag position. Thus,
possible abnormal data measurements can be associated with deviations of max positions. In Figure 15
possible outliers from the five measurement signals (i.e., 7, 12, 20, 23, and 35 indexes) from PZT
Sensor 1 can be identified. The outliers according to information extracted from cross-correlation
are depicted in Figure 16 and can be associated to offset values and trends. However, according to
the upper subplot, the cross-correlation filters these atypical signals, which results in a well-defined
pattern for all 100 experiment repetitions. Thus, the structural dynamical response due to guided
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waves is characterized by the mode conversion and low amplitude changes, as shown in Figure 16,
where variations of concatenated cross-correlation signals are highlighted.

Figure 15. Cross-correlation signals from outliers.

Figure 16. Concatenated Cross-Correlation Signals.
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4.2. Structural Damage Detection

This section is intended to illustrate how the preprocessing technique based on cross-correlation
signals improves the results of structural damage and diagnosis algorithms. Several experiments were
conducted to show its suitability by considering different damage scenarios over the three previously
described structures.

4.2.1. Pipe Section Experiment

As a first scenario, mass-added damage was considered according to experiment set up in Figure 4.
Thus, two piezoelectric devices (sensor-actuator) were attached near to the bridles in the pipe section.
Seventy damage classes were recreated in the test specimen by consecutive displacements of the mass
along the structure. Each damage scenario, (denominated D1, D2, ..., D70), belongs to a mass located
at 1 cm, 2 cm, and so on, with respect to the PZT actuator. Experiments related to pristine structure
cases are labeled as ‘Orig’. A number of 100 experiments per condition (damaged/undamaged) were
conducted. A guided wave was induced by applying a five-cycle, 80 kHz burst type pulse on the
PZT located at one end of the pipe section. The resulting T2vs.Q scatter plot is depicted in Figure 17,
for both cases: with and without cross-correlation analysis.
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Figure 17. Damage indexes (a) without cross-correlation and (b) including cross-correlation.
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According to Figure 17, by including cross correlation, some damage clusters can be distinguished
in a way that they cannot be when raw PZT measurements are processed. Additionally, a clear
boundary for the undamaged condition was obtained, which facilitates the damage detection process.
The proposed methodology requires additional algorithms in order to manage damage localization and
quantification tasks. Some approaches, such as case-based reasoning (CBR) [39], can be adapted for
this. SOMs quantify and locate the damages, taking advantage of distance-based similarity measures
and information retrieved from clusters obtained through damaged cases. Since the combination of the
cross-correlation preprocessing stage and PCA-based piezodiagnostics results in highly distinguishable
damage clusters, the use of CBR methodologies becomes feasible as a complementary tool for damage
localization and quantification, which should be considered in future work.

In order to analyze the influence of cross-correlation in our PCA-based piezodiagnostics
approach, a comparison between PCA model variances obtained with and without cross-correlation
preprocessing are depicted in Figure 18.
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Figure 18. PCA model variances for mass-added scenarios in the pipe section.

According to the results in Figure 18, a smoothed distribution of the variance model for each
principal component was obtained for the case of cross-correlation signals. Thus, unlike the results
obtained from processing raw PZT measurements, there was no abrupt change with respect to the
first principal component. In this sense, the variance distribution due to cross-correlation analysis
entails a better clustering of damage case data. The second example is leak damage detection using the
experimental configuration of Figure 3, where five PZTs were attached along the structure. The PZT
at one of the ends is used as an actuator and the remaining ones as sensors. The proposed damage
configuration includes different leak sizes specified in Table 1. For each type of damage, 100 experiment
repetitions were conducted, where undamaged experiments are tagged with the label ‘Orig’.

Table 1. Leak damage specification.

Label Leaks (Bold = Open) Label Leaks (Bold = Open)

D1 H1, H2, H3, H4 D5 H1, H2, H3, H4
D2 H1, H2, H3, H4 D6 H1, H2, H3, H2
D3 H1, H2, H3, H4 D7 H1, H2, H3, H4
D4 H1, H2, H3, H4 *H denotes hole

Figure 19 presents the resulting Q and T2 statistical indexes, where a well-defined separation
between different leaks combinations can be appreciated for the case of cross-correlated signals.
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Figure 19. Damage indexes for leak detection (a) without cross-correlation and (b) including
cross-correlation.

