
sensors

Article

An Interactive Real-Time Locating System Based on
Bluetooth Low-Energy Beacon Network †

You-Wei Lin and Chi-Yi Lin * ID

Department of Computer Science and Information Engineering, Tamkang University, New Taipei City 25137,
Taiwan; 604420066@s04.tku.edu.tw
* Correspondence: chiyilin@mail.tku.edu.tw; Tel.: +886-2-2621-5656
† This paper is an extended version of our paper published in Lin, Y.W.; Lin, C.Y. Beyond Beacons—An

Interactive Positioning and Tracking System Solely Based on BLE Mesh Network. In Proceedings of the 20th
International Conference on Network-Based Information Systems (NBiS-2017), Toronto, ON, Canada,
24–26 August 2017.

Received: 5 May 2018; Accepted: 18 May 2018; Published: 21 May 2018
����������
�������

Abstract: The ubiquity of Bluetooth-enabled smartphones and peripherals has brought tremendous
convenience to our daily life. In recent years, Bluetooth beacons have also been gaining popularity
in implementing a variety of innovative location-based services such as self-guided systems in
exhibition centers. However, the broadcast-based beacon technology can only provide unidirectional
communication. In case smartphone users would like to respond to the beacon messages, they have
to rely on their own mobile Internet connections to send the information back to the backend system.
Nevertheless, mobile Internet services may not be always available or too costly. In this work, we
develop a real-time locating system based only on the Bluetooth low energy (BLE) technology to
support interactive communications by combining the broadcast and mesh topology options to
extend the applicability of beacon solutions. Specifically, we turn the smartphone into a beacon
device and augment the beacon devices with the capability of forming a mesh network. The
implementation result shows that our beacon devices can detect the presence of specific users
at specific locations, and then the presence state can be sent to the application server via the relay of
beacon devices. Moreover, the application server can send personalized location-based messages to
the users, again via the relay of beacon devices. With the capability of relaying messages between
the beacon devices, it would be convenient for developers to implement a variety of interactive
applications such as tracking VIP customers at the airport, or tracking an elder with Alzheimer’s
disease in the neighborhood.

Keywords: Bluetooth low energy; location-based service; mesh network; internet of things

1. Introduction

With the advancement of microelectromechanical and wireless communication technologies, the
industry of Internet of Things (IoT) is flourishing at the world-wide scale. According to a recent
forecast report by Gartner [1], the number of installed IoT devices will be exceeding 25 billion in
2021. Popular application scenarios of IoT include smart homes, smart hospitals, smart factories,
and smart cities, to name a few. In these application scenarios, a huge number of IoT devices must
be deployed as the infrastructure. To ease the interconnection among IoT devices and the backend
systems, a number of low-power wireless communication protocols have been standardized for IoT,
such as ZigBee [2], Bluetooth low energy (BLE) [3], Wi-Fi HaLow [4], LoRa [5], etc. Both ZigBee and
BLE work in the 2.4 GHz ISM band for short-range communication, while Wi-Fi HaLow and LoRa aim
at providing longer reach for IoT devices. Although differences exist, these protocols share a common

Sensors 2018, 18, 1637; doi:10.3390/s18051637 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5631-8806
http://www.mdpi.com/1424-8220/18/5/1637?type=check_update&version=1
http://dx.doi.org/10.3390/s18051637
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 1637 2 of 17

objective—making the power consumption of wireless communication as low as possible in order to
extend the lifetime of battery-operated IoT devices.

Among these protocols, we see the advantage of BLE based on the fact that it is universally
supported by almost every smartphone. That means if IoT devices communicate with each other
using BLE, people can also communicate with these IoT devices intuitively through their smartphones.
By contrast, if IoT devices run ZigBee, smartphones are unable to communicate with them directly
because smartphones are without built-in ZigBee wireless interfaces. Solutions to this problem include
augmenting the smartphone with a ZigBee USB dongle (e.g., [6]), or using a gateway device to
bridge the ZigBee network and the Wi-Fi network (e.g., [7]) or the BLE network (e.g., [8]). Therefore,
in this research we focus on naturally integrating BLE-enabled smartphones into the ecosystem of the
BLE-based IoT environment by designing an interactive real-time locating system.

BLE was first introduced to the Bluetooth specification in version 4.0 in 2010. It has become the
most popular technology for low-power and short-range wireless communication in the application
domain of consumer electronics. Compared with the classic Bluetooth (also known as Bluetooth Basic
Rate/Enhanced Data Rate, or BR/EDR) which achieves high-speed transmission, BLE technology
focuses on greatly reducing the power consumption and provides extremely low transaction latency
with only a few milliseconds [9]. BLE-based IoT devices can be powered by coin cell batteries and run
for several years on a moderate duty cycle without replacing the battery. Some studies compared the
power consumption of BLE and ZigBee and found that BLE is more power-efficient than ZigBee [10,11].

Based on the BLE technology, in 2013 Apple Inc. announced the iBeacon protocol [12] for the
purpose of building location-aware applications. Specifically, an iBeacon message is a BLE advertising
packet that contains a 16-byte universally unique identifier (UUID) and two 2-byte Major and Minor
values. On receiving an iBeacon message, the receiver then uses these values to identify the iBeacon
device which broadcasts the iBeacon message. This capability can then be used to implement a variety
of location-based services such as determining the current physical location or distributing messages
at specific points of interest. Although the iBeacon protocol is useful in providing unidirectional
communication from the beacon devices to the smartphones, we find it helpful in some use cases
if the reverse communication path exists (i.e., from smartphones to the beacon devices). Currently,
to respond to the beacon messages, the smartphone users need to rely on their own mobile Internet
connections to communicate with the backend system. Although the mobile Internet services are
popular these days, in some cases they may not be always available or too costly. Even if there is a free
Wi-Fi service, users are often required to log on before they can use the service. The inconvenience
motivates us to design an interactive real-time locating system that only relies on the BLE technology,
in which beacon devices not only broadcast beacon messages, but also receive and relay messages
from the users. On receiving a message from a specific user, our beacon device detects the presence
of the user, and then forwards the presence state to the backend system via the Bluetooth mesh
network consisting of beacon devices. By combining the broadcast and mesh topologies in the BLE
network, our experimental system can serve as an infrastructure for developers to implement a variety
of interactive applications such as tracking VIP customers at the airport, or tracking an elder with
Alzheimer’s disease in the neighborhood.

Let us describe a possible use case of our system. An airport company sets up a real-time locating
system by deploying a sufficient number of beacon devices in the airport building. The locating service
as part of the airport infrastructure can then be leased to airline operators. When a VIP customer of
a specific airline arrives at the parking area, he opens the smartphone app provided by the airline.
By receiving the beacon advertisements, the app performs locating and then pinpoints the customer
on the floor plan. At the same time, the app broadcasts the presence message of the customer which
includes the encrypted user ID and his current location. As soon as any beacon device discovers
the presence message, it immediately forwards the presence message hop-by-hop over the Bluetooth
beacon network to the backend server. As a consequence, the backend server is notified that the VIP
customer has arrived at the parking area. The backend server then responds with a customer-specific

Sensors 2018, 18, 1637 3 of 17

welcome message and sends it to the smartphone of the VIP customer over the Bluetooth beacon
network, letting him know that the airline is aware of his presence and may send a staff to assist
him. Through the Bluetooth beacon network, the airline can also provide other information to the
VIP customer such as his flight status, or offer him some shopping coupons when he is about to pass
through the shop having sales promotion. The VIP customer can also ask for help by pressing a button
in the app. Since the real-time location of the customer is tracked, even if he has left the location where
he asked for help, the airline staff can still reach him at his real-time location.

Overall, this paper makes the following contributions:

• We combine the broadcast and mesh topology options of Bluetooth to extend the applicability of
beacon solutions. Smartphone users are able to interact with the backend system with a single
and pervasive network technology—Bluetooth.

• The user experience of Bluetooth beacon-based applications is enhanced because our system can
work without smartphone users’ Internet connections. In other words, smartphone users only
need to turn on the Bluetooth interface to enjoy the interactive locating services without paying a
dime on their phone bills.

• We implemented a real-time locating system solely based on Bluetooth. The feasibility and
usefulness of our work have been verified through extensive experiments.

• We identify some potential problems of deploying the Bluetooth locating system, and propose
possible solutions to solve/mitigate the problems.

The remainder of this paper is organized as follows. In Section 2 we will discuss related
work. In Section 3 we will describe the system architecture and explain the flow of operations.
Our implementation details, experimental results, and some implementation issues are described in
Section 4. Finally, Section 5 concludes our work.

2. Related Work

In this section we review the literature in the field of BLE-based locating systems and applications,
as well as some existing implementations of Bluetooth mesh networks. We also give a brief introduction
to the Bluetooth beacon technology.

