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Abstract: The energy reading has been an efficient and attractive measure for collaborative
acoustic source localization in practical application due to its cost saving in both energy and
computation capability. The maximum likelihood problems by fusing received acoustic energy
readings transmitted from local sensors are derived. Aiming to efficiently solve the nonconvex
objective of the optimization problem, we present an approximate estimator of the original problem.
Then, a direct norm relaxation and semidefinite relaxation, respectively, are utilized to derive the
second-order cone programming, semidefinite programming or mixture of them for both cases of
sensor self-location and source localization. Furthermore, by taking the colored energy reading noise
into account, several minimax optimization problems are formulated, which are also relaxed via the
direct norm relaxation and semidefinite relaxation respectively into convex optimization problems.
Performance comparison with the existing acoustic energy-based source localization methods is
given, where the results show the validity of our proposed methods.

Keywords: sensor self-localization; source localization; sensor networks; convex optimization;
semidefinite programming

1. Introduction

In recent years, with the advances in distributed and collaborative signal processing
and communication, sensor networks have become an attractive system for various civil and
military applications, especially in surveillance areas, such as environmental monitoring [1,2],
traffic monitoring [3,4], source detection, localization, and tracking [5–10], etc. In this paper, we focus
on the application of sensor self-localization and source localization. More specifically, the position
of sensors or a target is derived by fusing the received acoustic energy from local nodes in a
sensor network.

Different measurement models are defined to localize the source, such as time of arrival
(TOA) [10–13], time difference of arrival (TDOA) [14–17], angle of arrival (AOA) [18], received signal
strength (RSS) [19–21], received signal energy [5,22–30], distance measurement (DM) [31], and a
combination of part of them [32,33]. The range information between sensor nodes and the source
is reflected in TOA, TDOA, and RSS, while the angular information of the emitting signal relative
to self-nodes is reflected in AOA. In comparison, TOA and TDOA based methods require accurate
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and complicated time synchronization among different sensors or source. The AOA based method
requires angle measuring devices (e.g., microphone array). RSS and energy based methods are
efficient and cost saving (in both energy and computation capability) in practical application due to its
implementation simplicity. In this paper, we focus on the energy-based acoustic source localization
method. More specifically, we focused on the solving technique of acoustic energy based source
localization, and developed two efficient convex optimization methods based on direct norm relaxation
and semidefinite relaxation, respectively.

The scenario of acoustic source localization in a sensor network is depicted in Figure 1.
By considering an acoustic source localization system to learn the migration characteristics of birds,
we need to track the position of them. In such a system, several nodes with communication capacity
are randomly deployed in a surveillance area, and then form a sensor network. We assume that
some nodes have Global Navigation Satellite System (GNSS) modules, which can obtain their own
positions via GNSS. Furthermore, the time synchronization by using one pulse per second signal
from GNSS satellites is carried out after deployment. If parts of nodes can not receive the GNSS
signal, the time synchronization algorithm by using data exchange among unsynchronized nodes and
synchronized nodes in [34] can be employed to make sure all the nodes are synchronized. The space
initialization is required after time synchronization, which is to obtain the spacial structure of the
sensor network. The position of node with GNSS module can be directly derived, while the position of
the node without GNSS module can be calculated by using sensor self-localization algorithms based on
the given positions of anchor nodes. After the initialization, the sensor network system starts to locate
the acoustic target, e.g., the migrated bird. All of these nodes in such a sensor network receive the
acoustic signal, which is generated by the acoustic source. The energy reading is calculated according
to the measurements by averaging the noisy samples of received signals in each node. Then, the energy
reading of each node is transmitted via a wireless channel or cable medium to the fusion center by
using time-division multiple access or frequency-division multiple access. The fusing algorithms are
our main focus in this paper, which are carried out to efficiently combine the energy readings from all
the nodes at a fusion center.

Fusion 
Center

Acoustic Source

Node

Figure 1. Acoustic nodes (filled circles) receive signal generated by an acoustic source (represented by
a filled triangle) and data fusion for source localization.

1.1. Related Work

Acoustic energy based source localization has been extensively studied in surveillance areas due to
its cost saving in both energy and computation capability. In recent years, the first research on acoustic
energy-based source localization is traced back to 2003 in [22], where the author proposed an acoustic
energy decay model based on the real-field experiment. A quadratic elimination (QE) for the source
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localization is proposed to derive the location estimate. Following the work of [22], Sheng extended
such an energy decay model to the scenario of multiple source localization and proposed a maximum
likelihood (ML) method in [5]. The ML estimator has been proved to be asymptotically optimal when
the statistic distribution of acoustic energy readings is known. However, it is intractable to derive
the solution of the ML estimator due to the severely nonlinear and nonconvex objective function.
An iterative method is proposed to solve the ML problem in [23]. As we know, the performance of
the iterative method is strongly dependent on the initial value, and an inappropriate initialization
may lead to a local optimum or a saddle point of the objective function. Moreover, the computation
of solving ML is costly. To reduce the computational complexity of solving ML, the authors in [24]
proposed two weighted least-squares (WLS) methods to obtain a good trade-off between performance
and complexity. In addition, we presented a direct WLS source localization method in [25], where
the source position, the transmission power (or radiation power), together with the quadratic term
of source location are simultaneously estimated in a closed-form. All of these WLS based source
localization methods have superior performance than the QE method. In order to derive the linear
estimation, the LS and WLS based source localization methods cope with the quadratic term with
respective to the unknown parameter in different technologies. The core idea is to eliminate the
unknown quadratic term. Such a kind of technique leads to higher performance loss under larger
noise (or smaller signal-to-noise ratio).

Aiming to efficiently solve the ML problem, and enhance the source localization performance
of LS and WLS based methods at higher noise level, some authors in [20,21,26–30] proposed a kind
of convex approximation technique to convert the nonconvex optimization problems into convex
ones, which can be reliably and efficiently solved to derive globally optimal solution [35,36]. It should
be noted that the core idea of acoustic energy based source localization via convex optimization is
to convert the original optimization problem into a convex one. Then, the convex problem is easily
solved using interior-point methods or other special methods. In [26], by considering the free-space
scenario with decay factor 2, a semidefinite relaxation (SDR) technique was employed to derive the
convex optimization solution by using the acoustic energy ratio with the reference node. Under the
same scenario, an approximate of the original ML problem was proposed by joint estimating (JE)
the unknown transmission power and source location in [27]. Based on the same acoustic energy
attenuation model with decay factor 2, a quadratic programming problem via SDR (labeled as SQP) was
formulated in [29], which requires additional matrix rank-one decomposition to find the optimal source
location. However, such a source localization method is quite sensitive to some matrix parameters.
As such, the author proposed a combination method that utilizes the advantages of SQP and JE
(proposed by Wang in [27]). These source localization methods suffer from the applicable limitation
that can only be employed under the free-space energy attenuation. To avoid such a limitation, Wang
extended the JE method to the scenario with any energy decay factor in [28]. In addition, by taking
logarithmic acoustic energy attenuation into account, the SDR technique was taken full advantage of
to transfer the original nonconvex ML optimization problem into convex one in [20,21]. Alternatively,
the minimax optimization formulation was developed to directly minimize the mean square error
of the unknown parameter estimation error in [30]. All of these convex optimization based source
localization methods is based on the Gaussian noise assumption. In this paper, we focus on the scenario
with any energy decay factor, which is more practical than the free-space assumption, and propose
direct norm relaxation and SDR based source localization methods under maximum likelihood and
minimax criterion, respectively. The source localization methods under the minimax criterion are
suitable for the non-Gaussian noise assumption.

1.2. Contributions

In this paper, we mainly focus on the fusion algorithms to efficiently solve the optimization
problem in the application of sensor self-localization and source localization under the acoustic energy
attenuation model with any decay factor. More specifically, we focus on the solving technique to derive
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the source location estimation based on the acoustic energy readings. Several convex optimization
problems are derived via a so-called direct norm relaxation and SDR, respectively. Our goal here is
to address the following questions: (1) how to effectively relax the nonconvex optimization into
convex one for the application of the energy-based source localization? (2) how to get the optimal
location estimation under colored noises of acoustic energy readings? (3) how does the localization
performance vary with different related parameters, such as energy decay factor, sampling number of
acoustic signals, source transmission or radiation level, etc.? To answer question (1), a direct norm
relaxation and SDR, respectively, are utilized to convert nonconvex problems into convex ones based
on the energy attenuation model of [22], which are reliably and efficiently solved in polynomial time.
To answer question (2), i.e., to solve the applicable limitation of current convex optimization with
colored energy reading noises, a minimax criterion is adopted to develop reduced computational
complexity methods. To answer question (3), the localization performance comparison is carried out
under different related parameters in Section 6. Our main contributions of this work are summarized
as follows.