According to results in Figure 19, it is possible differentiate abrupt changes between the PCA index
amplitudes of leaks produced through a single hole (D1, D2, D3, and D4) and those corresponding
to leaks with multiple holes (D5, D6, and D7). Thus, the higher the damage index, the more severe
the damage is, which allows for a simpler quantitative estimation of damage intensity by means of
the PCA index magnitude. However, damage location requires additional procedures, which are
being, and will continue to be, studied. Some promising approaches include the use of PCA damage
indexes to estimate possible damage paths [40] and imaging methods based on the time of flight and
the properties of guided waves [41,42].

In order to emphasize the advantage of using cross-correlated signals, an SOM was trained by
using T-squared and Q-statistics indexes as feature inputs (the same data from Figure 19), whose
clusters are depicted in Figure 20.
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Figure 20. Damage indexes for leak detection (a) without cross-correlation and (b) including
cross-correlation.
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According to Figure 20, boundaries clearly defined by empty clusters and BMU distance matrix
(U-matrix) can be observed when the cross-correlation as a preprocessing stage is applied. Thus,
a major differentiation between different damage types is shown. Case distribution avoids damage
combinations in similar clusters, which allows for improved damage discrimination.

4.2.2. Skin Panel Structure

Experimental results for the skin panel test structure are depicted in Figure 21 using statistical
indexes values and cluster centers for each damage scenario. It can be observed that major dispersion
appears without correlation analysis more so than it does with it. Additionally, correlation analysis
shows its efficacy in filtering atypical data-cases.
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Figure 21. Statistical indexes for skin panel experiment (a) without cross-correlation and (b) including
cross-correlation.

The respective SOM network is depicted in Figure 22.

(a) (b)

Figure 22. The SOM network for skin panel structure damages (a) without cross-correlation and
(b) including cross-correlation.

According to Figure 22, undamaged cases are separated in a better way when cross-correlation
signals are used to obtain the SOM network. Additionally, the U-matrix shows a major distance values
between damage cases. Table 2 summarizes the SOM quality indexes for the skin panel structure data.

Table 2. SOM quality indexes for skin panel structure data.

Index Uncorrelated Signals Cross-Correlated Signals

Quantization error 0.0186 0.0025
Topographical error 0.0686 0.2381
Distortion measure 0.7840 0.2734

Training Error 0.5714 0
Empty Clusters 42 63
Validation Error 2.6667 1.3333
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4.2.3. Turbine Blade Structure

Experimental results of the turbine blade test structure are depicted in Figure 23 using similar
parameters of the above experiment. A clear separation between different types of damage can
be highlighted when cross-correlation analysis is included, and superior performance by including
cross-correlation analysis is confirmed.
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Figure 23. Results for the turbine blade experiment (a) without cross-correlation and (b) including
cross-correlation.

The respective SOM network is presented in Figure 24.

(a) (b)

Figure 24. The SOM network for the turbine blade structure damages (a) without cross-correlation and
(b) including cross-correlation.

Additionally, a better cluster separation is observed for the case when cross-correlation is used
as feature inputs to the SOM network. This is validated by the SOM quality indexes summarized in
Table 3, where the best indexes are obtained for the case of cross-correlated signals.
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Table 3. SOM quality indexes for the turbine blade structure data.

Index Uncorrelated Signals Cross-Correlated Signals

Quantization error 0.0238 0.0021
Topographical error 0.3320 0.0362
Distortion measure 0.7840 0.1053