2.1. Locating Systems and Applications Based on Bluetooth Low Energy (BLE)

There are a number of related researches in the field of BLE-based locating systems and
applications in the literature. Filippoupolitis et al. used BLE beacons to estimate the occupancy
of areas inside a building for managing an emergency situation such as fire or terrorist attack [13].
The mobile application installed on the occupant’s mobile device keeps sending the received beacon
IDs and their Received Signal Strength Indicator (RSSI) values to a remote control server, by which
the server can estimate the location of the occupant. Lin et al. aim at solving the problem of an
overcrowded emergency room in which patients waiting to be treated may move around in the hospital.
Their solution is a mobile indoor positioning system based on iBeacon to estimate patients’ real-time
locations [14], so doctors and nurses can find their patients conveniently. Zhao et al. used iBeacon
for warehouse management that improves the performance of the order-picking and stock-taking
process with high accuracy [15]. Specifically, the items kept in the warehouse are attached with
beacon transmitters, and the beacon receivers are deployed in the warehouse. When searching for a
specific item, the warehouse management system can locate the item by RSSI fingerprint matching.
Faragher and Harle [16] explored fingerprint positioning using BLE beacons. Their experimental result
showed that with relatively sparse deployment of beacons, using BLE has better positioning accuracy
compared with using Wi-Fi. Onofre et al. also studied the topic of indoor positioning using BLE
beacons [17]. Specifically, they tried to minimize the error between real distance and estimation by
using fuzzy logic. At several different distances, the average positioning errors of using fuzzy logic
are lower than using direct RSSI readings and median values. Fard et al. proposed a light-weight

Sensors 2018, 18, 1637 4 of 17

indoor positioning algorithm based on RSSI fingerprint matching [18]. To accelerate the process of
fingerprint matching, they used a reduced-degree matrix composed of only 3-tuples (average, count,
and standard deviation of the non-zero signal readings), and the experimental results showed good
positioning accuracy. Wu et al. improved the accuracy of inertial sensor-based indoor localization
with the help of iBeacon devices [19]. In their design, when a user enters the vicinity of iBeacon device
clusters, the accumulated errors of the inertial sensor-based indoor localization can be corrected by
iBeacon localization. Experimental results show that 90% of the localization errors are within 3.5 m
in large open areas. Martin et al. focused on investigating the accuracy of distance estimation using
iBeacon [20]. They also designed a mobile user interface (UI) for users to adjust the beacon settings (TX
power and frequency) in order to witness how the settings can affect the distance estimates. To further
improve the accuracy of indoor localization, He et al. proposed a novel technique called INTRI, which
employs trilateration in fingerprint-based environment [21]. First, in the environment the signal
strengths from each access point are measured in order to form distinct contours of the equal signal
strengths in the fingerprint region. Then, given the user’s received signal vector, the user’s location
can be correlated with a number of contours, and accurately located by the concept of trilateration.
Their proposed technique is a general approach applicable to various fingerprint signals such as Wi-Fi,
ZigBee, RFID, and Bluetooth.

2.2. Implementations of Bluetooth Mesh Networking

In Section 1 we have mentioned that the beacon technology only provides unidirectional
communication. Although Bluetooth supports bidirectional communication, at the time of our
implementation the communication is limited to a star topology. In July 2017 the Bluetooth Special
Interest Group (SIG) finally released the official Bluetooth mesh networking specifications [22].
Before the Bluetooth mesh networking specifications were released, chip vendors and researchers have
devoted themselves to developing mesh protocols for BLE. In 2014 a proprietary flood-based mesh
protocol for BLE called CSRmesh was released by CSR Inc. (acquired by Qualcomm in 2015) [23].
CSRmesh supports up to 65535 nodes per network, and the propagation delay between nodes is
less than 15ms. Zenker et al. studied the packet delivery ratio of different setups using CSRmesh
protocol [24]. They found that although using the flood-based approach has the advantage of simplicity
over route-based approaches, flooding does not work well in traffic-intensive application scenarios.
nRF OpenMesh [25] is also a flood-based mesh protocol for BLE, which is developed by Nordic
Semiconductor Inc. In nRF OpenMesh, the Trickle algorithm [26] is used to dynamically control the
rebroadcasting behavior based on node density and value update frequency. An opportunistic routing
(OR)-based mesh protocol called BLEmesh [27] was proposed by Kim et al. In BLEmesh the source
node broadcasts the packets and selects the next forwarding nodes among those who successfully
received the packets in an opportunistic manner. Compared with conventional routing protocols
for wireless mesh networks, using OR requires a smaller number of broadcast packets to finish the
transmission, which also means less power is consumed.

2.3. Bluetooth Beacon Technology

The Bluetooth beacon technology has gained significant attention in providing proximity-aware
services for consumers, businesses, and industrial environments. There are mainly three “pseudo-standards”
for Bluetooth beacons: iBeacon [12], Eddystone [28], and AltBeacon [29], proposed by Apple, Google,
and Radius Networks, respectively. All three pseudo-standards are based on broadcasting BLE
advertising packets, which carry specific information in the payload area. When a Bluetooth scanner
receives an advertising packet, it decodes the content and takes corresponding actions. The message
format of iBeacon consist of 4 fields: UUID, Major, Minor, and TX power. By comparing the received
signal strength of the iBeacon message and the value of TX power in the message, the receiver
can determine the approximate proximity to the iBeacon transmitter. For Eddystone, it has four
message formats served for different purposes: Eddystone-UID, Eddystone-EID, Eddystone-TLM,

Sensors 2018, 18, 1637 5 of 17

and Eddystone-URL. Take Eddystone-URL as an example, this type of message is used to broadcast
an URL that redirects the receiver to a website, which realizes the so-called physical web [30].
AltBeacon was designed for an open and interoperable specification. The message format of AltBeacon
consists of Manufacturer ID, Beacon Code, Beacon ID, and Reference RSSI. Compared with iBeacon,
an AltBeacon message has more user data bytes, which delivers more data per message.

3. System Design

Since the release of Bluetooth mesh networking specifications in July 2017, Bluetooth has three
topology options: point-to-point, broadcast, and mesh [31]. Point-to-point connections are commonly
used for audio streaming or data exchange between a smartphone and a headset or a smart watch.
Broadcast topologies offer one-to-many device communications, which is well-suited for beacon
solutions. Mesh topologies allow many-to-many device communications, which is ideal for building
sensor network applications. In this work, we combine the latter two topology options—broadcast
and mesh—to extend the applicability of beacon solutions. Specifically, the unique feature of our
system is that we augment the BLE beacon devices with the capability of forming a mesh network, so
interactive applications inside the beacon mesh network can be fulfilled solely based on the transport
of the BLE technology. In the following, we will describe the system architecture, the principle of
operation, and the design of messages in the beacon network.

3.1. System Architecture

As shown in Figure 1, the overall system consists of five roles: Mobile App, Mesh Beacon,
Mesh Router, Application Server, and Cloud Database. A number of Mesh Beacons and a Mesh Router
form a Bluetooth beacon network. The five roles are elaborated as follows:

1. Mobile App: a locating application running on mobile users’ smartphones. It listens to the
beacon messages sent by the Mesh Beacons to figure out the current location of the mobile
user. It responds to the received beacon message by broadcasting the mobile user’s encrypted
presence message.

2. Mesh Beacon: a beacon device that can send, receive, and relay messages in the Bluetooth beacon
network. Specifically, it not only broadcasts beacon messages, but also receives presence message
from Mobile Apps, and relays the presence message to the Application Server.

3. Mesh Router: a gateway device between the Bluetooth beacon network and the rest of the
network. It is responsible for collecting the presence messages from the Mobile Apps within
the range of the Bluetooth beacon network. Once the Mesh Router receives a presence message,
it will upload the presence state to the Application Server through hypertext transfer protocol
(HTTP), and send an acknowledgement message back to the Mobile App in response to receiving
the presence message from a specific user.

4. Application Server: a shared HTTP server for the Mesh Routers from several Bluetooth beacon
networks. It buffers the presence states of the mobile users, and forwards the presence states to
the Cloud Database.

5. Cloud Database: a real-time database in the cloud environment. It is responsible for keeping the
history records of all the mobile users’ presence states.

In Figure 1 we can see two Bluetooth beacon networks, in which all communications take place
over the transport of the BLE technology. As for the communications outside the Bluetooth beacon
networks, one may choose whatever technologies are available such as ethernet or Wi-Fi. In our
system, the Mesh Router connects to the Application Server by using its built-in Wi-Fi interface.

Sensors 2018, 18, 1637 6 of 17

Sensors 2018, 18, x FOR PEER REVIEW 6 of 17

Figure 1. System architecture.

3.2. Flow of Operations

In this subsection we describe the flow of operations of our system. When the Mesh Beacons are
powered on, they periodically broadcast beacon messages over the advertising channel, just like
ordinary beacon devices do. Moreover, our Mesh Beacons also listen to the messages carrying users’
presence state from the Mobile Apps at the same time. In the following, we illustrate the flow of
operations when a smartphone user with our Mobile App enters the communication range of our
Bluetooth beacon network.

1. When the Mobile App discovers a beacon message from a certain Mesh Beacon, it locates itself
based on the Major/Minor values embedded in the message. In our design, the Mobile App
directly looks up a built-in location table to resolve the Major/Minor values, so the name of the
detected location can be shown on the user interface immediately.

2. Once the locating process has completed, the Mobile App composes the presence message
containing the encrypted user ID and the detected Major/Minor values, and then broadcasts the
presence message. The objective of broadcasting the presence message is to inform the backend
system that this specific user has shown up at a particular location.

3. As soon as any Mesh Beacon hears the presence message, it uses the managed-flood-based
approach to rebroadcast the presence message. The purpose of rebroadcasting the presence
message is to relay it to the Mesh Router. The managed-flood-based approach can make sure
that once a specific presence message has been broadcasted by a Mesh Beacon, the Mesh Beacon
will not rebroadcast it again.