• For sensor self-localization, a so-called direct norm relaxation and SDR, respectively, are utilized
to convert both the nonconvex ML optimization problems and minimax optimization problems
into convex ones. These two kinds of relaxations are compared and analyzed.

• For source localization, the ML and minimax optimization formulations based on transmission
power-elimination are derived. Based on such formulations, two source localization methods are
developed by utilizing the direct norm relaxation and SDR, respectively.

• The Cramér–Rao Low Bound (CRLB) of the energy-based source localization with any energy
decay factor for both the sensor self-localization and the source localization is given.

It is noted that this paper is an extension of our work in [26]. The differences with our previous
conference paper are given in the following aspects: (1) the energy decay factor can be set as any
number, (2) a direct norm relaxation is utilized to relax the nonconvex optimization problem into
a convex one, and (3) the performance comparison with the existing acoustic energy based source
localization methods is carried out.

The rest of this paper is organized as follows. Section 2 gives the energy decay model.
The maximum likelihood estimation (MLE) and approximate MLE formulations are also derived
according to the energy decay model. Section 3 describes the sensor self-localization methods with
known transmit power. The source localization with unknown transmission power is discussed in
Section 4. The CRLB under any energy decay factor is given in Section 5. The simulation results of the
performance comparison are given in Section 6. Finally, Section 7 concludes this paper.

2. Problem Statement

2.1. System Model

Consider a sensor network shown in Figure 2, which consists of N spatially distributed sensors and
a fusion center. A source transmits or emits acoustic waves to the surrounding environment. N spatially
distributed nodes measure the acoustic signal generated by the acoustic source. The received signal at
the nth sensor is

rn(`) =

√
gns(`/ fs − τn)

‖xn − y‖ α
2

+ ωn(`) (1)

for the index of nodes N = 1, · · · , N and the index of measurements of each node ` = 1, · · · , L,
where

√
gn is the amplifier gain of the nth node, τn is the transmission time delay of the acoustic signal

from the source to the nth node, s(`/ fs − τn) is the acoustic intensity measured 1 m away from the
source, and fs is the sampling frequency, which is a sampling parameter to sample the continuous
signal into a discrete one. xn and y represent the k-dimensional (k = 2 or k = 3) position vector of
the nth sensor and the source, respectively. ‖xn − y‖ denotes the Euclidean distance between the nth
sensor and the source. α is the decay factor depending on the surrounding environment. ωn(`) is
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white Gaussian measurement noise with variance ζ2
n, i.e., ωn(`) ∼ N (0, ζ2

n). The similar model can be
found in [5,24,28].
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Figure 2. The block digram of energy-based acoustic source localization in a sensor network.

The received signal energy at sensor n can be expressed as

E[r2
n(`)] = E

[
gns2(`/ fs − τn)

‖xn − y‖α

]
+ E

[
2
√

gns(`/ fs − τn)ωn(`)

‖xn − y‖α/2

]
+ E[ω2

n(`)], (2)

where E[·] denotes the expectation of random variable. The cross term E[(s(`/ fs − τn))ωn(`)] is 0 due
to the assumptions of zero-mean of ωn. The expectation E[·] can be realized by averaging the result
over a time window T = L/ fs. Then, by defining E[s2(`/ fs − τn)] , S and E[ω2

n(`)] =
1
L ∑L

`=0 ω2
n(`),

we have

hn , E[r2
n(`)] =

gnS
‖xn − y‖α

+
1
L

L

∑
`=0

ω2
n(`). (3)

Since ωn ∼ N (0, ζ2
n), the term ∑L

`=0 ω2
n/L have a χ2 distribution with mean ζ2

n and variance
2ζ4

n/L. According to the central limit theorem, we have ∑L
`=0 ω2

n/L ∼ AN (ζ2
n, 2ζ4

n/L). In order to
simplify the following derivation of the source localization, we subtract a constant ζ2

n in both side of
Formula (3), i.e.,

hn − ζ2
n =

gnS
‖xn − y‖α

+
1
L

L−1

∑
`=0

ω2
n(`)− ζ2

n︸ ︷︷ ︸
εn

. (4)

By defining zn , hn − ζ2
n, we have the following average energy

zn =
gnS

‖xn − y‖α
+ εn, (5)

where εn is an independent random variable, denoted by εn = 1
L ∑L

n=0 ω2
n − ζ2

n ∼ AN (0, σ2
n),

where εn ∼ AN (0, 2ζ4
n/L) and σ2

n = 2ζ4
n/L is the variance of εn. As such, the energy-based acoustic

source localization can be derived according to the noisy energy readings zn, n = 1, · · · , N.



Sensors 2018, 18, 1646 6 of 29

From the model (5), we obtain MLE of source location y:

ŷML = arg min
y,S

N

∑
n=1

1
σ2

n

(
zn −

gnS
‖xn − y‖α

)2
. (6)

Note that the objective function is a highly nonlinear and nonconvex function of unknown y.
The MLE optimization problem becomes computationally intractable. In order to avoid such an
intractable computation, the Taylor series expansion of f (x) = x−1/α on point zn

gnS can be used to
handle the nonconvex function. Equation (5) can be rewritten as

‖xn − y‖ =
(

gnS
zn

)1/α

+

(
gnS
zn

)1/α εn

αzn
+ o

(
(εn)

2
)

. (7)

As such, by discarding term o
(
(εn)2), the approximate MLE is expressed as

ŷAML = arg min
y,S

N

∑
n=1

z(2+2/α)
n

g2/α
n σ2

n

(
‖xn − y‖ −

(
gnS
zn

)1/α
)2

, (8)

where the term α2

S2/α is discarded since the common term is multiplied by all terms inside the summation.
In the following sections, we will consider two cases including the sensor self-localization with known
transmission power (or radiation power) S and the source localization without the knowledge of S.

Note that we assume the energy decay factor α is known beforehand in both the ML Formula (6)
and the approximate ML Formula (8). Actually, the energy decay factor significantly depends on
the surrounding acoustic environment, which can be dynamically estimated in the real scenario.
An efficient method is so-called iterative optimization, which is already leveraged in [28]. The source
location ŷ and transmission power Ŝ are estimated under a given random guess of α in the first step.
Then, the decay factor estimate α̂ is derived based on the logarithmic energy attenuation model under
derived source location estimate y and transmission power S. The objective function in Equation (6) is
calculated according to derived ŷ, Ŝ and α̂. If the difference between two continuous iterations is less
than some threshold, we stop the iteration, or continue the iteration. In this paper, we focus on the
optimization technique in the application of the sensor self-localization and the source localization.
Hence, we assume that the decay factor α is known beforehand. Moreover, the estimation error of α is
considered in the simulation to verify the robustness of our proposed methods.

In the application of sensor self-localization with the knowledge of the source transmission power
and the source localization without the knowledge of the source transmission power, the main goal is
to convert the original optimization problems into convex ones. Then, we can solve them efficiently,
just as we can solve least-squares problems efficiently. With only a bit of exaggeration, we can say that,
if a practical problem can be converted to a convex optimization problem, then the original problem is
solved [36].

2.2. Real Scenario Considerations

For such a sensor self-localization and source localization system, the implementation in a
real scenario by considering the communication between local nodes and the fusion center and the
initialization time of the whole sensor network is analyzed here. In addition, the computational
complexity of our proposed fusing algorithms will be compared in the simulation section.

Communication complexity: Note that the energy information of local nodes needs to be quantized
and transmitted to the fusion center via wireless channel or cable medium by multiple hops for a
sensor network based source localization system. The communication complexity depends on the
quantization level of energy readings in local nodes. The authors in [37–40] integrated the data
quantization and channel communication errors into the source localization in sensor networks,
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and developed channel-aware source localization algorithms. There is no doubt that performance
degrades when there are some quantization and data communication errors. In this paper, we mainly
focus on how to efficiently construct the convex optimization problem based on the energy of received
signal. The quantization and communication errors are not considered, which will be taken into
account in the future study.

