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Abstract: A novel fiber Bragg grating (FBG)-based strain sensor with a high-sensitivity is presented
in this paper. The proposed FBG-based strain sensor enhances sensitivity by pasting the FBG on
a substrate with a lever structure. This typical mechanical configuration mechanically amplifies
the strain of the FBG to enhance overall sensitivity. As this mechanical configuration has a high
stiffness, the proposed sensor can achieve a high resonant frequency and a wide dynamic working
range. The sensing principle is presented, and the corresponding theoretical model is derived and
validated. Experimental results demonstrate that the developed FBG-based strain sensor achieves
an enhanced strain sensitivity of 6.2 pm/µε, which is consistent with the theoretical analysis result.
The strain sensitivity of the developed sensor is 5.2 times of the strain sensitivity of a bare fiber
Bragg grating strain sensor. The dynamic characteristics of this sensor are investigated through the
finite element method (FEM) and experimental tests. The developed sensor exhibits an excellent
strain-sensitivity-enhancing property in a wide frequency range. The proposed high-sensitivity
FBG-based strain sensor can be used for small-amplitude micro-strain measurement in harsh
industrial environments.
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1. Introduction

The strain is one of the most important monitored physical parameters in the structural health
monitoring (SHM) of modern mechanical equipment [1–3]. In some cases, SHM requires a high strain
sensitivity to the applied strain sensors. For instance, detecting strain shifts caused by fatigue crack
is often problematic because of the very low strain amplitudes, which require a strain sensor with
a sub-microstrain resolution. Conventionally, strain measurements in this kind of situation rely on
the use of resistive strain gauges with a resolution of about 0.5 µε, which are commercially available
and standardized. In terms of frequency response, resistive strain gauges have a wide working range
(max. 1 kHz~50 kHz), which can meet most requirements in SHM. However, the measured signals from
traditional electrical strain sensors are easily contaminated by electromagnetic interference (EMI) in
a harsh industrial environment, which deteriorates the performance of an SHM system [4]. Fiber Bragg
grating (FBG)-based strain sensors exhibit advantages such as immunity to EMI, resistance to corrosion,
and multiple measuring points in one optical fiber, which have attracted a great deal of attention and
have been widely investigated in the SHM research field recently [5–12].

Commonly, bare FBG strain sensors are directly bound on the surfaces of monitored structures
using adhesives to detect strain shifts [13–16] or are embedded in some composite material to form smart
structures [17,18]. The strain sensitivity of directly-pasted or embedded bare FBG sensors is 1.21 pm/µε,
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in theory [19]. As the resolution and precision of a dynamic FBG integrator are 1 pm and ±5 pm,
the resolution and precision of a bare FBG strain sensor are about 0.8 µε and ±4 µε, which can meet
most engineering applications. However, in some cases, the strain to be tested is at a very low level
(e.g., 1~10 µε, 10~20 µε), the 1.21 pm/µε sensitivity of the bare FBG cannot be qualified for the accurate
detection of this small-amplitude strain due to the noise of the FBG interrogator. Therefore, a FBG strain
sensor with a higher sensitivity and accuracy is urgently needed. Some researchers bonded the two ends
of a FBG with two high-stiffness tubes, respectively, and then bonded the outer ends of the two tubes to
the structure surface to get a relatively higher strain sensitivity. For instance, Ren et al. [20] designed a FBG
strain sensor that can achieve a sensitivity of 2.053 pm/µε through packaging the FBG using two gripper
tubes. Li et al. [21] developed a FBG strain sensor with a sensitivity of 2.52 pm/µε in the same way, for the
long-term structural health monitoring system of a highway bridge. The above-mentioned sensors enhance
strain sensitivity by centralizing the continuous strain of a long region on the tested structure to the short
FBG area. However, the distance between the two bonded points of the sensor increases the whole volume
of the sensor (254 mm length; in Reference [21]). Additionally, some other researchers utilized substrates
with flexure hinges to enlarge the strain at the FBG area. Zhang et al. [22] presented a diamond-frame
packaged FBG strain sensor, which was temperature-insensitive and the strain sensitivity was enhanced
to 1.814 pm/µε. Guo et al. [23] used a substrate with flexure hinges to improve the strain sensitivity of
a FBG-based sensor. The experimental results showed that this sensor’s sensitivity could reach 3.357 pm/µε.
These sensors can also achieve a higher strain sensitivity compared with directly-pasted bare FBG sensors.
However, they are fragile and easy to be broken due to the thin flexure hinges. Nawrot et al. [24,25]
proposed a mechanical transducer that amplifies the strain applied to FBGs. The amplification factor is
larger than 30, which makes small-amplitude strains easier to be detected. The outer dimensions of this
sensor are 380 × 105 mm2. It can be applied to large engineering structures (e.g., bridges, heavy-duty
gantry cranes, etc.), but it is too large to be used in industrial equipment in regular sizes. The dynamic
working range is an important parameter of a strain sensor. However, References [20–23] do not provide
this property as they are used for static or quasi-static strain measurements. Through the finite element
method, Nawrot et al. [24,25] analyzed the resonant frequency of their sensor. When the thickness of their
sensor changes as 3 mm, 5 mm, 7 mm, and 9 mm, the corresponding resonant frequencies are 148 Hz,
244 Hz, 338 Hz, and 409 Hz, respectively. The working frequency bandwidth of the sensor is not wide
enough for high-frequency dynamic strain measurements in mechanical equipment.