4. When the Mesh Router hears the presence message originated from a certain Mobile App, it
uploads the content in the presence message to the Application Server. Meanwhile, it sends an
acknowledgement message back to the Mobile App by broadcast.

5. When any Mesh Beacon hears the acknowledgement message, it rebroadcasts the message by
using the managed-flood-based approach again. The purpose of rebroadcasting the
acknowledgement message is to relay it to the Mobile App.

6. (Continue from item 4) When the Application Server receives the presence state from the Mesh
Router, it forwards the presence state to the Cloud Database. In the Cloud Database we are able
to see the locating history for all the mobile users.

Figure 1. System architecture.

3.2. Flow of Operations

In this subsection we describe the flow of operations of our system. When the Mesh Beacons
are powered on, they periodically broadcast beacon messages over the advertising channel, just like
ordinary beacon devices do. Moreover, our Mesh Beacons also listen to the messages carrying users’
presence state from the Mobile Apps at the same time. In the following, we illustrate the flow of
operations when a smartphone user with our Mobile App enters the communication range of our
Bluetooth beacon network.

1. When the Mobile App discovers a beacon message from a certain Mesh Beacon, it locates itself
based on the Major/Minor values embedded in the message. In our design, the Mobile App
directly looks up a built-in location table to resolve the Major/Minor values, so the name of the
detected location can be shown on the user interface immediately.

2. Once the locating process has completed, the Mobile App composes the presence message
containing the encrypted user ID and the detected Major/Minor values, and then broadcasts the
presence message. The objective of broadcasting the presence message is to inform the backend
system that this specific user has shown up at a particular location.

3. As soon as any Mesh Beacon hears the presence message, it uses the managed-flood-based
approach to rebroadcast the presence message. The purpose of rebroadcasting the presence
message is to relay it to the Mesh Router. The managed-flood-based approach can make sure that
once a specific presence message has been broadcasted by a Mesh Beacon, the Mesh Beacon will
not rebroadcast it again.

4. When the Mesh Router hears the presence message originated from a certain Mobile App,
it uploads the content in the presence message to the Application Server. Meanwhile, it sends an
acknowledgement message back to the Mobile App by broadcast.

5. When any Mesh Beacon hears the acknowledgement message, it rebroadcasts the message
by using the managed-flood-based approach again. The purpose of rebroadcasting the
acknowledgement message is to relay it to the Mobile App.

Sensors 2018, 18, 1637 7 of 17

6. (Continue from item 4) When the Application Server receives the presence state from the Mesh
Router, it forwards the presence state to the Cloud Database. In the Cloud Database we are able
to see the locating history for all the mobile users.

7. When the acknowledgement message from the Mesh Router has been received at the Mobile
App, the Mobile App displays a welcome message indicating that the backend system is aware of
the user’s presence.

The sequence diagram in Figure 2 shows an example of the flow of operations, where the labeled
numbers correspond to the 7 items described above. In this example, there are three Mesh Beacons on
the transmission path between the Mobile App and the Mesh Router. From the diagram, we can see
how the interactivity between the mobile user and the backend system is achieved. From the users’
perspective, they are able to receive more than the basic locating service. Benefiting from interacting
with the backend system over a single Bluetooth beacon network, they can enjoy personalized services
without having to connect to the Internet. From the system operators’ perspective, they are able to
detect the presence of specific users at particular locations, and then offer personalized services to
them. With the presence state stored in the Cloud Database, the system operators can also track and
analyze user behaviors using the users’ real-time and past locations.

Sensors 2018, 18, x FOR PEER REVIEW 7 of 17

7. When the acknowledgement message from the Mesh Router has been received at the Mobile
App, the Mobile App displays a welcome message indicating that the backend system is aware
of the user’s presence.

The sequence diagram in Figure 2 shows an example of the flow of operations, where the labeled
numbers correspond to the 7 items described above. In this example, there are three Mesh Beacons on
the transmission path between the Mobile App and the Mesh Router. From the diagram, we can see
how the interactivity between the mobile user and the backend system is achieved. From the users’
perspective, they are able to receive more than the basic locating service. Benefiting from interacting
with the backend system over a single Bluetooth beacon network, they can enjoy personalized services
without having to connect to the Internet. From the system operators’ perspective, they are able to detect
the presence of specific users at particular locations, and then offer personalized services to them. With
the presence state stored in the Cloud Database, the system operators can also track and analyze user
behaviors using the users’ real-time and past locations.

Figure 2. An example of the flow of operations.

3.3. Messages in the Beacon Network

In our system, we use BLE non-connectable advertising packets to implement all types of
messages so there would be no need for the devices to pair with each other before sending any data.
The breakdown of a BLE air interface packet is shown in Figure 3. According to Bluetooth
Specification v4.1 [32], the maximum size of a BLE advertising packet data unit (PDU) is 39 bytes.
Excluding the 2-byte header field and the 6-byte advertiser’s address field, there are up to 31 bytes to
carry the advertising data. The advertising data is further divided into a sequence of advertising data
(AD) structures. The iBeacon protocol uses AD Structure 1 and AD Structure 2 combined to carry its
advertisement information, with the message format shown in Figure 4.

There are four types of messages in our Bluetooth beacon network:

• Type 1: beacon messages sent by the Mesh Beacons
• Type 2: presence messages sent by the Mobile Apps
• Type 3: presence messages forwarded by the Mesh Beacons
• Type 4: acknowledgement messages sent by the Mesh Router.

First, in our implementation the beacon message (Type 1) format follows the iBeacon format,
where the Proximity UUID field is filled with our own 128-bit Mesh UUID. We configure the Mesh
Beacons to broadcast beacon messages every 100 ms. Next, for the design of the presence message
sent by the Mobile App (Type 2), we are forced to follow the iBeacon message format again because
we implement our Mobile App on the iOS platform. Since we are not allowed to customize the
message format, our solution is to embed the presence state in the Proximity UUID field. Specifically,
we reformat the 16-byte Proximity UUID field into 5 fields shown in Figure 5. The Mesh UUID value
is set to 0x7ECE, which is the 16-bit prefix of our 128-bit Mesh UUID. The Service ID is designed to
indicate the message type. For the presence message from the Mobile App (Type 2), the Service ID is

Figure 2. An example of the flow of operations.

3.3. Messages in the Beacon Network

In our system, we use BLE non-connectable advertising packets to implement all types of
messages so there would be no need for the devices to pair with each other before sending any
data. The breakdown of a BLE air interface packet is shown in Figure 3. According to Bluetooth
Specification v4.1 [32], the maximum size of a BLE advertising packet data unit (PDU) is 39 bytes.
Excluding the 2-byte header field and the 6-byte advertiser’s address field, there are up to 31 bytes to
carry the advertising data. The advertising data is further divided into a sequence of advertising data
(AD) structures. The iBeacon protocol uses AD Structure 1 and AD Structure 2 combined to carry its
advertisement information, with the message format shown in Figure 4.

There are four types of messages in our Bluetooth beacon network:

• Type 1: beacon messages sent by the Mesh Beacons
• Type 2: presence messages sent by the Mobile Apps
• Type 3: presence messages forwarded by the Mesh Beacons
• Type 4: acknowledgement messages sent by the Mesh Router.

First, in our implementation the beacon message (Type 1) format follows the iBeacon format,
where the Proximity UUID field is filled with our own 128-bit Mesh UUID. We configure the Mesh
Beacons to broadcast beacon messages every 100 ms. Next, for the design of the presence message

Sensors 2018, 18, 1637 8 of 17

sent by the Mobile App (Type 2), we are forced to follow the iBeacon message format again because
we implement our Mobile App on the iOS platform. Since we are not allowed to customize the
message format, our solution is to embed the presence state in the Proximity UUID field. Specifically,
we reformat the 16-byte Proximity UUID field into 5 fields shown in Figure 5. The Mesh UUID value
is set to 0x7ECE, which is the 16-bit prefix of our 128-bit Mesh UUID. The Service ID is designed to
indicate the message type. For the presence message from the Mobile App (Type 2), the Service ID is
assigned the value of 0xD122. The User ID field carries the encrypted user ID, which is determined
at the time the user registered. The Location field carries the discovered Major/Minor values from
the received beacon message. Note that in Type 2 messages, the values in the original Major/Minor
fields of the iBeacon message are unused since Mesh Beacons need not to do locating on receiving
Type 2 messages.

Sensors 2018, 18, x FOR PEER REVIEW 8 of 17

assigned the value of 0xD122. The User ID field carries the encrypted user ID, which is determined

at the time the user registered. The Location field carries the discovered Major/Minor values from the

received beacon message. Note that in Type 2 messages, the values in the original Major/Minor fields

of the iBeacon message are unused since Mesh Beacons need not to do locating on receiving Type 2

messages.

Figure 3. The breakdown of a Bluetooth low energy (BLE) air interface packet.

Figure 4. Apple iBeacon message format.

Figure 5. User’s presence state from the Mobile App is embedded in the Proximity universally unique

identifier (UUID) field of a standard iBeacon message.