Time complexity: The time complexity of our proposed algorithms is related with the time of data
collection and the initialization time. The data collection time depends on the sampling frequency and
size. For example, the data collection time is t = 1

48 s for a node with 48 kHz sampling frequency and
1000 samples. Generally, there exist time and space initialization for a sensor network, which are the
first steps after the source localization system is deployed in a real scenario. The time initialization is
to coarsely synchronize (the fine time synchronization for energy-based source localization system
is not necessary) all the nodes and the fusion center for the energy-based source localization system.
The synchronization can be efficiently fulfilled via Global Navigation Satellite System for a sensor
network that can receive one pulse per second signal from satellites. The space initialization is to
estimate the position of all the nodes according to the position information from the so-called anchor
nodes. The time complexity depends on the network size, communication mode between sensors and
the fusion center. For our proposed source localization algorithms, we can see that the localization
system with network size 20 already exhibits acceptable performance from the simulation section.

3. Sensor Self-Localization with Known Transmission Power

For the application of sensor self-localization in a sensor network, the transmission power S can
be known via data exchange among all the nodes. Hence, S can be taken as a known parameter. In this
section, we first derive two kinds of sensor self-localization methods under ML criterion based on
direct norm relaxation and SDR, respectively. Then, by taking colored noise into account, two source
localization methods are derived under minimax criterion.

3.1. Sensor Self-Localization under Maximum Likelihood Criterion

The direct solving of Equation (8) is intractable due to the nonconvex objective function.
Next, we transform the nonconvex MLE problem into a convex optimization one by two different
relaxation techniques.

3.1.1. Direct Norm Relaxation

By defining N auxiliary variables

r = [r1, · · · , rN ]
T , rn =

z(1+1/α)
n

g1/α
n σn

(
‖xn − y‖ −

(
gnS
zn

)1/α
)

. (9)

Equation (8) can be written as ŷ = arg miny,r ‖r‖2, where ‖r‖ denotes the 2-norm of vector r.
Note that the constraint in Equation (9) is a noncovex function of unknown y due to the term ‖xi − y‖.
By introducing N auxiliary variables dn = ‖xn − y‖, n = 1, · · · , N and directly relaxing them as



Sensors 2018, 18, 1646 8 of 29

‖xn − y‖ ≤ dn, the optimization problem based on ML criterion in Equation (8) can be transformed
into the following Second-order cone programming (SOCP) problem

(ML-SL-DR) min
y,r,η

η + λMLD

N

∑
n=1

rn

subject to

∥∥∥∥∥
[

2r
η − 1

]∥∥∥∥∥ ≤ η + 1, r = [r1, · · · , rN ]
T ,

rn =
zn

σn

((
zn

gnS

)1/α

dn − 1

)
,

‖xn − y‖ ≤ dn, n = 1, · · · , N,

(10)

where η is an epigraph variable and λMLD is a positive constant for penalization. The SOCP problem (10)
is a convex problem, which is labeled as (ML-SL-DR). The notation “ML” denotes criterion Maximum
Likelihood that is utilized, “SL” denotes Self-Localization and “DR” denotes the optimization problem
is derived by Direct Relaxation. Its global optimal solution y∗ can be efficiently obtained by existing
numerical tools, such as SeDuMi [41] and SDPT3 [42].

Note that the SOCP optimization-based sensor self-localization method directly relaxes the
constraint ‖xn− y‖ = dn into inequality ‖xn− y‖ ≤ dn in (10). For the equality constraint, the feasible
region of the approximate ML problem is the intersection point of the circle (two-dimensional) formed
by ‖xn − y‖ = dn, n = 1, · · · , N. However, for the relaxed inequality constraint, the feasible region is
the intersection region of the disk (two-dimensional) formed by ‖xn − y‖ ≤ dn, n = 1, · · · , N. Such a
relaxation leads to performance degradation for the case when the source is located outside the convex
hull formed by sensors. We refer to this performance degradation as convex hull effect. Next, by taking
a planar (m = 2) sensor network with N = 3 nodes as an example, we state the cause of performance
degradation induced by the direct norm relaxation (see Figure 3).

C

(a)

C

(b)

Figure 3. Illustration of the convex hull effect of one of the proposed alternative SOCP localization
methods. The pentagram denotes the source and the solid circle denotes the sensor. (a) the source is
located inside the convex hull (region C) formed by N = 3 sensors; (b) the source is located inside the
convex hull (region C) formed by N = 3 sensors.

From the figure, we can clearly see that inequality ‖xn − y‖ ≤ dn denotes the disk area.
The feasible region of the approximate ML problem is the intersection of N disk. When the source is
located inside the convex hull (see region C in Figure 3a), the feasible region is given as the shadow
area in Figure 3a. In comparison, when the source is located outside the convex hull of sensors,
the feasible region is illustrated as the shadow area in Figure 3b. Comparing these two feasible regions,
we can clearly see that the inside scenario (Figure 3a) has much smaller area than that of the outside
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scenario. As we know, the smaller the feasible region is, the more accurate the estimate is. Therefore,
the relaxation from ‖xn − y‖ = dn to ‖xn − y‖ ≤ dn leads to performance degradation when the
source is moved from the inside convex hull to the outside convex hull.

3.1.2. Semidefinite Relaxation

To overcome such a convex hull effect, we give another alternative SDP-based formulation for the
problem of the sensor self-localization. When the source transmission power is known, the MLE in (8)
can be written as the following matrix form:

ŷ = arg min
y

{
(d− p)T Q−1 (d− p)

}
, (11)

where d and p are defined as

d , [‖x1 − y‖, · · · , ‖xN − y‖]T ,

p ,

[(
g1S
z1

)1/α

, · · · ,
(

gNS
zN

)1/α
]T

.
(12)

In addition, Q−1 is given as

Q−1 = diag

([
z(2+2/α)

1

g2/α
1 σ2

1

,
z(2+2/α)

2

g2/α
2 σ2

2

, · · · ,
z(2+2/α)

N

g2/α
N σ2

N

])
, (13)

where diag(·) denotes the diagonal matrix with the given vector on the main diagonal.
By defining an auxiliary matrix D , ddT , the objective function of (11) can be written as

Tr
{

Q−1
(

D− 2dpT + ppT
)}

, (14)

where Tr(·) denote the trace of a square matrix. Equation (14) holds due to the matrix property
XT AX = Tr

(
AXXT). It is obvious that D is semidefinite, i.e., D � 0. According to the relation

between D and d, the element Dnn, 1 ≤ n ≤ N can be represented as

Dnn = ‖xn − y‖2 = xT
n xn − 2xT

n y + ys, (15)

where ys is defined as ys , yTy. Moreover, by Cauchy–Schwartz inequality, the other elements can be
represented as Dmn = ‖xm − y‖ · ‖xn − y‖ ≥

∣∣xT
mxn − (xm + xn)Ty + ys

∣∣. Note that these constraints
(D = ddT and ys = yTy) are still nonconvex, the solving remains difficult. The SDR technique
is employed such that these two equalities can be relaxed into convex inequalities, D � ddT and
ys ≥ yTy, where [·] � 0 means the matrix is semidefinite. Furthermore, these two inequalities can be
rewritten as linear matrix inequalities:[

D(N×N) d
dT 1

]
� 0,

[
I(k×k) y

yT ys

]
� 0, (16)

where Ik×k is the k× k identity matrix, k = 2 or k = 3 is the dimension of position vector.
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Combining all the constraints and the relaxed constraints, the original approximate ML
optimization problem (8) can be written as the following SDP optimization problem:

(ML-SL-SDR) min
y,d,D,ys

Tr
{

Q−1
(

D− 2dpT + ppT
)}

+ λMLS

N

∑
m=1

N

∑
n=1

Dmn

subject to Dnn = xT
n xn − 2xT

n y + ys, Dmn ≥
∣∣∣xT

mxn − (xm + xn)
Ty + ys

∣∣∣ ,[
D(N×N) d

dT 1

]
� 0,

[
I(k×k) y

yT ys

]
� 0,

m, n = 1, · · · , N, n > m,

(17)

where λMLS > 0 is a penalization constant. The SDP problem (17) is a convex one, which can also
be solved by the convex tool. Here, we label such a source localization method as (ML-SL-SDR).
The denotation “SDR” denotes that the convex optimization problem is derived via a Semidefinite
Relaxation. The same notations will be employed in the following sections, which will not be described.

Comparing the SOCP source localization method that is derived via direct norm relaxation,
we observe that the key difference is the relaxed term. The nonvonvex equality ‖xn − y‖ = dn is
directly relaxed for (ML-SL-DR), whereas the nonconvex equality yTy = ys and ddT = D are relaxed
for (ML-SL-SDR).

3.2. Sensor Self-Localization under Minimax Criterion

The approximate ML formulation in (8) is based on the assumption of Gaussian acoustic energy
reading noise. In practice, however, this assumption suffers from mismatch due to multipath
environmental reverberation and echoes. The energy reading may exhibit colored noise or the
statistical characteristic is unknown. By taking such uncertainty into account, the minimax criterion
are considered in this section.