Training Error 6.2857 0
Empty Clusters 27 46
Validation Error 15.5556 1.3333

5. Concluding Remarks

In this paper, a robust damage assessment methodology by combining piezodiagnostics,
cross-correlation signals, and PCA with capabilities of detecting structural damages was experimentally
validated. The main contribution of this work is the inclusion of cross correlation as a preprocessing
stage, which has become part of an integrated methodology for robust structural damage diagnosis
implemented through a PCA-based piezodiagnostics approach. In this way, cross-correlation analysis
is used to minimize the influence of outliers and to increase discrimination capabilities by improving
the ratio of within-cluster and between-cluster distances associated to the respective damage groups.
Hence, a preprocessing stage based on cross-correlated piezoelectric signals allows for adequate
rejection of abnormal data. Thus, the common external noise signals are excluded in order to
avoid abnormal data as well as filtering atypical cases. Additionally, better damage differentiation
was obtained when a cross-correlation technique was used as a preprocessing technique. Since
cross-correlation improved the clustering and differentiation of statistical indexes between damages,
it was possible to distinguish damages by a simple graphical analysis. The effectiveness of the
methodology was validated by analyzing experimental data from three laboratory structures,
where improvements were obtained for all experiments by studying different damage types and
complexity in the damage scenarios. As a main conclusion, it was demonstrated that damage
diagnosis using a PCA-based piezodiagnostics scheme is highly dependent on the preprocessing
stage. However, by using a correlation of piezoelectric signals, improved behavior can be obtained,
with promising results for analysis of different damage types. Thus, i an integrated approach including
cross-correlation analysis can be used in real world structural damage assessment tasks addressed
with PCA-based piezodiagnostics. Future works should include complementary tools to manage
damage localization and quantification tasks. Recommended approaches described in the state of the
art include case-based reasoning and the contributions of PCA indexes, which are easily adapted and
integrated to the methodology presented in this paper. Special issues regarding the optimal localization
of piezoelectric sensors and the use of sparse arrays of sensors could also be studied.

Acknowledgments: The results in this paper were obtained as a collaborative work between the Universidad
Industrial de Santander –UIS- (Colombia) and the Universitat Politécnica de Catalunya -UPC- (Spain). It was
partially funded by the Spanish Ministry of Economy and Competitiveness through the research projects
DPI2014-58427-C2-1-R and DPI2017-82930-C2-1-R. Also, this project is a continuation of the Monitorización
y detección de defectos en estructuras usando algoritmos expertos embebidos research project, financed by
the Departamento administrativo de ciencia y tecnología Francisco José de Caldas—COLCIENCIAS and Banca
Mundial. Finally, the authors are grateful to the Department of Aerospace Materials and Processes at the
Universidad Politécnica de Madrid, Spain, for their collaboration in some of the experimentation.

Author Contributions: All authors contributed to propose the monitoring scheme, analyzing data, discussing,
writing and reviewed the paper.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2018, 18, 1571 22 of 24

Abbreviations

The following abbreviations are used in this manuscript:

AWG Arbitrary Wave Generation
Di Damage index i
GS Group Scaling
NIPALS Non-linear Iterative Partial Least Squares
NeXT Natural Excitation Technique
PCA Principal Component Analysis
POD Proper Orthogonal Decomposition
PZT Piezoelectric Device
QR QR-Matrix Factorization
SHM Structural Health Monitoring
UPM Universidad Politecnica de Madrid
CBR Case-Based Reasoning
ERA Eigen Realization Algorithm
SOM Self-Organizing Map
SVD Singular Value Decomposition

References

1. Bakht, B.; Mufti, A. Structural Health Monitoring. In Bridges; Springer: Cham, Switzerland, 2015; pp. 307–354.
2. Harvey, D.Y.; Flynn, E.B.; Taylor, S.G.; Farrar, C.R.; Ramos, O., Jr.; Parker, K.L. SHMTools: Structural Health

Monitoring Software for Aerospace, Civil, and Mechanical Infrastructure; Technical Report; Los Alamos National
Laboratory (LANL): Los Alamos, NM, USA, 2015.

3. Restrepo, C.E.; Simonoff, J.S.; Zimmerman, R. Causes, cost consequences, and risk implications of accidents
in US hazardous liquid pipeline infrastructure. Int. J. Crit. Infrastruct. Prot. 2009, 2, 38–50.

4. Murvay, P.S.; Silea, I. A survey on gas leak detection and localization techniques. J. Loss Prev. Process Ind.
2012, 25, 966–973.

5. Miller, R.; Pollock, A.A.; Watts, D.; Carlyle, J.; Tafuri, A.N.; Yezzi, J. A reference standard for the development
of acoustic emission pipeline leak detection techniques. NDT E Int. 1999, 32, 1–8.

6. Lee, L.H.; Rajkumar, R.; Lo, L.H.; Wan, C.H.; Isa, D. Oil and gas pipeline failure prediction system
using long range ultrasonic transducers and Euclidean-Support Vector Machines classification approach.
Expert Syst. Appl. 2013, 40, 1925–1934.

7. Campanella, C.E.; Ai, G.; Ukil, A. Distributed fiber optics techniques for gas network monitoring.
In Proceedings of the IEEE International Conference on Industrial Technology, Taipei, Taiwan, 14–17 March 2016;
pp. 646–651.