As for the presence messages forwarded by the Mesh Beacons (Type 3) and the

acknowledgement messages sent by the Mesh Router (Type 4), we are able to customize their formats

using the BLE advertising packet. Basically, they share the same format as shown in Figure 3 with three

AD structures. To simplify the presentation, in Figure 6 we only show AD Structure 2 and 3 in our

design. In AD Structure 2, the AD Type of 0x03 means that there is a 16-bit Service Class UUID in the

AD Data field. We use this field to denote the Mesh UUID, so the value in this field is also 0x7ECE.

In AD Structure 3, we see the Service ID field again. To distinguish the two types of messages from

the presence message sent by the Mobile App (Type 2), the presence message forwarded by the Mesh

Beacon (Type 3) is assigned the value of 0xD123, and the acknowledgement message sent by the Mesh

Router (Type 4) is assigned 0xD124, respectively. Finally, the User ID and the Location fields serve

the same functionalities as in Figure 5, which have been described in the previous paragraph.

Figure 3. The breakdown of a Bluetooth low energy (BLE) air interface packet.

Sensors 2018, 18, x FOR PEER REVIEW 8 of 17

assigned the value of 0xD122. The User ID field carries the encrypted user ID, which is determined
at the time the user registered. The Location field carries the discovered Major/Minor values from the
received beacon message. Note that in Type 2 messages, the values in the original Major/Minor fields
of the iBeacon message are unused since Mesh Beacons need not to do locating on receiving Type 2
messages.

Figure 3. The breakdown of a Bluetooth low energy (BLE) air interface packet.

Figure 4. Apple iBeacon message format.

Figure 5. User’s presence state from the Mobile App is embedded in the Proximity universally unique
identifier (UUID) field of a standard iBeacon message.

As for the presence messages forwarded by the Mesh Beacons (Type 3) and the
acknowledgement messages sent by the Mesh Router (Type 4), we are able to customize their formats
using the BLE advertising packet. Basically, they share the same format as shown in Figure 3 with three
AD structures. To simplify the presentation, in Figure 6 we only show AD Structure 2 and 3 in our
design. In AD Structure 2, the AD Type of 0x03 means that there is a 16-bit Service Class UUID in the
AD Data field. We use this field to denote the Mesh UUID, so the value in this field is also 0x7ECE.
In AD Structure 3, we see the Service ID field again. To distinguish the two types of messages from
the presence message sent by the Mobile App (Type 2), the presence message forwarded by the Mesh
Beacon (Type 3) is assigned the value of 0xD123, and the acknowledgement message sent by the Mesh
Router (Type 4) is assigned 0xD124, respectively. Finally, the User ID and the Location fields serve
the same functionalities as in Figure 5, which have been described in the previous paragraph.

Figure 4. Apple iBeacon message format.

Sensors 2018, 18, x FOR PEER REVIEW 8 of 17

assigned the value of 0xD122. The User ID field carries the encrypted user ID, which is determined

at the time the user registered. The Location field carries the discovered Major/Minor values from the

received beacon message. Note that in Type 2 messages, the values in the original Major/Minor fields

of the iBeacon message are unused since Mesh Beacons need not to do locating on receiving Type 2

messages.

Figure 3. The breakdown of a Bluetooth low energy (BLE) air interface packet.

Figure 4. Apple iBeacon message format.

Figure 5. User’s presence state from the Mobile App is embedded in the Proximity universally unique

identifier (UUID) field of a standard iBeacon message.

As for the presence messages forwarded by the Mesh Beacons (Type 3) and the

acknowledgement messages sent by the Mesh Router (Type 4), we are able to customize their formats

using the BLE advertising packet. Basically, they share the same format as shown in Figure 3 with three

AD structures. To simplify the presentation, in Figure 6 we only show AD Structure 2 and 3 in our

design. In AD Structure 2, the AD Type of 0x03 means that there is a 16-bit Service Class UUID in the

AD Data field. We use this field to denote the Mesh UUID, so the value in this field is also 0x7ECE.

In AD Structure 3, we see the Service ID field again. To distinguish the two types of messages from

the presence message sent by the Mobile App (Type 2), the presence message forwarded by the Mesh

Beacon (Type 3) is assigned the value of 0xD123, and the acknowledgement message sent by the Mesh

Router (Type 4) is assigned 0xD124, respectively. Finally, the User ID and the Location fields serve

the same functionalities as in Figure 5, which have been described in the previous paragraph.

Figure 5. User’s presence state from the Mobile App is embedded in the Proximity universally unique
identifier (UUID) field of a standard iBeacon message.

As for the presence messages forwarded by the Mesh Beacons (Type 3) and the acknowledgement
messages sent by the Mesh Router (Type 4), we are able to customize their formats using the BLE
advertising packet. Basically, they share the same format as shown in Figure 3 with three AD structures.

Sensors 2018, 18, 1637 9 of 17

To simplify the presentation, in Figure 6 we only show AD Structure 2 and 3 in our design. In AD
Structure 2, the AD Type of 0x03 means that there is a 16-bit Service Class UUID in the AD Data
field. We use this field to denote the Mesh UUID, so the value in this field is also 0x7ECE. In AD
Structure 3, we see the Service ID field again. To distinguish the two types of messages from the
presence message sent by the Mobile App (Type 2), the presence message forwarded by the Mesh
Beacon (Type 3) is assigned the value of 0xD123, and the acknowledgement message sent by the Mesh
Router (Type 4) is assigned 0xD124, respectively. Finally, the User ID and the Location fields serve the
same functionalities as in Figure 5, which have been described in the previous paragraph.Sensors 2018, 18, x FOR PEER REVIEW 9 of 17

Figure 6. The message format for Type 3 and Type 4 messages.

As we stated earlier, the Mesh Beacons are configured to broadcast beacon messages (i.e., Type 1

messages) periodically. When the Mobile App discovers a beacon message, it first checks whether

the carried Mesh UUID matches our own specific value. If it is a match, the Mobile App uses the

discovered Major/Minor values to locate itself immediately. Once the locating process is successful,

the Mobile App will send the mobile user’s presence state by broadcasting a presence message (i.e.,

a Type 2 message). In the presence message, the Mobile App specifies the encrypted user ID and the

Location (i.e., the received Major/Minor values), meaning that the user is nearby the location

associated with the Major/Minor values. Once a Type 2 message is detected by any Mesh Beacon, the

Mesh Beacon uses the embedded User ID and Location values to construct a Type 3 message, and

then broadcasts the Type 3 message. For all other Mesh Beacons that discover the Type 3 message,

they use the managed-flood-based approach to relay it. When the Type 3 message finally reaches the

Mesh Router, the Mesh Router sends the encrypted user ID and the Major/Minor values to the

Application Server over HTTP. At the same time, the Mesh Router uses the received Type 3 message

to compose a Type 4 message by simply changing the Service ID to 0xD124, and then broadcasts the

message. With the help of Mesh Beacons, the Type 4 message is forwarded over the Bluetooth beacon

network to the Mobile App. On receiving the Type 4 message with its own user ID, the Mobile App

will show a message box indicating that the application server has been notified of the presence of

the user. At the Application Server, the Major/Minor values are translated into the name of the

associated location, and then the user’s presence state is sent to the Cloud Database. Eventually, with

the presence state of all the mobile users in the database, we are able to analyze the locating history

and to create our own innovative applications.

4. Implementation and Experiments

In this section, we will first show the implementation details of our system, including the

hardware and the software. Then, we will describe the experiments to verify the operations of our

system. Finally, we will discuss some implementation issues when deploying our system.

4.1. Implementation and Deployment of Our Prototype System

Table 1 lists the hardware and software used in our prototype system. Our Mobile App is

developed to run on Apple iOS. Mesh Beacons and Mesh Routers are implemented using the RedBear

development board [33] because of its small size and the co-existence of BLE and Wi-Fi interfaces.

The Application Server is an Ubuntu PC with a Node.js web server. The Cloud Database is

implemented using Google Firebase [34], which also provides the user registration and

authentication functionalities for our Mobile App. Our BLE beacon network is deployed on the 8th

floor of the engineering building in our campus. Figure 7 shows the floor plan where we deployed

four Mesh Beacons (the blue ones labeled A through D) and one Mesh Router (the red one).

Table 1. Hardware and software used in our prototype system.

Item Technology

Mobile App Apple iOS version 10.2

Mesh Beacon and Mesh Router RedBear Duo development board (with Bluetooth V4.1 and IEEE 802.11n Wi-Fi)

Application Server Node.js web server on Linux Ubuntu 14.04

Cloud Database Google Firebase

Figure 6. The message format for Type 3 and Type 4 messages.

As we stated earlier, the Mesh Beacons are configured to broadcast beacon messages
(i.e., Type 1 messages) periodically. When the Mobile App discovers a beacon message, it first checks
whether the carried Mesh UUID matches our own specific value. If it is a match, the Mobile App
uses the discovered Major/Minor values to locate itself immediately. Once the locating process is
successful, the Mobile App will send the mobile user’s presence state by broadcasting a presence
message (i.e., a Type 2 message). In the presence message, the Mobile App specifies the encrypted
user ID and the Location (i.e., the received Major/Minor values), meaning that the user is nearby
the location associated with the Major/Minor values. Once a Type 2 message is detected by any
Mesh Beacon, the Mesh Beacon uses the embedded User ID and Location values to construct a Type
3 message, and then broadcasts the Type 3 message. For all other Mesh Beacons that discover the
Type 3 message, they use the managed-flood-based approach to relay it. When the Type 3 message
finally reaches the Mesh Router, the Mesh Router sends the encrypted user ID and the Major/Minor
values to the Application Server over HTTP. At the same time, the Mesh Router uses the received
Type 3 message to compose a Type 4 message by simply changing the Service ID to 0xD124, and then
broadcasts the message. With the help of Mesh Beacons, the Type 4 message is forwarded over the
Bluetooth beacon network to the Mobile App. On receiving the Type 4 message with its own user
ID, the Mobile App will show a message box indicating that the application server has been notified
of the presence of the user. At the Application Server, the Major/Minor values are translated into
the name of the associated location, and then the user’s presence state is sent to the Cloud Database.
Eventually, with the presence state of all the mobile users in the database, we are able to analyze the
locating history and to create our own innovative applications.