3.2.1. Direct Norm Relaxation

By discarding the term o
(
(εn)2), Equation (7) can be expressed as

αzn

(
zn

gnS

)1/α

‖xn − y‖ − αzn = εn. (18)

In the noise-free case, the right-hand side of (18) is of course zero. Thus, one approach to
estimating y would be to minimize the maximum matching error. To find a globally convergent
solution that is less sensitive to the noise correlation, a simplified formulation under minimax criterion
can be written as

ŷMM = arg min
y

max
n=1,··· ,N

∣∣∣∣∣zn

((
zn

gnS

)1/α

‖xn − y‖ − 1

)∣∣∣∣∣ , (19)

where “MM” denotes the optimization problem under the minimax criterion and the common term α

inside absolute operation is discarded. Another perspective is to treat the minimax criterion based
formulation in (19) as a Chebyshev approximation [36].

Clearly, the objective function is nonconvex of unknown y. Next, we transform the nonconvex
problem into a convex one via direct norm relaxation.
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Again, by introducing auxiliary variables dn = ‖xn − y‖, n = 1, · · · , N and an epigraph
variable γ, and directly relaxing the equality constraints into ‖xn − y‖ ≤ dn, we have the following
SOCP problem:

(MM-SL-DR) min
y,d,γ

γ + λMMD

N

∑
n=1

dn

subject to

∣∣∣∣∣zn

((
zn

gnS

)1/α

dn − 1

)∣∣∣∣∣ ≤ γ,

‖xn − y‖ ≤ dn, n = 1, · · · , N,

(20)

where λMMD > 0 is the penalization factor. Such an SOCP problem in (20) is labeled as (MM-SL-DR),
which can be efficiently solved to obtain the global optimal solution in polynomial time. The denotation
“MM” denotes the Minimax criterion.

3.2.2. Semidefinite Relaxation

According to the previous analysis, there exists a convex hull effect for the direct 2-norm relaxation.
Correspondingly, here, we propose semidefinite relaxation based sensor self-localization method under
minimax criterion. In order to avoid the direct 2-norm relaxation, square (18), we have

α2z2
n

(
zn

gnS

)2/α

‖xn − y‖2 − α2z2
n = (εn + 2αzn) εn︸ ︷︷ ︸

noise νn

. (21)

To find a globally convergent solution, which is less sensitive to the noise correlation, a simplified
formulation under minimax criterion can be given as

ŷMM = arg min
y

max
n=1,··· ,N

∣∣∣∣∣z2
n

((
zn

gnS

)2/α

‖xn − y‖2 − 1

)∣∣∣∣∣ , (22)

where the common term α2 is discarded. As we can see that the formulation under minimax criterion
is still nonconvex, it is quite amenable to be relaxed, as shown below.

We introduce auxiliary variables ds
n = ‖xn − y‖2 and ys = yTy. Accordingly, the optimization

problem (52) can be rewritten in an equivalent form

min
y,ys ,{ds

n}N
n=1,γ

γ

subject to

∣∣∣∣∣z2
n

((
zn

gnS

)2/α

ds
n − 1

)∣∣∣∣∣ ≤ γ

ds
n = ys − 2xT

n y + xT
n xn,

ys = yTy, n = 1, · · · , N.

(23)
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However, the equation constraint ys = yTy is not affine. To make the whole formulation convex,
we relax it to inequality constraint ys ≥ yTy, which can be written in a linear matrix equality. Then,
we can formulate the sensor self-localization problem as

(MM-SL-SDR) min
y,ys ,{ds

n}N
n=1,γ

γ + λMMS

N

∑
n=1

ds
n

subject to

∣∣∣∣∣z2
n

((
zn

gnS

)2/α

ds
n − 1

)∣∣∣∣∣ ≤ γ,

ds
n = ys − 2xT

n y + xT
n xn,[

I(k×k) y
yT ys

]
� 0, n = 1, · · · , N,

(24)

where λMMS > 0 is a penalization factor. We label such an SDP problem as (MM-SL-SDR), which can
efficiently be solved by standard convex optimization tools.

4. Source Localization with Unknown Transmission Power

It sould be noted that it is intractable to obtain the transmission power for the source localization
in the surveillance environment e.g., battlefield. We consider the scenario of source localization without
knowledge of the transmission power.

4.1. Source Localization under Maximum Likelihood Criterion

In order to eliminate the unnecessary and unknown transmission power S, the gain ratio between
the mth and nth node is defined by

Kmn ,
gm

gn
=

(zm − εm)‖xm − y‖α

(zn − εn)‖xn − y‖α
, (25)

which can be expressed as

‖xm − y‖(zm − εm)
1/α = K1/α

mn ‖xn − y‖(zn − εn)
1/α. (26)

The term (zn − εn)1/α can be approximated with Taylor series expansion to the first order and
written as

(zn − εn)
1/α ≈ z1/α

n − zn
(1/α−1)

α
εn. (27)

Then, Equation (26) can be rewritten as

‖xm − y‖z1/α
m −‖xn − y‖z1/α

n K1/α
mn =

1
α

(
z(1/α−1)

m dmεm − K1/α
mn z(1/α−1)

n dnεn

)
︸ ︷︷ ︸

ξmn

,
(28)

where ξmn is defined as

ξmn ,
1
α

(
z(1/α−1)

m dmεm − K1/α
mn z(1/α−1)

n dnεn

)
. (29)

To derive the ML estimate of unknown source location y, we have to analytically derive the
covariance matrix Σ of noises ξmn, 1 ≤ m ≤ N, 1 ≤ n ≤ N, m 6= n. The common sensors in the gain
ratio of all pairwise measurements leads to correlated noise. By defining the noise vector as

ξ = [ξ12, · · · , ξ1N , ξ23, · · · , ξ2N , ξ31, · · · , ξN−1,N ]
T , (30)
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where the dimension is M = N(N − 1)/2. In (29), by replacing dn with (7), we derive the element of
the mean of ξ is

E [ξ`] = E [ξmn] =
(gmS)1/ασ2

m
α2z2

m
− (KmngnS)1/α σ2

n
α2z2

n
, (31)

where 1 ≤ ` ≤ M is the index of vector ξ. The element of covariance matrix Σ is

Σικ = E
[
(ξmn − E[ξmn])

(
ξij − E[ξij]

)]
= E[ξmnξij]− E[ξmn]E[ξij]. (32)

The second order moment E[ξmnξij] can further be written as

E[ξmnξij] =
1
α2

[
(zmzi)

1/α−1E [dmεmdiεi] +(KmnKij)
1/α(znzj)

1/α−1E
[
dnεndjε j

]
−K1/α

mn (znzi)
1/α−1E [dnεndiεi] −K1/α

ij (zjzm)
1/α−1E

[
dmεmdjε j

]]
.

(33)

According to the approximation in (7), the term E[duεudvεv] for u = m, n and v = i, j can be
derived according to the following different conditions:

• when u = v, the term E[duεudvεv] is

E[duεudvεv] =

(
guS
zu

)2/α (
σ2

u +
2σ4

u
α2z2

u

)
, (34)

• when u 6= v, the term E[duεudvεv] is

E[duεudvεv] =

(
guS
zu

)1/α σ2
u

αzu

(
gvS
zv

)1/α σ2
v

αzv
, (35)

where σ2
u is the variance of acoustic energy reading noise εu in (5).

Hence, M = N(N − 1)/2 equations of (28) can be written as a vector form

Gd = ξ, (36)

where G is

G =



z
1
α
1 −(K12z2)

1
α 0 0 · · · 0 0

z
1
α
1 0 −(K13z3)

1
α 0 · · · 0 0

...
...

...
...

...

z
1
α
1 0 0 0 · · · 0 −(K1N zN)

1
α

0 z
1
α
2 −(K23z3)

1
α 0 · · · 0 0

0 z
1
α
2 0 −(K24z4)

1
α · · · 0 0

...
...

...
...

...
...

0 z
1
α
2 0 0 · · · 0 −(K2N zN)

1
α

...
...

...
...

...
...