This paper presents a sensitivity-enhanced FBG strain sensor based on a substrate with a lever
structure. The proposed sensor has a smaller and simpler structure and a much higher resonant
frequency than the sensor in References [24,25]. Firstly, the structure and sensitization model of the
sensor is introduced in Section 2. Then, in Section 3, the simulation results using the finite element
method (FEM) are discussed. Finally, the experimental study of the sensing properties of the developed
sensor is explained in Section 4. The strain sensitivity of the FBG strain sensor can be effectively
improved by using the lever principle. Its sensitivity is over five times larger than the directly-pasted
bare FBG. Adjusting the size of the lever structure can easily regulate the sensitivity and precision of
the FBG strain sensor. The designed sensor has the advantages of a simple and compact structure,
high strain sensitivity in a wide frequency range, convenient installation, and high consistency and
reliability. The developed sensor can assist in small-amplitude micro-strain measurements in a harsh
industrial environment.

2. Sensitization Model of the Sensor

2.1. The Principle of Strain Sensing of FBG

FBG consists of a periodic modulation of the refraction along the fiber core. When a broadband
light propagates along the optical fiber core to the fiber Bragg grating, the light (with a particular
wavelength which satisfies the Bragg interference condition) is reflected back while the rest of the light
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is transmitted with a small attenuation. The particular wavelength of the reflected light is regarded as
the Bragg wavelength, and is expressed by the following equation:

λB = 2ne f f Λ (1)

where λB is the Bragg wavelength of the FBG, neff is the effective refractive index of the fiber core at the
free space center wavelength, and Λ is the grating periodicity of the FBG. An FBG is very sensitive to
strain changes. The shifts in strain will cause changes of neff or Λ, and lead to the shifts of λB. Hence,
by monitoring the Bragg wavelength shift, the value of the strain can be determined. The wavelength
variation response to the strain εFBG can be given by:

∆λB
λB

= (1 − pe)εFBG (2)

where pe = 0.22 is the effective photo-elastic coefficient.