4. Implementation and Experiments

In this section, we will first show the implementation details of our system, including the hardware
and the software. Then, we will describe the experiments to verify the operations of our system. Finally,
we will discuss some implementation issues when deploying our system.

4.1. Implementation and Deployment of Our Prototype System

Table 1 lists the hardware and software used in our prototype system. Our Mobile App is
developed to run on Apple iOS. Mesh Beacons and Mesh Routers are implemented using the RedBear
development board [33] because of its small size and the co-existence of BLE and Wi-Fi interfaces.
The Application Server is an Ubuntu PC with a Node.js web server. The Cloud Database is implemented
using Google Firebase [34], which also provides the user registration and authentication functionalities
for our Mobile App. Our BLE beacon network is deployed on the 8th floor of the engineering building

Sensors 2018, 18, 1637 10 of 17

in our campus. Figure 7 shows the floor plan where we deployed four Mesh Beacons (the blue ones
labeled A through D) and one Mesh Router (the red one).

Table 1. Hardware and software used in our prototype system.

Item Technology

Mobile App Apple iOS version 10.2
Mesh Beacon and Mesh Router RedBear Duo development board (with Bluetooth V4.1 and IEEE 802.11n Wi-Fi)

Application Server Node.js web server on Linux Ubuntu 14.04
Cloud Database Google Firebase

Sensors 2018, 18, x FOR PEER REVIEW 10 of 17

Figure 7. Deployment of BLE beacon network with 4 Mesh Beacons and 1 Mesh Router.

First, we describe the user interface of the Mobile App because we use this to measure and
display the response time. Three screenshots of our Mobile App are shown in Figure 8. After the user
logs in and then manually presses the “Locate” button, the central “Locationing” circle with breathing
light effect will appear as in Figure 8a. During this locating period, the Mobile App scans for the
beacon messages sent by Mesh Beacons. As soon as a beacon message is received and the physical
location is determined, the location name will show up as in Figure 8b, which is “TKU Building E
Location A” in this case. Meanwhile, the Mobile App will broadcast the user’s presence state into the
Bluetooth beacon network. In response to the presence message from the Mobile App, the Mesh
Router will send an acknowledgement message back to the Mobile App. When the acknowledgement
message finally arrives at the Mobile App, a welcome message shows up and the check mark appears
as in Figure 8c, meaning the whole process has now completed. Regarding the response time, the
time (0.842 s) shown in Figure 8b refers to the period starting from the user pressed the “Locate”
button, to the time when the physical location is determined at the Mobile App. Note that the screenshot
in Figure 8c was captured in another test. The received time (1.983 s) shown in Figure 8c refers to the
period starting from the completion of locating, to the instant that the Mobile App received the
acknowledgement message from the Mesh Router.

(a) (b) (c)

Figure 8. Screenshots of our Mobile App (a) during the locating process (b) physical location
determined (c) acknowledgement message received.

Figure 7. Deployment of BLE beacon network with 4 Mesh Beacons and 1 Mesh Router.

First, we describe the user interface of the Mobile App because we use this to measure and display
the response time. Three screenshots of our Mobile App are shown in Figure 8. After the user logs in
and then manually presses the “Locate” button, the central “Locationing” circle with breathing light
effect will appear as in Figure 8a. During this locating period, the Mobile App scans for the beacon
messages sent by Mesh Beacons. As soon as a beacon message is received and the physical location is
determined, the location name will show up as in Figure 8b, which is “TKU Building E Location A”
in this case. Meanwhile, the Mobile App will broadcast the user’s presence state into the Bluetooth
beacon network. In response to the presence message from the Mobile App, the Mesh Router will send
an acknowledgement message back to the Mobile App. When the acknowledgement message finally
arrives at the Mobile App, a welcome message shows up and the check mark appears as in Figure 8c,
meaning the whole process has now completed. Regarding the response time, the time (0.842 s) shown
in Figure 8b refers to the period starting from the user pressed the “Locate” button, to the time when
the physical location is determined at the Mobile App. Note that the screenshot in Figure 8c was
captured in another test. The received time (1.983 s) shown in Figure 8c refers to the period starting
from the completion of locating, to the instant that the Mobile App received the acknowledgement
message from the Mesh Router.

Sensors 2018, 18, 1637 11 of 17

Sensors 2018, 18, x FOR PEER REVIEW 10 of 17

Figure 7. Deployment of BLE beacon network with 4 Mesh Beacons and 1 Mesh Router.

First, we describe the user interface of the Mobile App because we use this to measure and

display the response time. Three screenshots of our Mobile App are shown in Figure 8. After the user

logs in and then manually presses the “Locate” button, the central “Locationing” circle with breathing

light effect will appear as in Figure 8a. During this locating period, the Mobile App scans for the

beacon messages sent by Mesh Beacons. As soon as a beacon message is received and the physical

location is determined, the location name will show up as in Figure 8b, which is “TKU Building E

Location A” in this case. Meanwhile, the Mobile App will broadcast the user’s presence state into the

Bluetooth beacon network. In response to the presence message from the Mobile App, the Mesh

Router will send an acknowledgement message back to the Mobile App. When the acknowledgement

message finally arrives at the Mobile App, a welcome message shows up and the check mark appears

as in Figure 8c, meaning the whole process has now completed. Regarding the response time, the

time (0.842 s) shown in Figure 8b refers to the period starting from the user pressed the “Locate”

button, to the time when the physical location is determined at the Mobile App. Note that the screenshot

in Figure 8c was captured in another test. The received time (1.983 s) shown in Figure 8c refers to the

period starting from the completion of locating, to the instant that the Mobile App received the

acknowledgement message from the Mesh Router.

(a) (b) (c)

Figure 8. Screenshots of our Mobile App (a) during the locating process (b) physical location

determined (c) acknowledgement message received.
Figure 8. Screenshots of our Mobile App (a) during the locating process (b) physical location
determined (c) acknowledgement message received.

4.2. Experiment 1

In this experiment, we would like to measure the response time from the Mobile App users’
perspective. Specifically, we put the smartphone beside the Mesh Beacons and then open the Mobile
App. At each of the four locations (A through D), we measure the response time five times, and show
the results in Figure 9. Note that since the locating process is based on an internal table lookup
in the Mobile App, the time needed to finish the locating process does not depend on the real
locations. Therefore, in Figure 9 we only show the time taken for the Mobile App to receive the
acknowledgement message.

Sensors 2018, 18, x FOR PEER REVIEW 11 of 17

4.2. Experiment 1

In this experiment, we would like to measure the response time from the Mobile App users’
perspective. Specifically, we put the smartphone beside the Mesh Beacons and then open the Mobile
App. At each of the four locations (A through D), we measure the response time five times, and show
the results in Figure 9. Note that since the locating process is based on an internal table lookup in the
Mobile App, the time needed to finish the locating process does not depend on the real locations.
Therefore, in Figure 9 we only show the time taken for the Mobile App to receive the
acknowledgement message.

Figure 9. Time taken for the Mobile App to receive the acknowledgement message in Experiment 1 (s).

From Figure 9 we can see that at both locations A and B the observed response times are
relatively stable, but at locations C and D some of the response times are more than 2.7 s. The reason
is that at locations A and B, they are only one hop away from the Mesh Router; while at locations C
and D, they are 2 and 3 hops away, respectively. It is straightforward that with a greater number of
hops on the path, the probability of a lost presence message or acknowledgement message is also
higher. Furthermore, we need to describe the behavior of the Mobile App in order to justify the result.
In our implementation, the Mobile App takes about 0.7 s to initialize the advertisement process, and
then proceed to advertise the presence message for 1 s. After that, the Mobile App will start listening
to the acknowledgement message from the Mesh Router. This explains why the observed minimum
response time is around 1.7 s. If no acknowledgement message is received within 1 s, the Mobile App
will advertise the presence message again for another 1 s. Knowing the behavior of the Mobile App,
we can conclude that at locations A and B, the Mobile App successfully received the
acknowledgement message after the first advertisement period. However, from the measurement
results at locations C and D, we can find that some of the acknowledgement messages arrived after
the second advertising period. Nevertheless, we think that the response time can be well-controlled
if we place any two neighboring Mesh Beacons within a reasonable distance to keep the packet loss
rate low. Furthermore, it is also possible to reduce the response time by shortening the advertising
period and the waiting period because this is simply an implementation issue. Since the 0.7-s
initialization process is inevitable, we expect that in the best case the minimum response time can be
within 1 s.

Figure 9. Time taken for the Mobile App to receive the acknowledgement message in Experiment 1 (s).