0 0 0 0 · · · z
1
α
N−1 −(KN−1,N zN)

1
α



, (37)

and vector d is
d = [‖x1 − y‖, ‖x2 − y‖, · · · , ‖xN − y‖]T . (38)

ξ is given in (30). The dimension of G is M× N. According to (36) with unknown source location y,
the ML estimation can be expressed as

ŷML = min
y,d

(Gd)T Σ−1 (Gd) , (39)
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where Σ is the covariance matrix of noise vector ξ, which can be derived according to (31)∼(35). Please
note that there exists an unknown term S2/α in the covariance matrix Σ in (32), which can be discarded
in the optimization (36), since it is not necessarily exactly known and is independent of the unknown
vector d.

As such, the source localization with unknown transmission power S is formulated as (39)
according to the gain ratio or energy ratio under ML criterion.

Note that the ML source localization problem in (36) is a nonlinear optimization problem. It is
difficult to solve such a nonconvex optimization problem. The objective function of (39) can be
rewritten as

ϕ , Tr
(

Σ−1GDGT
)

, (40)

where D is defined as D , ddT . Based on such a new matrix variable, we will pursue a convex
relaxation via direct norm relaxation and SDR, respectively, to generate convex optimization problems,
which can be efficiently solved in polynomial time.

4.1.1. Direct Norm Relaxation

First, we consider the direct norm relaxation. The equality constraint of D , ddT is not an affine
set. Such an equality can be relaxed into D � ddT , which can be written as[

DN×N d
dT 1

]
� 0. (41)

After such a relaxation, there are still N nonconvex constraints in (38). Again, the nonconvex
equation can be directly relaxed as d = [d1, · · · , dN ]

T , ‖xn − y‖ ≤ dn. The optimization problem
based on ML criterion in (39) can be formulated as

(ML-RL-DR) min
y,D,d

Tr
(

Σ−1GDGT
)
+ βMLD

N

∑
m=1

N

∑
n=1

Dmn

subject to

[
DN×N d

dT 1

]
� 0, d = [d1, · · · , dN ]

T ,

‖xn − y‖ ≤ dn, n = 1, · · · , N,

(42)

where βMLD > 0 is a penalization factor. We label such an optimization problem as (ML-RL-DR).
The denotation “RL” denotes souRce Localization.

4.1.2. Semidefinite Relaxation

Similar to the scenario of the sensor self-localization with known transmission power, by defining
ys = yTy, we have following convex constraints Dnn = ‖xn − y‖2 = xT

n xn − 2xT
n y + ys and Dmn =

‖xm − y‖ · ‖xn − y‖ ≥
∣∣xT

mxn − (xm + xn)Ty + ys
∣∣. Similarly, the equality constraints ys = yTy can

be relaxed as ys ≥ yTy, which is equivalently written as a linear matrix equality. Combining all the
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constraints and the relaxed constraints, the original ML problem (39) can be written as the following
SDP optimization problem:

(ML-RL-SDR) min
y,D,ys

Tr
(

GDGTΣ−1
)
+ βMLS

N

∑
m=1

N

∑
n=1

Dmn

subject to Dnn = xT
n xn − 2xT

n y + ys,

Dmn ≥
∣∣∣xT

mxn − (xm + xn)
Ty + ys

∣∣∣ ,[
I(k×k) y

yT ys

]
� 0, D(N×N) � 0,

m = 1, · · · , N, n = 1, · · · , N,

(43)

where βMLS > 0 is a penalization factor. Such an SDP optimization problem labeled as (ML-RL-SDR),
which can be efficiently solved by existing numerical tools.

4.2. Source Localization under Minimax Criterion

The (ML-RL-SDR) optimization problem in (43) is an SDP-based convex optimization problem
for ML estimate in (39). We can see that the ML estimate relies on the known covariance matrix Σ.
Similarly, the minimax criterion is considered by taking colored acoustic energy noise into account.

4.2.1. Direct Norm Relaxation

According to (28), the source localization under minimax criterion can be written as

ŷMM = arg min
y

max
m,n=1,··· ,N

n>m

∣∣∣‖xm − y‖z1/α
m − ‖xn − y‖z1/α

n K1/α
mn

∣∣∣ . (44)

Such an optimization can be expressed as

min
y,d

‖Gd‖∞

subject to ‖xn − y‖ = dn, n = 1, · · · , N,
(45)

where G and d are defined in (37) and (38), and ‖ · ‖∞ is the `∞ norm. We can see that the equality
constrain in (45) is nonconvex. The equality constrain can be directly relaxed as a convex one
‖xn − y‖ ≤ dn. Thus, we obtain following optimization problem:

(MM-RL-DR) min
y,d

‖Gd‖∞ + βMMD

N

∑
n=1

dn

subject to ‖xn − y‖ ≤ dn, n = 1, · · · , N,

(46)

where βMMD > 0 is a constant for penalization. Such an optimization problem is convex in the
variables d and y. We label such a convex optimization as (MM-RL-DR), which can be solved by
convex optimization tools.

4.2.2. Semidefinite Relaxation

Such direct relaxation source localization suffers from convex hull effect, which exhibits
dramatically performance degradation when the source is located outside the convex hull formed



Sensors 2018, 18, 1646 16 of 29

by sensors. Hence, an SDP-based source localization is proposed under minimax criterion.
The formulation (28) can be rewritten as ‖xm − y‖z1/α

m = ‖xn − y‖z1/α
n K1/α

mn + ξmn, which leads to

‖xm − y‖2z2/α
m − ‖xn − y‖2z2/α

n K2/α
mn

= ξmn

(
ξmn + 2‖xn − y‖z1/α

n K1/α
mn

)
︸ ︷︷ ︸

ςmn

. (47)

Similarly, in the noise-free case, the right-hand side of (47) is zero, we obtain a simplified
formulation by adopting the minimax criterion

ŷMM = arg min
y

max
m,n=1,··· ,N

n>m

∣∣∣‖xm − y‖2z2/α
m − ‖xn − y‖2z2/α

n K2/α
mn

∣∣∣ . (48)

Such a formulation is still nonconvex. Next, the SDR technique is adopted to relax the nonconcex
constraints to convex ones.

By defining auxiliary variables ds
n , ‖xn − y‖2 and ds , [ds

1, ds
2, · · · , ds

N ]
T , the objective function

can be equivalently written as
min
ds ,y

‖Gsds‖∞ , (49)

where Gs is defined as

Gs =



z
2
α
1 −(K12z2)

2
α 0 0 · · · 0 0

z
2
α
1 0 −(K13z3)

2
α 0 · · · 0 0

...
...

...
...

...
z

2
α
1 0 0 0 · · · 0 −(K1N zN)

2
α

0 z
2
α
2 −(K23z3)

2
α 0 · · · 0 0

0 z
2
α
2 0 −(K24z4)

2
α · · · 0 0

...
...

...
...

...
...

0 z
2
α
2 0 0 · · · 0 −(K2N zN)

2
α

...
...

...
...

...
...

0 0 0 0 · · · z
2
α
N−1 −(KN−1,N zN)

2
α



. (50)

By expanding the nonconvex constraint ds
n = ‖xn − y‖2 and defining ys = yTy, we have

ds
n = xT

n xn − 2xT
n y + ys, (51)

which is an affine function of ds
n, y and ys. The nonconvex constraint yTy can be relaxed as ys ≥ yTy,

which can be written as a linear matrix equality. By combining all the convex constraints and
semidefinite relaxation, the source localization under minimax criterion can be transformed as the
following convex optimization problem:

(MM-RL-SDR) min
ds ,y

‖Gsds‖∞ + βMMS

N

∑
n=1

ds
n

subject to

[
I(k×k) y

yT ys

]
� 0,

ds
n = ys − 2xT

n y + xT
n xn, n = 1, · · · , N,

(52)

where βMMS > 0 is a positive constant for penalization. Such a convex optimization is labeled
as (MM-RL-SDR).
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5. Cramér–Rao Low Bound (CRLB) of the Energy-Based Source Localization

In this section, CRLBs of the energy-based acoustic source localization with known and unknown
transmission power (or radiation power) are given under any energy decay factor.

The Fisher information matrix is

J = E

{[
∂ ln p(Z | θ′)

∂θ′

] [
∂ ln p(Z | θ′)

∂θ′

]T
}

, (53)

where θ′ is the unknown vector. For the sensor self-localization case with known S, θ′ = y, for the
source localization case with unknown S, θ′ = [yT , S]T .