2.2. Structure and Strain Amplification Mechanism

The structure of the developed fiber Bragg grating strain sensor is shown in Figure 1. It is mainly
composed of a bare FBG sensor and an elastic substrate with a lever structure. The double ends of the
bare FBGs are fixed to the elastic substrate using adhesive (ND353). It is noteworthy that pre-tension
should be applied to the bare FBG when fixing it on the substrate to ensure the FBG can effectively
detect compressive strain. The tail fiber of the bare FBG is packaged in plastic protective sleeves.
The outer dimensions of this sensor are 36 × 10.5 mm2, and the thickness of the sensor is 1 mm.
The total weight of the sensor is about 1.5 g. The substrate is made of stainless steel 304. As its stiffness
is high, it can improve the dynamic working range of the sensor. On the other hand, this sensor cannot
be used to detect strain on structures made of a low-stiffness material (e.g., rubber) since it may affect
the deformation of the tested structure. The coating layer of the FBG was removed since it weakens
the strain transfer effect. The physical parameters of the main components of the designed sensor are
illustrated in Table 1. The fixing method of the developed FBG strain sensor is shown in Figure 2a.
The double ends of the substrate in the designed FBG strain sensor were bonded to the structure to be
tested using adhesive. Reference [20] demonstrated that the double-ends adhesive fixed method can
achieve commendable strain transfer effects. Figure 2b shows the simplified model of the designed
sensor. The structure of the substrate can be simplified by the rod connections, taking the optical fiber
with a FBG into consideration (rod CH).
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Figure 1. The designed FBG strain sensor: (a) The structure of the designed sensor; (b) real image of
the designed sensor.
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Figure 2. Fixing method and simplified sensing model of the designed sensor: (a) Fixing method;
(b) simplified model.

Table 1. The physical parameters of the sensor.

Structure Material Elastic Modulus Poisson Ratio

Substrate Stainless steel 304 E = 200 Gpa ν = 0.3
FBG Silica EFBG = 74.52 Gpa νFBG = 0.17

Adhesive Epoxy resin Ea = 3.0 Gpa νa = 0.38

When the structure surface to be tested generates a strain ε, a relative displacement ∆d is generated
between point A and point H (or K) in the x-axis direction. Assuming the displacements of point H,
K is zero, the displacement at point A will be ∆d in the x-axis direction. Correspondingly, we can get
that ε = ∆d/d1. At the same time, forces and bending moments will be generated at point A, H, and K.
Under small deformation conditions, the forces in the y-axis direction and bending moments at point
A and point H are very small and not taken into account in the analytical study. Therefore, the whole
structure can be simplified as a secondary hyperstatic structure. Replacing the constraint conditions of
point A and H with the unit forces X1 and X2, respectively (as shown in Figure 3a), based on the law of
Virtual Work and Unit Load Method, displacement δ11 and δ12 will be generated, respectively, at point
A when X1 and X2 act independently. In the same way, deformations δ21 and δ22 will be generated,
respectively, at point H when X1 and X2 act independently (as shown in Figure 3b,c). According to the
deformation compatibility condition, the regular equation can be obtained:[

δ11 δ12

δ21 δ22

]
·
[

X1

X2

]
=

[
∆d
0

]
(3)

According to the law of Virtual Work in the theory of material mechanics. When a material obeys
Hooke’s law, and in the case of small deformations, there is a linear relationship between the virtual
displacement and the applied load on the structure, which can be expressed by More’s integral as follows:

δ =
∫

l

FN(x) fN(x)
ES

dx +
∫

l

M(x)m(x)
EI

dx +
∫

l

T(x)t(x)
GIp

dx (4)

where δ represents the virtual displacement, FN(x), M(x), and T(x) are the internal force, bending
moment, torque caused by the actual load, respectively. f N(x), m(x), and t(x) are the internal force,
bending moment, torque caused by the unit load, respectively. E and G represent the elastic modulus
and shear modulus of the structure respectively. S is the cross-sectional area. I and Ip are the area
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moment of inertia and the torsional moment of inertia respectively. The values of virtual displacements
δ11, δ12, δ21 and δ22 can be calculated using the More’s integral:

δ11 = d3
ES2

+ d2
ES1

+
d2

6·d3
EI2

+
d3

6
3EI3

δ22 = d3
ES2

+ d3
EFBGS4

+
d3

4
3EI3

+
d2

4·d3
EI3

δ12 = δ21 = −
(

d3
ES2

+
d2

6·(3d5+d6)
6EI3

+
d2

6·d3
EI2

) (5)

The values of the related parameters in Figure 2b and Equation (5) are shown in Tables 1
and 2. Substituting Equation (5) into Equation (3), we can obtain that X1 = 1.5∆d and X2 = 0.2∆d.
The deformation of FBG (rod CH) ∆dFBG can be expressed as ∆dFBG = (X2d3)/(EFBGS4) = 2.16∆d. Thus,
the sensitivity amplification factor q of the designed sensor can be calculated as following:

q =
εFBG

ε
=

∆dFBG/d3

∆d/d1
=

∆dFBG · d1

∆d · d3
(6)

where εFBG is the strain of the silica fiber in the FBG area. Substituting the values of the parameters in
Table 2 into Equation (6), we can get that 5.7 is the theoretical value of sensitivity amplification factor q.
According to the principle of fiber Bragg grating sensing, the wavelength shift ∆λB of the FBG can be
obtained as follows:

∆λB
λB

= (1 − pe)qε (7)

k =
∆λB

ε
= λB(1 − pe)q (8)

When λB = 1550 nm, the theoretical strain sensitivity k of the developed FBG strain sensor is 6.9 pm/µε.
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displacement caused by X2

Table 2. The values of parameters in the simplified sensing model.

Parameters Values Parameters Values

d1 24 mm S1 1.5 mm2

d2 15 mm S2 2 mm2

d3 9 mm S3 2 mm2

d4 8.5 mm S4 0.012272 mm2

d5 5 mm I2 2/3 mm4

d6 3.5 mm I3 2/3 mm4

3. Simulation Analysis

3.1. Static Analysis

Theoretical analysis by FEM was carried out using ANSYS software to verify the feasibility of
the proposed method and structure. The physical properties of the material involved in the designed
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sensor were set according to the details in Table 1. As shown in Figure 4a, one end of the substrate of
the sensor was fixed, and a 10 N force was implemented on the other end of the substrate. Figure 4b
exhibits that the substrate generated a deformation of ∆d = 3.05 µm at this load, which reflects that
the strain to be tested is ε = ∆d/d1 = 127.08 µε. Under the same situation, the strain εFBG of the FBG is
659 µε. The finite element analysis results demonstrate that strain sensitivity amplification factor q is
5.2, which is consistent with the theoretical result (5.7). The sensitivity amplification factor calculated
using the FEM is a little smaller than the value obtained by the theoretical calculations of the simplified
model. The main reasons involve:

• The lever structure is simplified as a rod structure in the theoretical calculation.
• The theoretical calculation parameters are based on central sizes of the simplified rods.
• The characteristics of the adhesive are not considered in the theoretical calculations, while the

adhesive thickness between the substrate of the developed FBG strain sensor and the specimen
reduces the strain transform coefficient in the FEM analysis.
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3.2. Dynamic Characteristics Analysis

Strain transducers are generally required to possess good dynamic performance to accurately
obtain the dynamic characteristics of a structure to be measured. The dynamic characteristics of the
designed sensor were analyzed via modal analysis and harmonic response analysis using ANSYS.
The modal analysis results show that the resonant frequency of the designed sensor is 6813.5 Hz.
Figure 5 shows the normalized strain amplitude of the FBG when the substrate is under a harmonic
force with a 10-N amplitude and 0~10,000 Hz frequency range (the interval is 20 Hz). The maximum
strain of the FBG occurs when the frequency is near the resonant frequency. The designed sensor has
a flat response when the frequencies are less than 6000 Hz.
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4. Experimental Study of the Sensing Properties