From Figure 9 we can see that at both locations A and B the observed response times are relatively
stable, but at locations C and D some of the response times are more than 2.7 s. The reason is that
at locations A and B, they are only one hop away from the Mesh Router; while at locations C and D,
they are 2 and 3 hops away, respectively. It is straightforward that with a greater number of hops
on the path, the probability of a lost presence message or acknowledgement message is also higher.
Furthermore, we need to describe the behavior of the Mobile App in order to justify the result. In our

Sensors 2018, 18, 1637 12 of 17

implementation, the Mobile App takes about 0.7 s to initialize the advertisement process, and then
proceed to advertise the presence message for 1 s. After that, the Mobile App will start listening to
the acknowledgement message from the Mesh Router. This explains why the observed minimum
response time is around 1.7 s. If no acknowledgement message is received within 1 s, the Mobile App
will advertise the presence message again for another 1 s. Knowing the behavior of the Mobile App,
we can conclude that at locations A and B, the Mobile App successfully received the acknowledgement
message after the first advertisement period. However, from the measurement results at locations C
and D, we can find that some of the acknowledgement messages arrived after the second advertising
period. Nevertheless, we think that the response time can be well-controlled if we place any two
neighboring Mesh Beacons within a reasonable distance to keep the packet loss rate low. Furthermore,
it is also possible to reduce the response time by shortening the advertising period and the waiting
period because this is simply an implementation issue. Since the 0.7-s initialization process is inevitable,
we expect that in the best case the minimum response time can be within 1 s.

4.3. Experiment 2

Experiment 2 basically follows the design of Experiment 1. However, the difference is that we
focus more on the multi-hop relay function of the Mesh Beacons and measure the response time.
Specifically, in this experiment, if we stand at location D, then only Mesh Beacon D is configured to
receive the presence message from the Mobile App (i.e., Type 2 message), while Mesh Beacons A, B,
and C are forced to ignore Type 2 messages. This ensures that when the user is physically located at
location D, its presence message is only received by Mesh Beacon D rather than by the nearby Mesh
Beacon C, which has less number of hops to the Mesh Router. The same idea applies to all other cases,
in which only the Mesh Beacon closest to the user is able to receive the presence message from the
Mobile App. Again, at each of the four locations, we measure the response time for five times and
show the result in Figure 10.

Sensors 2018, 18, x FOR PEER REVIEW 12 of 17

4.3. Experiment 2

Experiment 2 basically follows the design of Experiment 1. However, the difference is that we
focus more on the multi-hop relay function of the Mesh Beacons and measure the response time.
Specifically, in this experiment, if we stand at location D, then only Mesh Beacon D is configured to
receive the presence message from the Mobile App (i.e., Type 2 message), while Mesh Beacons A, B,
and C are forced to ignore Type 2 messages. This ensures that when the user is physically located at
location D, its presence message is only received by Mesh Beacon D rather than by the nearby Mesh
Beacon C, which has less number of hops to the Mesh Router. The same idea applies to all other cases,
in which only the Mesh Beacon closest to the user is able to receive the presence message from the
Mobile App. Again, at each of the four locations, we measure the response time for five times and
show the result in Figure 10.

Figure 10. Time taken for the Mobile App to receive the acknowledgement message in Experiment 2 (s).

As expected, the above experimental results are almost identical with that of Experiment 1, with
the exception of the measurement results at location D. Specifically, here the majority of the response
times at location D are around 2.7 s, while in Experiment 1 only two measurements exceed 2.7 s. This
reveals the fact that although the user is physically closer to Mesh Beacon D, in Experiment 1 some
of the presence message from the Mobile App must have been received and then forwarded by the
nearby Mesh Beacon C so a better performance (fewer packet losses) can be observed. Moreover, if
we compare the measurement results at location C of the two experiments, we can find that the average
response time in Experiment 2 is slightly higher than that in Experiment 1. We speculate that this is
because in Experiment 1, when the user is standing beside Mesh Beacon C, some of the presence
messages may have been received and then forwarded by either Mesh Beacon A or Mesh Beacon B.
Therefore, some of the measurement results are on the 2-hop distance (round-trip). However, in
Experiment 2 the round-trip distance from Mesh Beacon C to the Mesh Router is 4 hops in every
measurement. This is the reason why the average response time becomes higher than that in
Experiment 1.

4.4. Experiment 3

In this experiment, we check the overall operations of the prototype system. First, we let a user
with the Mobile App walk from location A to location B, and then return to location A. As expected,
the smartphone user was able to see the correct locating results in the Mobile App which switched
from location A to location B, and then switched back to location A. Then we checked the moving
pattern recorded in the Cloud Database. Figure 11 is a screenshot from the Google Firebase, in which
the top-level key refers to the encrypted ID of the user and the second-level keys refer to the locating
records for this user. In each record there are values of Major and Minor, the associated location name,
and the timestamp of the locating record. From Figure 11 we can see three consecutive records with

Figure 10. Time taken for the Mobile App to receive the acknowledgement message in Experiment 2 (s).

As expected, the above experimental results are almost identical with that of Experiment 1,
with the exception of the measurement results at location D. Specifically, here the majority of the
response times at location D are around 2.7 s, while in Experiment 1 only two measurements exceed
2.7 s. This reveals the fact that although the user is physically closer to Mesh Beacon D, in Experiment
1 some of the presence message from the Mobile App must have been received and then forwarded by
the nearby Mesh Beacon C so a better performance (fewer packet losses) can be observed. Moreover,
if we compare the measurement results at location C of the two experiments, we can find that the
average response time in Experiment 2 is slightly higher than that in Experiment 1. We speculate

Sensors 2018, 18, 1637 13 of 17

that this is because in Experiment 1, when the user is standing beside Mesh Beacon C, some of
the presence messages may have been received and then forwarded by either Mesh Beacon A or
Mesh Beacon B. Therefore, some of the measurement results are on the 2-hop distance (round-trip).
However, in Experiment 2 the round-trip distance from Mesh Beacon C to the Mesh Router is 4 hops
in every measurement. This is the reason why the average response time becomes higher than that in
Experiment 1.

4.4. Experiment 3

In this experiment, we check the overall operations of the prototype system. First, we let a user
with the Mobile App walk from location A to location B, and then return to location A. As expected,
the smartphone user was able to see the correct locating results in the Mobile App which switched
from location A to location B, and then switched back to location A. Then we checked the moving
pattern recorded in the Cloud Database. Figure 11 is a screenshot from the Google Firebase, in which
the top-level key refers to the encrypted ID of the user and the second-level keys refer to the locating
records for this user. In each record there are values of Major and Minor, the associated location name,
and the timestamp of the locating record. From Figure 11 we can see three consecutive records with
the determined location A, B, and then A. The order of the determined locations in the Cloud Database
apparently matches the route taken by the user, and the timestamps correctly indicate the time that the
user was physically located at those locations.

Sensors 2018, 18, x FOR PEER REVIEW 13 of 17

the determined location A, B, and then A. The order of the determined locations in the Cloud
Database apparently matches the route taken by the user, and the timestamps correctly indicate the
time that the user was physically located at those locations.

Figure 11. A snapshot of the Firebase database showing the moving pattern of a user.

Next, we test the use case of two simultaneous users. Specifically, to ease the cross check of the
locating results, in this test two smartphones were held by a single person to emulate two users taking
the same route simultaneously. The route starts from location B to location D via location C, then
takes the reverse direction back to location B. Table 2 summarizes the observed locating results
recorded in the Cloud Database, from which we can compare the timestamps of the two emulated
users at these locations. Since the test was carried out by a single person, ideally the locating results
of the two emulated users should be exactly the same. However, we can see that there exist time
differences in most of the locating results. Again, we believe this is due to the natural uncertainty of
multi-hop wireless transmissions and possibly the contention of wireless resource. Fortunately the
time differences are limited to only a few seconds and would not be a problem.

Table 2. Locating results of two simultaneous users recorded in the Cloud Database.

Locations Timestamp of the Locating Record
User 1 User 2

B 17:14:18 17:14:18
C 17:14:37 17:14:36
D 17:14:56 17:14:58
C 17:15:24 17:15:27
B 17:15:39 17:15:40

4.5. Discussions

In this subsection, we discuss some implementation-related issues of the system, including the
communication range of Bluetooth beacons, the contention on the BLE advertising channels, the
interference from Wi-Fi devices, and how to deal with a large deployment area.

Figure 11. A snapshot of the Firebase database showing the moving pattern of a user.

Next, we test the use case of two simultaneous users. Specifically, to ease the cross check of
the locating results, in this test two smartphones were held by a single person to emulate two users
taking the same route simultaneously. The route starts from location B to location D via location C,
then takes the reverse direction back to location B. Table 2 summarizes the observed locating results
recorded in the Cloud Database, from which we can compare the timestamps of the two emulated
users at these locations. Since the test was carried out by a single person, ideally the locating results
of the two emulated users should be exactly the same. However, we can see that there exist time
differences in most of the locating results. Again, we believe this is due to the natural uncertainty of
multi-hop wireless transmissions and possibly the contention of wireless resource. Fortunately the
time differences are limited to only a few seconds and would not be a problem.

Sensors 2018, 18, 1637 14 of 17

Table 2. Locating results of two simultaneous users recorded in the Cloud Database.