According to the original ML problem in (6), for the sensor self-localization with known S, we have

JSL = BTB, (54)

where B =

[
αg1S(x1−y)

σ1dα+2
1

, αg2S(x2−y)
σ2dα+2

2
, · · · , αgN S(xN−y)

σN dα+2
N

]T
. Note that JSL is a m-dimensional matrix. Thus,

the lower bound of the source localization error for known S can be calculated as follows:

CRLBSL =

√[
J−1

SL

]
11
+ · · ·+

[
J−1

SL

]
mm

=

√
Tr
(

J−1
SL

)
, (55)

where “SL” denotes the sensor self-localization scenario with known S.
For unknown S, the Fisher information is

JRL =

[
BT

RT

] [
B R

]
, (56)

where R =
[

g1
σ1dα

1
, g2

σ2dα
2

, · · · , gN
σN dα

N

]T
. Thus, the lower bound of the the source localization error for

unknown S is

CRLBRL =

√[
J−1

RL

]
11
+ · · ·+

[
J−1

RL

]
mm

, (57)

where “RL” denotes the source localization scenario with unknown S.

6. Simulation Results

In this section, several examples and the corresponding performance analysis are given to compare
the proposed methods with the existing ones. All of the convex optimization problems are solved by
the MATLAB CVX package (Version 2.1, CVX Research, Inc., Austin, TX, USA) [43], where the solver
is SeduMi CVX. Note that some source localization methods in literature refine the results of the convex
optimization problem to improve the overall performance [27]. Equivalently, the source localization
procedure can be concluded as two step: (1) the solution of the convex optimization problem is derived,
and (2) a refinement method, e.g., randomization procedure, is carried out based on the initial solution.
In this section, to make a fair comparison of different source localization optimization methods, we
carry out the performance comparison without additional refinement, i.e., the results are derived from
the only optimization step.

In our simulations, if the sensor locations are fixed, we place N = 12 sensors in a two-dimensional
area at

x1 = (40, 40), x2 = (40,−40), x3 = (−40, 40),

x4 = (−40,−40), x5 = (40, 0), x6 = (0, 40),

x7 = (−40, 0), x8 = (0,−40), x9 = (20, 40),

x10 = (20,−40), x11 = (−20, 40), x12 = (−20,−40).

(58)
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The performance is evaluated in terms of the root-mean-square error (RMSE), which is defined as

RMSE =
√

∑M̄
m̄=1

‖ŷm̂−yt‖2

M̄ , where ŷm̂ is the estimate of the source position in the m̂th Monte Carlo run,
and M̄ is the number of the Monte Carlo runs. According to (1), the source transmission or radiation
signal to noise ratio (SNR) is defined as SNR = S

ζ2
n

. In this paper, we assume the identical noise variance,
i.e., ζn = ζ for n = 1, · · · , N and identical gain factor, i.e., gn = g = 1 for n = 1, · · · , N. The numbers
of samples L for each node are assumed to be identical. Here, we consider four simulation examples
for both the sensor self-localization and the source localization. The first example is to select the proper
penalization factors for different source localization methods. The performance comparison under
different geometric layouts is carried out in the second example. The third example analyzes the robust
performance against the estimated error of the energy decay factor, which is iteratively estimated via
person-by-person optimization. The performance comparison against different SNRs, numbers of
sensors N, number of samples L, as well as the energy decay factor α, is given in the last example.

6.1. Performance Analysis of the Sensor Self-Localization

In comparison, the approximate ML estimator, i.e., the solution of formulation (8) for the sensor
self-localization with known S is compared with our proposed methods. Such an approximate
estimator is solved by MATLAB function fminsearch, which uses the derivative-free method [44].
As we know, the ML estimator suffers from the convergence problem and the result can end up with a
local optimum or a saddle point due to inappropriate initialization. Here, we consider two different
cases with two kinds of initial values: one is taking the exact source location as the initial point (labeled
as ML-searching-T), and the other is taking a point far away from the true source location as the initial
point (labeled as ML-searching-F).

Example 1: selection of the penalization factor. To illustrate the importance of the penalization factor
for our proposed methods, this example examines RMSE versus the penalization factor. The results
are given in Figure 4. N = 12 sensors are distributed according to setup (58). For Figure 4a, the source
is located at y = [10, 10]T . The transmission power is set as S = 1000 and SNR is SNR= 30 dB.
The sampling size is L = 1000 and energy decay factor is α = 1.8. For Figure 4b, the source is located
at y = [10, 80]T . The transmission power is S = 1000 and SNR is SNR= 40 dB. The sampling size is
also L = 1000 and the energy decay factor is α = 1.8. We can see that the optimal penalization factor
depends on the spatial relationship between nodes and the source. When the source is inside the
convex hull of sensors, the penalization weight can be selected in the range of [10−15, 10−5]. When the
source is outside the convex hull of sensors, the penalization factor can be selected in the range of
[10−15, 10−10]. In the following examples, we will select αMLD = αMLS = αMMD = αMMS = 10−14

for the case of inside convex hull, and set all the penalization factors as 10−13 for the case of outside
convex hull.
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Figure 4. Comparison of the proposed source localization methods with different penalization factors.
(a) the source is inside the convex hull of the sensor nodes (y = [10, 10]T); (b) the source is outside the
convex hull of the sensor nodes (y = [10, 80]T).

Example 2: performance analysis with different geometric layouts. It has been shown that the geometric
layout of the sensors and the source has a significant impact on the localization performance [21].
In order to reflect such an impact, we keep the sensor locations fixed (N = 12) according to the
setup (58). For the first case, the source is placed at the point y = [10, 10]T , which is inside the convex
hull formed by the twelve sensors. The energy decay factor is α = 1.8. In the second case, the source is
placed at the point y = [10, 80]T , which is outside the convex hull formed by the sensors. The energy
decay factor is α = 1.6. For both of these two cases, the source transmission power is S = 1000, and the
sampling size is L = 1000. The noises are generated as independent and identically distributed (i.i.d)
Gaussian and S is assumed to be known with S = 1000. The number of Monte Carlo runs is M̄ = 1000.

Figure 5 illustrates the performance of different methods versus the SNR by using the setup (58).
The CRLB is also included in the figure. From Figure 5a, we can see that the proposed ML-SL-SDR
method performs optimally (i.e., achieves approximately the corresponding CRLB) for a wide range
of SNR. The performance of ML-SL-SDR and MM-SL-SDR is very close to each other, and both of
them generate superior performance than MM-SL-DR from low SNR to high SNR when the source
is located at [10, 10]T . Two ML searching methods generate the same results in such a case, which
provide very close performance to the CRLB. In comparison, when the source is located outside the
convex hull (see Figure 5b), the proposed ML-SL-DR and MM-SL-DR, as well as the ML-searching-F
with an improper initial value fail to give a good estimate. As has been analyzed, this is because that
the direct relaxation from ‖xn − y‖ = dn to ‖xn − y‖ ≤ dn leads to wide feasible region compared
with the same relaxation technique when the source is inside the convex hull. ML-searching-F is
unable to escape a local minimum due to inappropriate initial value. In this case, the performance of
ML-searching-T method is very close to the CRLB of the acoustic energy-based model.

Example 3: performance analysis against the estimated error of the energy decay factor. In previous
examples, we assume that the energy decay factor α is accurately known. However, the estimation
still has some errors. Thus, in this example, we examine the robust performance against the estimated
error of the energy decay factor. We assume that the estimate of the energy decay factor is known as

α̂ = α + ∆α, (59)

where α is the truth energy decay factor and ∆α is the estimated error, which follows a truncated
Gaussian distribution in the interval a ≤ α ≤ b. The pdf is given as
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f (∆α) =


exp

(
− ∆α

2σ2
e

)
σe(Φ( b

σe )−Φ( a
σe ))

, a ≤ ∆α ≤ b

0, others,

, (60)

where σ2
e is the variance of the truncated Gaussian distribution and Φ(·) is the cumulative distribution

function of the standard norm distribution. The results against energy decay factor errors in terms
of different variances for the case of both inside convex hull and outside convex hull are given in
Figure 6, respectively. The truth of the energy decay factor is α = 1.8 and the truncated parameters are
a = 1.5 and b = 2.1. N = 12 sensors are deployed according to setup (58). For Figure 6a, the source is
located at y = [10, 10]T , For Figure 6b, the source is located at y = [10, 80]T . For both of the two cases,
the source transmission power is set as S = 1000, SNR is SNR = 35 dB, and the length of sampling is
L = 1000.
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Figure 5. Comparison of searching method of ML and the proposed methods. (a) the source is located
at y = [10, 10]T ; (b) the source is located at y = [10, 80]T .
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Figure 6. Comparison of searching method of ML and the proposed methods against estimated error
of the energy decay factor. (a) the source is located at y = [10, 10]T ; (b) the source is located at
y = [10, 80]T .