4.1. Static Properties

Figure 6 shows the schematic of the experimental setup and instruments. The designed FBG-based
strain sensor, the bare FBG sensor, and the resistance strain gauge were bonded on the surface of an
aluminum specimen in the same sensing direction. The aluminum specimen was installed on the
tensile testing machine, which accurately controlled the tensile force applied to the specimen. An FBG
interrogator (GAUSSIAN OPTICS) with a 1 pm resolution and a 1 Hz sampling rate was used to
detect the central wavelength shifts of the designed FBG-based strain sensor and the bare FBG sensor.
A high-resolution resistance strain indicator (TST5912) was utilized to demodulate the signals of the
resistance strain gauge. During the experiment, the tensile machine was controlled to load and unload
in the range of 0–2000 N with an interval of 200 N. At every load/unload step, the test signals from the
FBG interrogator and resistance stain indicator were collected. As the test time was relatively short,
room temperature could be considered constant.
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Figure 6. Experimental setup: (a) Schematic diagram; (b) real images.

Here, we assume that the strain transform coefficients from the surface of the aluminum specimen
to the strain gauge, bare FBG, and the designed sensor were all 100%. The strain detected by the strain
gauges was regarded as the real strain on the specimen surface. Figure 7a lists the wavelength shifts
of the designed sensor and the bare FBG in the experiments to demonstrate the repeatability of the
FBG strain sensor. The repeatability error of the designed sensor is less than 0.5%. Figure 7b shows
the linear fitting results of repeated experimental data. The strain sensitivity of the designed sensor is
6.2 pm/µε and the linear correlation coefficient is 0.99986. The actual strain amplification factor of the
designed FBG strain sensor is 5.2, which matches the FEM result. As the resolution and precision of
the FBG integrator are 1 pm and ±5 pm respectively, the resolution and precision of the developed
sensor are 0.16 µε and ±0.80 µε respectively.
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4.2. Dynamic Properties

In order to investigate the dynamic capabilities of the developed sensor, a dynamic experimental
setup was established (as shown in Figure 8). The designed sensor was fixed on the uniform strength
beam which was excited by a vibration exciter. In contrast, a dynamic strain gauge and a bare FBG
were also fixed on the same side of the uniform strength beam and in the same sensing direction.
The signals of the designed sensor and the bare FBG were collected by the FBG interrogator with
a sampling rate of 2 kHz. The signal of the resistance stain gauge was recorded by a dynamic strain
indicator (TST5912). The driving signal of the vibration exciter was controlled by the signal generator
and power amplifier.
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The dynamic response of the FBG strain sensor was tested with the excitation frequencies varied in the
range of 5 Hz to 100 Hz with an interval of 5 Hz. As the power of the vibration is too low to exert a greater
force on the cantilever beam when the frequency is high, the highest excitation frequency was set to 100 Hz.
The test results were compared with the bare FBG and the strain gauge. It is worthwhile pointing out that
as the designed sensor has a thickness of 1 mm. It is unfair to compare the testing results of bare FBG and
the designed sensor directly when they are utilized to test the bending strain on the uniform strength beam.
The thickness of the uniform strength beam is 8 mm, therefore, the distance between the bare FBG and the
neutral layer of the uniform strength beam is 4 mm while the distance between the FBG on the designed
sensor and the neutral layer of the uniform strength beam is 5 mm. The detected wavelength shifts of the
designed sensor were divided by t = 5/4 = 1.25 to eliminate the sensitization effect caused by the thickness
of the substrate of the designed sensor. As shown in Figure 9, the strain sensitivity and strain amplification
factor of the designed sensor remains consistent with the static test results at a frequency range from 5 Hz
to 100 Hz. The mean values of the strain sensitivity and strain amplification factor are 5.9 pm/µε and
5.1 respectively, considering the thickness of the designed FBG sensor. The maximum errors are 2.7% and
2.4%, respectively. The standard deviations of the tested strain sensitivity and strain amplification factor are
0.06 pm/µε and 0.03, respectively.