Locations
Timestamp of the Locating Record

User 1 User 2

B 17:14:18 17:14:18
C 17:14:37 17:14:36
D 17:14:56 17:14:58
C 17:15:24 17:15:27
B 17:15:39 17:15:40

4.5. Discussions

In this subsection, we discuss some implementation-related issues of the system, including
the communication range of Bluetooth beacons, the contention on the BLE advertising channels,
the interference from Wi-Fi devices, and how to deal with a large deployment area.

4.5.1. The Communication Range of Bluetooth Beacons

Theoretically the transmission range of Bluetooth 4 can be up to 100 m [35]. In our experimental
deployment the maximum distance between neighboring Mesh Beacons is about 8 to 10 m. The reason
is that after several field tests, we found that if the distance is greater than 10 m, packet losses would
become significant. This is due to the limited transmission range of the development boards we used,
as well as the non-line-of-sight deployment of the devices. Since we need to deploy the Mesh Router in
our own lab for a stable network connection to the Application Server (a PC in the same lab), we have
no choice but to deploy part of the system non-line-of-sight. In real deployments such as airports or
exhibition centers, one can choose Bluetooth devices with stronger output power or external antennas
to increase the radio coverage, along with proper line-of-sight placement of the Bluetooth devices to
improve the transmission quality. Doing so can also reduce the total number of devices needed to
cover the whole field of deployment.

4.5.2. Contention on Advertising Channels and Interference from Wi-Fi

We know that Bluetooth beacons are broadcast on the three advertising channels. Since the
message relays in the Bluetooth mesh networks are also based on broadcasting, when the number of
Mesh Beacons is large, the contention of using the advertising channels may become an important
issue. A good solution to this problem is the latest Bluetooth 5.0 [36]. In Bluetooth 5.0, a new physical
layer named LE 2M is introduced (note that the physical layer used in Bluetooth 4 is called LE 1M).
With LE 2M, its theoretical data rate of 2 Mbit/s can significantly reduce the air time needed to transmit
a given amount of data, leading to better spectral efficiency. Moreover, in Bluetooth 5.0 the payload
of the advertising packets can be offloaded to the available data channels, leaving only the header
data transmitted on the advertising channels. On the problem of possible interference from Wi-Fi
communications, Bluetooth 5.0 features an improved channel sequencing algorithm that improves the
pseudo randomness of the next hop channel sequencing. This algorithm also improves the co-existence
performance of Bluetooth devices in the presence of Wi-Fi devices. When the commercial Bluetooth
5.0 chips are widely available and have been used in beacon systems, we believe that the locating
performance of such systems can be greatly enhanced.

4.5.3. Problems Related to a Large Deployment Area

When the field of deployment is large, some of the Mesh Beacons will be many hops away
from the Mesh Router. When the users are located around those remote Mesh Beacons, they may
experience a longer response time owing to greater physical distance and higher packet loss rate.
A practicable solution to this problem is to divide the large deployment area into several smaller
subareas, and equip each subarea with its own Mesh Router. Mesh Routers, on the other hand,

Sensors 2018, 18, 1637 15 of 17

can connect to the Application Server through Wi-Fi or ethernet interfaces. The idea is depicted in
Figure 12. Therefore, the number of hops from any Mesh Beacons to its closest Mesh Router can
be well-controlled. Besides, Mesh Beacons can be configured not to rebroadcast the messages from
different subareas they belong to, so as to reduce the total number of broadcast messages in the
deployment field.

Last but not least, when the deployment area is large, it takes more Mesh Beacons to cover the
area. With a greater number of Mesh Beacons in the network, the overhead incurred by the broadcast
behavior of message relays is also increased. Specifically, although broadcasting avoids the need
to create and maintain routes, it may be less efficient from the perspective of the total number of
consumed messages to fulfill an end-to-end communication between two devices [37]. From our
point of view, the overhead of the broadcast can be controlled if the Bluetooth beacon networks are
well-designed. Just like what we have mentioned in the previous paragraph, if the rebroadcasts can
be limited inside smaller subareas, the scalability of the Bluetooth beacon networks will not be an
issue. In addition, the official Bluetooth mesh protocol also utilizes the managed-flood approach to
implement the mesh network. This approach is based on message relays to rebroadcast messages,
which is exactly what our Mesh Beacons do. As a matter of fact, our Mesh Beacons do more than acting
as message relays—they play the role of reference points for micro-location services at the same time.

Sensors 2018, 18, x FOR PEER REVIEW 15 of 17

acting as message relays—they play the role of reference points for micro-location services at the
same time.

Figure 12. Deployment with multiple subareas to reduce the hop count to the Mesh Router.

5. Conclusions

Since the invention of iBeacon and given the extreme popularity of smartphones, the BLE-based
beacon technology has been deployed extensively as a basis to provide various locating services for
smartphone users. In this research, our main contribution is that we combined the Bluetooth
broadcast and mesh topologies to extend the applicability of beacon solutions. Specifically, apart
from broadcasting beacon messages, our beacon devices also serve as beacon readers that can
discover the presence of specific users, and then forward the presence state hop-by-hop to the
backend server over the Bluetooth beacon network. With the knowledge of a specific customer’s
presence, the backend server can respond to the customer with a personalized message, again via the
relay of the Bluetooth beacon network. In some use cases, such as welcoming a VIP customer at the
airport, our interactive locating system can give the customer a much improved user experience, since
all the communications rely on a single network technology—BLE. Neither costly mobile Internet
connections nor the troublesome Wi-Fi connections are needed for the customers.

Our current implementation of messaging over the Bluetooth beacon network is based on
rebroadcasting in the advertising channels. It is easy to implement, and it precludes the need to pair
Bluetooth devices before sending messages to each other. Furthermore, without having to run a routing
protocol and maintain a routing table, the complexity and memory consumption of the Bluetooth
devices can be minimized. Although sending messages by broadcast is less efficient, the overhead can
be well-controlled if we design the rebroadcast mechanism carefully as well as dividing a large network
into smaller subareas properly. In the future, we plan to replace the Bluetooth interfaces with version
5.0 and incorporate the official Bluetooth mesh protocol into our system, to achieve better locating
performance and the interoperability between BLE-based mesh networks.

Author Contributions: Both authors conceived and designed the experiments; You-Wei Lin performed the
experiments; both authors analyzed the data; Chi-Yi Lin wrote the paper.

Funding: This research was funded by The Ministry of Science and Technology, Taiwan, grant number 105-
2221-E-032-032-MY3.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 12. Deployment with multiple subareas to reduce the hop count to the Mesh Router.

5. Conclusions

Since the invention of iBeacon and given the extreme popularity of smartphones, the BLE-based
beacon technology has been deployed extensively as a basis to provide various locating services
for smartphone users. In this research, our main contribution is that we combined the Bluetooth
broadcast and mesh topologies to extend the applicability of beacon solutions. Specifically, apart from
broadcasting beacon messages, our beacon devices also serve as beacon readers that can discover
the presence of specific users, and then forward the presence state hop-by-hop to the backend
server over the Bluetooth beacon network. With the knowledge of a specific customer’s presence,
the backend server can respond to the customer with a personalized message, again via the relay of
the Bluetooth beacon network. In some use cases, such as welcoming a VIP customer at the airport,
our interactive locating system can give the customer a much improved user experience, since all the
communications rely on a single network technology—BLE. Neither costly mobile Internet connections
nor the troublesome Wi-Fi connections are needed for the customers.

Sensors 2018, 18, 1637 16 of 17

Our current implementation of messaging over the Bluetooth beacon network is based on
rebroadcasting in the advertising channels. It is easy to implement, and it precludes the need to
pair Bluetooth devices before sending messages to each other. Furthermore, without having to
run a routing protocol and maintain a routing table, the complexity and memory consumption of
the Bluetooth devices can be minimized. Although sending messages by broadcast is less efficient,
the overhead can be well-controlled if we design the rebroadcast mechanism carefully as well as
dividing a large network into smaller subareas properly. In the future, we plan to replace the Bluetooth
interfaces with version 5.0 and incorporate the official Bluetooth mesh protocol into our system, to
achieve better locating performance and the interoperability between BLE-based mesh networks.

Author Contributions: Both authors conceived and designed the experiments; You-Wei Lin performed the
experiments; both authors analyzed the data; Chi-Yi Lin wrote the paper.

Funding: This research was funded by The Ministry of Science and Technology, Taiwan, grant number
105-2221-E-032-032-MY3.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Middleton, P.; Tsai, T.; Yamaji, M.; Gupta, A.; Rueb, D. Forecast: Internet of Things–Endpoints and Associated
Services, Worldwide. 2017. Available online: https://www.gartner.com/doc/3840665/forecast-internet-
things--endpoints (accessed on 5 May 2018).

2. Zigbee Alliance. Available online: http://www.zigbee.org/ (accessed on 5 May 2018).
3. Bluetooth Low Energy. Available online: https://www.bluetooth.com/what-is-bluetooth-technology/how-

it-works/low-energy (accessed on 5 May 2018).
4. Wi-Fi HaLow. Available online: http://www.wi-fi.org/discover-wi-fi/wi-fi-halow (accessed on 5 May 2018).
5. LoRa Alliance. Available online: https://www.lora-alliance.org/ (accessed on 5 May 2018).
6. Olteanu, A.C.; Oprina, G.D.; Tapus, N.; Zeisberg, S. Enabling mobile devices for home automation using

Zigbee. In Proceedings of the 19th International Conference on Control Systems and Computer Science,
Bucharest, Romania, 29–31 May 2013; pp. 189–195.