From Figure 6a, when the source is located inside the convex hull of sensors, the proposed direct
norm relaxation based methods (ML-SL-DR and MM-SL-DR) provide better performance than the
other proposed methods as well as the two ML-based searching methods at higher σ2

e (σ2
e ≥ 10−4).

However, the performance of MM-SL-DR degrades with a higher rate when σ2
e decreases, and finally
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converges to a fixed value. When the source is located outside the convex hull of sensors (see Figure 6b),
the ML-searching-T by utilizing the exact location as the initial value shows superior performance
against the estimated error of the energy decay factor. However, the requirement is quite challenging
and impractical. The proposed ML-SL-SDR method exhibits better performance than MM-SL-SDR.
Similar to the result of Example 2, the two kinds of direct norm relaxation based source localization
methods fail to work due to the larger feasible region than that of the case of inside convex hull.

Example 4: sensitivity to the model parameters. According to the energy decay model in (5),
the acoustic energy reading of each sensor depends on the number of samples L, the energy decay
factor α, the source transmission power S and the noise variance ζ2. In this example, the impact
on the source localization performance of these parameters as well as the number of sensors N is
examined. We consider a two-dimensional sensor network with N sensors deployed in a region of
size 50 × 50 m2. The sensors and the source are randomly and uniformly distributed in this region.
In Figure 7, we plot the performance of different source localization methods versus SNR, the sample
number L, energy decay factor α and the number of sensors N, respectively, by averaging over all
estimated source locations and noise realizations. In this example, we set the source radiated power
is S = 500 and the number of Monte Carlo runs is M̄ = 5000. In Figure 7a, we set L = 500, α = 2.4,
and N = 8. In Figure 7b, we set SNR= 40 dB, α = 2.4, and n = 10. In Figure 7c, we set SNR= 30 dB,
L = 500, and N = 10. In Figure 7d, we set SNR= 30 dB, L = 500, and α = 2.4.

25 30 35 40 45 50
SNR=S/ζ2

10−2

10−1

100

101

(a)
100 101 102 103 104 105

L

10−2

10−1

100

101

(b)

1.61.82.02.22.42.62.83.0
α

10−1

100

101

RM
SE

(m
)

(c)
6 8 10 12 14 16 18

N

100

101

(d)

ML-SL-DR
ML-SL-SDR

MM-SL-DR
MM-SL-SDR

ML-searching-T
ML-searching-F

CRLB

Figure 7. Performance analysis when the source is located randomly in a region of size 50 × 50 m2.
(a) RMSE versus SNR; (b) RMSE versus L; (c) RMSE versus α; (d) RMSE versus N.
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It can be seen that the ML-searching-T method by taking the true source location as the initial
value provides the best performance among all the methods, which is very close to the CRLB for higher
SNR (SNR ≥ 35 dB), larger number of sampling L (L ≥ 102), as well as smaller energy decay factor α

(α ≤ 2). The performance of the proposed ML-SL-SDR method is slightly better than the MM-SL-SDR
method for lower SNR (SNR ≤ 35 dB) and smaller L (L ≤ 102), and for the whole range of α and
N. Similar to the previous examples, both of the proposed ML-SL-DR and MM-SL-DR, as well as
the ML-searching-F methods, fail to give a good estimate. This is due to the direct relaxation and
the inappropriate initial value. Moreover, a significant gap exists between the convex optimization
based source localization methods and CRLB. This observation illustrates that there still exists room
for significant improvement in the acoustic energy based model.

Complexional computation: To illustrate the computational cost of our proposed sensor
self-localization algorithms, we give a comparison of the average CPU time. All the results are
obtained by using an Intel Xeon core E5-1630 PC (Singapore) with 3.7 GHz CPU and 16 G RAM.
The comparison of the computational complex of our proposed sensor self-localization algorithms
as well as the ML searching algorithm is given in Table 1. It should be noted that the ML-Searching
algorithms are based on the local minimum searching, which runs less CPU time than the convex
optimization based algorithms. From the results, we can see that the proposed SDR-based source
localization algorithms run less time than DR-based algorithms.

Table 1. Average CPU estimation time for different source localization algorithms for sensor self-localization.

Algorithm Average CPU Estimation Time (ms)

ML-SL-DR 404.2
ML-SL-SDR 200.6
MM-SL-DR 340.4

MM-SL-SDR 197.6
ML-Searching-T 4.8
ML-Searching-F 8.2

Simulation summary: When the source transmission power (or radiation power) S is known
for the sensor self-localization, we propose two kind source localization methods via direct norm
relaxation and SDR under ML and minimax criterion, respectively. From above simulations, we have
the following conclusions:

• The proposed SDR-based source localization methods, especially ML-SL-SDR, provide superior
performance for the cases of both inside convex hull formed by sensors and outside convex hull.
ML-SL-SDR exhibits better performance than MM-SL-SDR since the distribution of energy noise
is utilized to improve the accuracy of source localization.

• For the case of inside convex hull, the proposed direct norm relaxation based methods provide
a robust estimate against the estimated error of the energy decay factor noise. For the case of
outside convex hull, SDR-based methods can give robust source location estimate.

• When the sensors and the source are randomly and uniformly distributed in a square region,
the proposed MM-SL-SDR provides robust performance in a wide range of SNR, sampling
number L, energy decay factor α and number of sensors N. Moreover, ML-SL-SDR outperforms
MM-SL-SDR for the whole range of α and N, and for SNR ≤ 35 dB and L ≤ 102.

6.2. Performance Analysis for the Source Localization

In this section, several energy-based acoustic source localization methods for the source
localization without knowledge of the source transmission (or dilatation power), are compared with
our proposed methods. Here, we include the weighted least-squares with one-step (labeled as WLS)
in [24]. The SDP based source localization by jointly estimating the unknown source transmission
(or radiation power) and the source location (labeled as ML-JE-Wang) is extended to the case with
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any energy decay factor, which is proposed by Wang in [27]. In addition, the extension of the Wang’s
method under minimax criterion (labeled as MM-JE-Wang) is also compared in the simulation.

Example 5: selection of penalization factor. Similarly with the case of sensor self-localization, the first
example examines the sensitivity to the penalization factor. Figure 8 gives the results of RMSE versus
penalization factors, where the source is located at y = [10, 10]T for Figure 8a and y = [10, 80]T

for Figure 8b, respectively. N = 12 sensors are located according to the setup (58). For these two
scenarios, the source transmission (or radiation power) is S = 1000, the SNR is set as SNR= 40 dB,
the number of sampling is L = 1000, and the energy decay factor is α = 1.8. It can be seen that
the proposed ML based source localization methods are quite robust to the choice of penalization
factors for both cases of inside and outside the convex hull. For the proposed SDR based ML-RL-SDR
and MM-RL-SDR methods, any value in the range of [10−15, 10−2] can be used without noticeable
degradation of the localization performance for the case of inside convex hull, while any value in the
range of [10−15, 10−3] can be used for the case of outside convex hull. In comparison, the proposed
direct relaxation based ML-RL-DR and MM-RL-DR methods, especially ML-RL-DR, are sensitive to
the selection of penalization factors. The penalization factor for ML-RL-DR can be selected in the range
of [10−2, 101] while that of MM-RL-DR can be selected in the range of [10−9, 10−1] for the case of inside
convex hull. In the following examples, we will select βMLD = 1 and βMLS = βMMD = βMMS = 10−5

for the case of inside convex hull, and set all the penalization factors as 10−10 for the case of outside
convex hull.
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Figure 8. Comparison of the proposed source localization methods with different penalization factors.
(a) the source is inside the convex hull of the sensor nodes (y = [10, 10]T); (b) the source is outside the
convex hull of the sensor nodes (y = [10, 80]T).

Example 6: performance analysis with different geometric layouts. In this example, the performance
comparison of several source localization methods including the proposed four methods, WLS,
ML-JE-Wang and MM-JE-Wang, is given to reflect the impact of geometric layout of the sensors and
the source. The CRLB by taking any energy decay factor into account is also included. The estimation
results are given in Figure 9. N = 12 sensors are fixed according to the setup (58). The source is
located at y = [10, 20]T for Figure 9a and y = [100, 30]T for Figure 9b, which are inside and outside the
convex hull formed by sensors, respectively. The energy decay factor is assumed to be known after
iterative estimation, which is α = 1.8. The sampling length for energy calculation is L = 1000 and the
transmission (or radiation power) S = 1000 is unknown in prior. The number of Monte Carlo runs is
M̄ = 1000.
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Figure 9. RMSE versus SNR. (a) the source is located at y = [10, 20]T ; (b) the source is located at
y = [100, 30]T .