8. Zhang, J.; Twomey, M. Statistical pipeline leak detection techniques for all operating conditions.
In Proceedings of the 26th Environmental Symposium & Exhibition, Long Beach, CA, USA, 27–30 March
2000; pp. 285–290.

9. Feng, Q.; Kong, Q.; Huo, L.; Song, G. Crack detection and leakage monitoring on reinforced concrete pipe.
Smart Mater. Struct. 2015, 24, 115020.

10. Zhu, J.; Ren, L.; Ho, S.C.; Jia, Z.; Song, G. Gas pipeline leakage detection based on PZT sensors. Smart Mater. Struct.
2017, 26, 025022.

11. Ooijevaar, T.H. Vibration Based Structural Health Monitoring of Composite Skin-Stiffener Structures; Universiteit
Twente: Enschede, The Netherlands, 2014.

12. Bogoevska, S.; Spiridonakos, M.; Chatzi, E.; Dumova-Jovanoska, E.; Höffer, R. A data-driven diagnostic
framework for wind turbine structures: A holistic approach. Sensors 2017, 17, 720.

13. Ou, Y.; Chatzi, E.N.; Dertimanis, V.K.; Spiridonakos, M.D. Vibration-based experimental damage detection
of a small-scale wind turbine blade. Struct. Health Monit. 2017, 16, 79–96.

14. Avendaño-Valencia, L.; Chatzi, E.; Koo, K.; Brownjohn, J. Gaussian Process Time-Series Models for Structures
under Operational Variability. Front. Built Environ. 2017, 3, 69.

15. Azam, S.E.; Mariani, S. Online damage detection in structural systems via dynamic inverse analysis:
A recursive Bayesian approach. Eng. Struct. 2018, 159, 28–45.



Sensors 2018, 18, 1571 23 of 24

16. Azam, S.E.; Mariani, S.; Attari, N. Online damage detection via a synergy of proper orthogonal
decomposition and recursive Bayesian filters. Nonlinear Dyn. 2017, 89, 1489–1511.

17. Capellari, G.; Eftekhar Azam, S.; Mariani, S. Damage detection in flexible plates through reduced-order
modeling and hybrid particle-Kalman filtering. Sensors 2015, 16, 2.

18. Döhler, M.; Hille, F.; Mevel, L.; Rücker, W. Structural health monitoring with statistical methods during
progressive damage test of S101 Bridge. Eng. Struct. 2014, 69, 183–193.

19. Mevel, L.; Goursat, M.; Basseville, M. Stochastic subspace-based structural identification and damage
detection and localisation—Application to the Z24 bridge benchmark. Mech. Syst. Signal Process. 2003, 17,
143–151.

20. Yan, A.M.; Golinval, J.C. Null subspace-based damage detection of structures using vibration measurements.
Mech. Syst. Signal Process. 2006, 20, 611–626.

21. Nagarajaiah, S.; Yang, Y. Modeling and harnessing sparse and low-rank data structure: A new paradigm for
structural dynamics, identification, damage detection, and health monitoring. Struct. Control Health Monit.
2017, 24, e1851.

22. Zhang, M.; Schmidt, R.; Markert, B. Structural damage detection methods based on the correlation functions.
In Proceedings of the 9th International Conference on Structural Dynamics, Porto, Portugal, 30 June–
2 July 2014.

23. Huo, L.S.; Li, X.; Yang, Y.B.; Li, H.N. Damage Detection of Structures for Ambient Loading Based on Cross
Correlation Function Amplitude and SVM. Shock Vib. 2016, 2016, 3989743.

24. Kouris, L.A.S.; Penna, A.; Magenes, G. Seismic damage diagnosis of a masonry building using short-term
damping measurements. J. Sound Vib. 2017, 394, 366–391.

25. Yu, L.; Bao, J.; Giurgiutiu, V. Signal processing techniques for damage detection with piezoelectric
wafer active sensors and embedded ultrasonic structural radar. In Proceedings of the Smart Structures
and Materials, International Society for Optics and Photonics, San Diego, CA, USA, 14–18 March 2004;
pp. 492–503.

26. Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining: Practical Machine Learning Tools and Techniques;
Morgan Kaufmann: San Francisco, CA, USA, 2016.

27. Mujica, L.; Rodellar, J.; Fernandez, A.; Güemes, A. Q-statistic and T2-statistic PCA-based measures for
damage assessment in structures. Struct. Health Monit. 2011, 10, 539–553.