7. Vivek, G.V.; Sunil, M.P. Enabling IoT services using WiFi-Zigbee gateway for a home automation system.
In Proceedings of the 2015 IEEE International Conference on Research in Computational Intelligence and
Communication Networks (ICRCICN), Kolkata, India, 20–22 November 2015; pp. 77–80.

8. Shim, J.-S.; Kim, H.-J.; Lee, N.-U.; Park, S.-C. Design of Zigbee-BLE gateway direct communication system
for smart home environment. In Advances in Computer Science and Ubiquitous Computing (CSA-CUTE 17);
Park, J.J., Loia, V., Yi, G., Sung, Y., Eds.; Springer: Singapore, 2018; pp. 1428–1433.

9. DeCuir, J. Introducing Bluetooth smart: Part 1: A look at both classic and new technologies. IEEE Consum.
Electron. Mag. 2014, 3, 12–18. [CrossRef]

10. Dementyev, A.; Hodges, S.; Taylor, S.; Smith, J. Power consumption analysis of Bluetooth low energy, Zigbee
and ANT sensor nodes in a cyclic sleep scenario. In Proceedings of the 2013 IEEE International Wireless
Symposium (IWS), Beijing, China, 14–18 April 2013; pp. 1–4.

11. Siekkinen, M.; Hiienkari, M.; Nurminen, J.K.; Nieminen, J. How low energy is Bluetooth low
energy? Comparative measurements with Zigbee/802.15.4. In Proceedings of the 2012 IEEE Wireless
Communications and Networking Conference Workshops (WCNCW), Paris, France, 1 April 2012;
pp. 232–237.

12. Apple iBeacon. Available online: https://developer.apple.com/ibeacon/ (accessed on 5 May 2018).
13. Filippoupolitis, A.; Oliff, W.; Loukas, G. Occupancy detection for building emergency management using

BLE beacons. In 31st International Symposium on Computer and Information Sciences (ISCIS 2016), Kraków, Poland,
27–28 October 2016; Czachórski, T., Gelenbe, E., Grochla, K., Lent, R., Eds.; Springer: Cham, Switzerland,
2016; pp. 233–240.

14. Lin, X.Y.; Ho, T.W.; Fang, C.C.; Yen, Z.S.; Yang, B.J.; Lai, F. A mobile indoor positioning system based on
iBeacon technology. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 4970–4973.

https://www.gartner.com/doc/3840665/forecast-internet-things--endpoints
https://www.gartner.com/doc/3840665/forecast-internet-things--endpoints
http://www.zigbee.org/
https://www.bluetooth.com/what-is-bluetooth-technology/how-it-works/low-energy
https://www.bluetooth.com/what-is-bluetooth-technology/how-it-works/low-energy
http://www.wi-fi.org/discover-wi-fi/wi-fi-halow
https://www.lora-alliance.org/
http://dx.doi.org/10.1109/MCE.2013.2284932
https://developer.apple.com/ibeacon/

Sensors 2018, 18, 1637 17 of 17

15. Zhao, Z.; Fang, J.; Huang, G.Q.; Zhang, M. iBeacon enabled indoor positioning for warehouse management.
In Proceedings of the 2016 4th International Symposium on Computational and Business Intelligence (ISCBI),
Olten, Switzerland, 5–7 September 2016; pp. 21–26.

16. Faragher, R.; Harle, R. Location fingerprinting with Bluetooth low energy beacons. IEEE J. Sel. Areas Commun.
2015, 33, 2418–2428. [CrossRef]

17. Onofre, S.; Caseiro, B.; Pimentão, J.P.; Sousa, P. Using fuzzy logic to improve BLE indoor positioning system.
In 7th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical and Industrial Systems
(DoCEIS); Springer: Costa de Caparica, Portugal, 2016; pp. 169–177.

18. Fard, H.K.; Chen, Y.; Son, K.K. Indoor positioning of mobile devices with agile iBeacon deployment.
In Proceedings of the 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE),
Halifax, NS, Canada, 3–6 May 2015; pp. 275–279.

19. Wu, X.; Shen, R.; Fu, L.; Tian, X.; Liu, P.; Wang, X. iBILL: Using iBeacon and Inertial Sensors for Accurate
Indoor Localization in Large Open Areas. IEEE Access 2017, 5, 14589–14599. [CrossRef]

20. Martin, P.; Ho, B.J.; Grupen, N.; Muñoz, S.; Srivastasa, M. Demo Abstract: An iBeacon Primer for Indoor
Localization. In Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings
(BuildSys’14), Memphis, TN, USA, 3–6 November 2014; pp. 190–191.

21. He, S.; Hu, T.; Chan, S.-H.G. Contour-based Trilateration for Indoor Fingerprinting Localization.
In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems (SenSys’15), Seoul,
Korea, 1–4 November 2015; pp. 225–238.

22. Mesh Networking Specifications. Available online: https://www.bluetooth.com/specifications/mesh-
specifications (accessed on 5 May 2018).

23. Qualcomm. CSRmesh(r) Development Kit. Available online: http://www.csr.com/tw/node/4684 (accessed
on 5 May 2018).

24. Zenker, P.; Krug, S.; Binhack, M.; Seitz, J. Evaluation of BLE Mesh Capabilities: A Case Study Based on
CSRmesh. In Proceedings of the 2016 Eighth International Conference on Ubiquitous and Future Networks
(ICUFN), Vienna, Austria, 5–8 July 2016; pp. 790–795.

25. nRF OpenMesh. Available online: https://github.com/NordicPlayground/nRF51-ble-bcast-mesh (accessed
on 5 May 2018).

26. Levis, P.; Clausen, T.; Hui, J.; Gnawali, O.; Ko, J. RFC 6206: The Trickle Algorithm. Available online:
https://tools.ietf.org/html/rfc6206 (accessed on 5 May 2018).

27. Kim, H.-S.; Lee, J.; Jang, J.W. BLEmesh: A wireless mesh network protocol for Bluetooth low energy devices.
In Proceedings of the 2015 3rd International Conference on Future Internet of Things and Cloud (FiCloud),
Rome, Italy, 24–26 August 2015; pp. 558–563.

28. Eddystone. Available online: https://developers.google.com/beacons/eddystone (accessed on 11 May 2018).
29. AltBeacon. Available online: http://altbeacon.org/ (accessed on 11 May 2018).
30. The Physical Web. Available online: https://google.github.io/physical-web/ (accessed on 12 May 2018).
31. Bluetooth Topology Options. Available online: https://www.bluetooth.com/bluetooth-technology/

topology-options (accessed on 5 May 2018).
32. Bluetooth Core Specification Version 4.1. Available online: https://www.bluetooth.com/specifications/

bluetooth-core-specification/legacy-specifications (accessed on 11 May 2018).
33. Redbear Duo. Available online: https://redbear.cc/duo/ (accessed on 5 May 2018).
34. Google Firebase. Available online: https://firebase.google.com/ (accessed on 5 May 2018).
35. Sponås, J.G. Things You Should Know about Bluetooth Range. Available online: https://blog.nordicsemi.

com/getconnected/things-you-should-know-about-bluetooth-range (accessed on 5 May 2018).
36. Bluetooth Core Specification Version 5.0. Available online: https://www.bluetooth.com/specifications/

bluetooth-core-specification (accessed on 11 May 2018).
37. Darroudi, S.M.; Gomez, C. Bluetooth low energy mesh networks: A survey. Sensors 2017, 17, 1467. [CrossRef]

[PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSAC.2015.2430281
http://dx.doi.org/10.1109/ACCESS.2017.2726088
https://www.bluetooth.com/specifications/mesh-specifications
https://www.bluetooth.com/specifications/mesh-specifications
http://www.csr.com/tw/node/4684
https://github.com/NordicPlayground/nRF51-ble-bcast-mesh
https://tools.ietf.org/html/rfc6206
https://developers.google.com/beacons/eddystone
http://altbeacon.org/
https://google.github.io/physical-web/
https://www.bluetooth.com/bluetooth-technology/topology-options
https://www.bluetooth.com/bluetooth-technology/topology-options
https://www.bluetooth.com/specifications/bluetooth-core-specification/legacy-specifications
https://www.bluetooth.com/specifications/bluetooth-core-specification/legacy-specifications
https://redbear.cc/duo/
https://firebase.google.com/
https://blog.nordicsemi.com/getconnected/things-you-should-know-about-bluetooth-range
https://blog.nordicsemi.com/getconnected/things-you-should-know-about-bluetooth-range
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
http://dx.doi.org/10.3390/s17071467
http://www.ncbi.nlm.nih.gov/pubmed/28640183
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Locating Systems and Applications Based on Bluetooth Low Energy (BLE)
	Implementations of Bluetooth Mesh Networking
	Bluetooth Beacon Technology

	System Design
	System Architecture
	Flow of Operations
	Messages in the Beacon Network

	Implementation and Experiments
	Implementation and Deployment of Our Prototype System
	Experiment 1
	Experiment 2
	Experiment 3
	Discussions
	The Communication Range of Bluetooth Beacons
	Contention on Advertising Channels and Interference from Wi-Fi
	Problems Related to a Large Deployment Area

	Conclusions
	References