From Figure 9, we can clearly see that the performance of all the methods is close to each other
in a wide range of SNR when the source is located inside the convex hull formed by the twelve
sensors. In addition, all these methods can achieve very close performance to CRLB. In comparison,
the proposed ML-RL-SDR method performs better than WLS, ML-JE-Wang, MM-JE-Wang over a wide
range of SNR for both of these two scenarios. The performance of ML-RL-SDR exhibits degradation
when the SNR is larger than 45 dB and is worse than MM-JE-Wang and WLS in these scenarios. Hence,
we recommend the use of WLS and MM-JE-Wang for larger SNR. When the source is inside the
convex hull, the proposed MM-RL-DR method provides better performance than MM-RL-SDR, and
both of these two convex optimization based methods provide worse performance than ML-RL-DR.
When the source is outside the convex hull formed by sensors, the direct norm relaxation based
source localization methods (ML-RL-DR and MM-RL-DR) fail to give a correct estimate since the
larger feasible region is formed due to the direct norm relaxation in such a scenario. By comparing
Figure 9a,b, the overall performance of the scenario where the source is located outside the convex hull,
is significantly poorer than that of the scenario where the source is located insider the convex hull.

Example 7: performance analysis against estimated error of the energy decay factor. To evaluate the
sensitivity to the error of energy decay factor, this example gives source localization performance of our
proposed methods as well as the other methods. The energy decay factor is estimated according to (59),
where ∆α follows a truncated Gaussian distribution. The results against energy decay factor errors in
terms of different variances for both the case of inside convex hull and the case of outside convex hull
are given in Figure 10. The performance of ML-RL-SDR, ML-JE-Wang, and CRLB without estimation
error (σ2

e = 0) is also included in the figure. The truth energy factor is α = 2.2 and the truncated
parameters are a = 1.9 and b = 2.5. N = 12 sensors are deployed according to (58). For Figure 10a,
the source is located at y = [20, 30]T , SNR = 35 dB and the sampling size is L = 500. For Figure 10b,
the source is located at y = [80, 20]T , SNR = 45 dB and the sampling size is L = 1000. For both of the
two cases, the source transmission power is set as S = 1000.

From Figure 10a, we can see that the performance of the proposed ML-RL-SDR, ML-RL-DR
methods, as well as the extended ML-JE-Wang, extended MM-JE-Wang and WLS improves with
the variance of decay factor noise ∆α increasing. ML-RL-SDR provides very close performance to
ML-JE-Wang under a wide range of σ2

e and both of them provides better localization accuracy than
the other methods. Furthermore, the performance of these two methods is approaching that of the
case without estimate errors (σ2

e = 0). Two source localization methods under minimax criterion,
MM-RL-DR and MM-RL-SDR, exhibit robust performance against errors of energy decay factor. When
the source is outside the convex hull formed by sensors (see Figure 10b), the direct norm relaxation
based source localization methods fail to accurately estimate the source location. The performance of
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MM-RL-DR and WLS does not change significantly with the variance σ2
e increasing. In addition, the

proposed ML-RL-SDR method provides the close performance to the extended ML-JE-Wang method.
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Figure 10. Comparison of source localization methods against energy decay factor error. (a) the source
is located at y = [20, 30]T ; (b) the source is located at y = [80, 20]T .

Example 8: sensitivity to the model parameters. To illustrate how the parameters of energy decay
model as well as the number of sensors impact the estimation performance, we performed M̄ = 5000
Monte Carlo runs by using N uniformly distributed sensors in a region of size 50 × 50 m2 to estimate
the location of uniformly distributed source. Figure 11 gives performance versus source transmission
(or radiation) SNR, sampling length L, energy decay factor α and number of sensors N, respectively,
by averaging over all estimated source locations and noise realizations. The unknown transmission
(or radiation) power S = 1000. In Figure 11a, we set L = 500, α = 2.4 and N = 8. In Figure 11b,
we set SNR = 35 dB, α = 2.6 and N = 8. In Figure 11c, we set SNR = 35 dB, L = 500 and N = 8.
In Figure 11d, we set SNR = 30 dB, L = 1000 and α = 2.2.

From Figure 11, it can be obviously seen that the proposed ML-RL-SDR provides the best
performance in a wide range of SNR, L, α and N. However, there is an exception. The performance of
ML-RL-SDR exhibits some performance degradation when SNR ≥ 50 dB. The extended ML-JE-Wang
is shown to be better than MM-JE-Wang for the entire range of all the parameters. The proposed
MM-RL-SDR method performs worse than ML-based source localization methods and WLS with
SNR, L, α and N increasing. Similarly with the previous examples, for the direct norm relaxation
based methods (ML-RL-DR and MM-RL-DR), they fail to give the accurate estimate since the impact
is averaged over all potential topologies of sensors and source. In addition, the WLS method shows
significant performance degradation for small SNR (SNR≤ 30 dB), small sampling number L (L ≤ 102),
large decay factor α (α ≥ 2.8) and a small number of sensors N (N ≤ 8). By comparing the ML-based
and MM-based source localization methods, ML-based methods generate better performance than
MM-based methods for the whole range of all the four parameters. This is because the ML-based
methods utilize the distribution of the energy noise, which is not considered in the MM-based methods.
That is, the ML-based methods utilize more information than the MM-based methods in this example.
Note that a significant gap exists between the CRLB and all the mentioned methods. This observation
illustrates that there still exists room for the performance improvement of the acoustic energy based
methods. In addition, the performance of MM-RL-SDR does not improve significantly when the
number of the sensors is increasing.
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Figure 11. Performance analysis when the source is located randomly in a region of size 50 × 50 m2.
(a) RMSE versus SNR; (b) RMSE versus L; (c) RMSE versus α; (d) RMSE versus N.

Complexional computation: To illustrate the computational cost of our proposed source localization
algorithms, we give a comparison of the average CPU time in Table 2. The extended WLS in [24]
and the Wang’s ML-JE-Wang in [27] are also included in the comparison. The results are also derived
by using an Intel Xeon core E5-1630 PC with 3.7 GHz CPU and 16 G RAM. We can see that WLS
requires the least time in all the algorithms. The proposed ML-RL-SDR, MM-RL-SDR as well as
ML-JE-Wang algorithms exhibit almost same estimation time, which have less time than ML-RL-DR
and MM-RL-DR algorithms.

Table 2. Average CPU estimation time for different source localization algorithms for source localization.

Algorithm Average CPU Estimation Time (ms)

ML-RL-DR 631.9
ML-RL-SDR 235.6
MM-RL-DR 368.8

MM-RL-SDR 243.9
WLS 6.8

ML-JE-Wang 245.0
MM-JE-Wang 295.9

Simulation summary: When the source transmission power (or radiation power) S is unknown,
we propose two kinds of source localization methods using direct norm relaxation and SDR
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respectively under ML and minimax criterion, respectively. From above simulations, we have the
following conclusions:

• The proposed SDR-based source localization methods, especially ML-RL-SDR, provide a
comparable source location estimate for both the case of inside convex hull formed by sensors
and the case of outside convex hull. In comparison, the proposed direct norm relaxation based
source methods failed to provide accurate source location estimate when the source is located
outside the convex hull.

• The proposed SDR-based source localization methods, as well as extended ML-JE-Wang and
MM-JE-Wang provide a robust estimate against errors of the energy decay factor noise.

• When the sensors and the source are randomly and uniformly distributed in a square
region, the proposed ML-RL-SDR provides superior performance in a wide range of SNR,
sampling number L, energy decay factor α and number of sensors N.

7. Conclusions

In this paper, a set of sensor self-localization and source localization methods based on the acoustic
energy decay model are developed and compared. For the application of sensor self-localization,
a so-called direct norm relaxation and semidefinite relaxation are utilized to generate two convex
optimization based localization methods. The original optimization problems are converted into
convex ones, which is reliably and efficiently solved by the Interior-point methods. For the application
of the source localization without knowledge of the transmission power, we derived the ML and
minimax optimization formulations based on the transmission power elimination with all pairwise
acoustic energy readings. Again, two kinds of source localization methods by utilizing direct norm
relaxation and SDR are derived. In addition, the CRLB with any energy decay factor for both the sensor
self-localization with known transmission power and the source localization without knowledge of
the transmission power is derived. Simulation results demonstrate that the proposed methods can
provide comparable or even better performance than the existing methods.

It is worth noting that the proposed methods consider the estimation without the communication
errors between the sensors and the fusion center, which can deteriorate the estimation performance.
The source localization method by taking the communication errors into account will be studied in the
future work.
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