28. Liang, Y.; Lee, H.; Lim, S.; Lin, W.; Lee, K.; Wu, C. Proper orthogonal decomposition and its applications?
Part I: Theory. J. Sound Vib. 2002, 252, 527–544.

29. Camacho, J.; Ruiz, M.; VIllamizar, R.; Mujica, L.; Martínez, F. Damage detection in structures using robust
baseline models. In Proceedings of the 7th ECCOMAS Thematic Conference on Smart Structures and
Materials (SMART2015), Azores, Ponta Delgada, Portugal, 3–6 June 2015; pp. 978–989.

30. Kohonen, T. Self-Organizing Maps; Springer Series in Information Sciences; Springer: Berlin/Heidelberg,
Germany, 1995; Volume 30.

31. Mickens, T.; Schulz, M.; Sundaresan, M.; Ghoshal, A.; Naser, A.; Reichmeider, R. Structural Health
Monitoring of an Aircraft Joint. Mech. Syst. Signal Process. 2003, 17, 285–303.

32. Zhao, X.; Gao, H.; Zhang, G.; Ayhan, B.; Yan, F.; Kwan, C.; Rose, J.L. Active health monitoring of an aircraft
wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth
monitoring. Smart Mater. Struct. 2007, 16, 1208.

33. Lei, Q.; Shenfang, Y.; Qiang, W.; Yajie, S.; Weiwei, Y. Design and experiment of PZT network-based structural
health monitoring scanning system. Chin. J. Aeronaut. 2009, 22, 505–512.

34. Vitola Oyaga, J.; Tibaduiza Burgos, D.A.; Anaya Vejar, M.; Pozo Montero, F. Structural Damage detection
and classification based on Machine learning algorithms. In Proceedings of the 8th European Workshop on
Structural Health Monitoring, Bilbao, Spain, 5–8 July 2016.

35. Karamizadeh, S.; Abdullah, S.M.; Manaf, A.A.; Zamani, M.; Hooman, A. An overview of principal
component analysis. J. Signal Inf. Process. 2013, 4, 173.

36. Liu, C.; Harley, J.B.; Bergés, M.; Greve, D.W.; Oppenheim, I.J. Robust ultrasonic damage detection under
complex environmental conditions using singular value decomposition. Ultrasonics 2015, 58, 75–86.



Sensors 2018, 18, 1571 24 of 24

37. Stepinski, T.; Engholm, M. Design of piezoelectric transducers for health monitoring of composite aircraft
structures. In Proceedings of the the 14th International Symposium on: Smart Structures and Materials &
Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, San Diego,
CA, USA, 18–22 March 2007; p. 65310G.

38. Pozo, F.; Vidal, Y. Wind turbine fault detection through principal component analysis and statistical
hypothesis testing. Energies 2015, 9, 3.

39. Mujica, L.E.; Vehí, J.; Staszewski, W.; Worden, K. Impact damage detection in aircraft composites using
knowledge-based reasoning. Struct. Health Monit. 2008, 7, 215–230.

40. Tibaduiza, D.; Mujica, L.; Rodellar, J. Comparison of several methods for damage localization using indices
and contributions based on PCA. In Proceedings of the 9th International Conference on Damage Assessment
of Structures, Oxford, UK, 11–13 July 2011.

41. Ebrahimkhanlou, A.; Dubuc, B.; Salamone, S. Damage localization in metallic plate structures using
edge-reflected lamb waves. Smart Mater. Struct. 2016, 25, 085035.

42. Malinowski, P.; Wandowski, T.; Ostachowicz, W. Damage detection potential of a triangular piezoelectric
configuration. Mech. Syst. Signal Process. 2011, 25, 2722–2732.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Damage Assessment Elements
	Hardware and Experimental Setup
	Pipe Section
	Aircraft Wing Structure
	A Blade of a Commercial Aircraft Turbine

	Statistical Processing
	Preprocessing through Cross-Correlation Analysis
	Principal Component Analysis: Baseline Model Building

	Clustering Analysis: Evaluation of Condition Monitoring Quality

	Damage Assessment Methodology
	Damage Detection Procedure
	General Scheme of Damage Assessment

	Results and Discussion
	Data Cleansing and Filtering
	 Filtering
	Data Anomaly Detection

	Structural Damage Detection
	Pipe Section Experiment
	Skin Panel Structure
	Turbine Blade Structure


	Concluding Remarks
	References