Vibration tests—by knocking on the cantilever beam—were carried out to get the response of the
designed FBG strain sensor at higher frequencies. The cantilever beam was hung using elastic rope to
make sure it was in a free foundation, as shown in Figure 10. The signals of the designed FBG strain
sensor and bare FBG were collected—by knocking the cantilever beam with a hammer—by the FBG
interrogator (sampling rate: 2 kHz).
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From the time domain waveform in Figure 11, it can be seen clearly that the designed sensor is
more sensitive than the bare FBG in the knocking experiment. To quantitatively compare the strain
sensitivity of the designed FBG sensor and the bare FBG, we obtained the frequency spectrum of
the testing results via fast Fourier transform (FFT). According to the laws of the sampling, as the
sampling rate of the FBG interrogator is 2 kHz, the frequency spectrum from 0 to 1 kHz can be analyzed.
As shown in Figure 11, the frequency spectrum obtained from the designed sensor’s testing data
and the frequency spectrum obtained from the bare FBG’s testing data show a high concordance in
spectral distributions. Both the designed FBG strain sensor and the bare FBG can detect the first-order
eigen-frequency 298 Hz and the second-order eigen-frequency 768 Hz of the uniform strength beam,
which is consistent with the modal analysis results of 280.1 Hz and 728.7 Hz, respectively, by FEM.
For the dynamical strain in 298 Hz and 768 Hz, the sensitivity amplification factor q of the designed
FBG sensor are 107/(17 × 1.25) = 5.0 and 25.8/(4.1 × 1.25) = 5.0, respectively, considering the thickness
of the substrate of the designed sensor. Additionally, in the knocking experiment, dynamic strain
signals in some other frequencies (406 Hz, 529 Hz, and 939 Hz) have been stimulated. For dynamical
strain in these frequencies, the sensitivity amplification factor q of the designed FBG sensor are
7.5/(1.2 × 1.25) = 5.0, 8.5/(1.3 × 1.25) = 5.2, 9.4/(1.5 × 1.25) = 5.0, respectively. Therefore, the designed
sensor keeps a constant sensitivity amplification factor in a wide frequency range.

Comparing to existing FBG-based strain sensors in References [20–25], the particular mechanical
configuration in this paper brings lots of advantages to the designed sensor. Firstly, the proposed sensor
has a small and compact structure, which make it possible to apply it in regular-sized mechanical
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equipment. Secondly, the structural design of the sensor is very simple, which makes it easier to
manufacture. The simple structure can enhance the reliability of the sensor in engineering applications.
Thirdly, the particular mechanical configuration in the designed sensor can easily amplify the
strain of FBG to enhance the overall sensitivity based on the lever principle. Through changing
the sizes and materials of the mechanical configuration, the strain amplification factor of the
mechanical configuration can be controlled to transfer more or less strain to the FBG. Consequently,
the measurement range and sensitivity can be easily adjusted to adapt to different measurement
demands. Finally, the developed sensor possesses good dynamic response characteristics and can
be qualified for dynamic strain measurements in a wide frequency range with a constant high
strain sensitivity.Sensors 2018, 18, x FOR PEER REVIEW  10 of 11 
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5. Conclusions

A sensitivity enhancing method for FBG-based strain sensor is proposed in this paper. A sensitivity
enhanced FBG-based strain sensor was designed and realized. This sensor mainly consists of an FBG
and an elastic substrate with a lever structure which mechanically amplifies the strain at FBG area.
The strain sensing model of the designed sensor was analyzed by material mechanics theory and was
verified through FEM and experimental test. The designed sensor has a strain sensitivity of 6.2 pm/µε,
which is as 5.2 times of the bare FBG sensor. The designed sensor possesses a good linearity and
a low repeatability error. In addition, as the lever structure of the designed sensor has a high stiffness,
the proposed sensor can achieve a high resonant frequency, and its dynamic test range is wide. Due to
its high strain sensitivity, the designed sensor has a wide application prospects for the small-amplitude
micro-strain measurements in harsh industrial environments.
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