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Abstract: This paper presents a new nonlinear filtering method based on the Hunt-Crossley model
for online nonlinear soft tissue characterization. This method overcomes the problem of performance
degradation in the unscented Kalman filter due to contact model error. It adopts the concept of
Mahalanobis distance to identify contact model error, and further incorporates a scaling factor in
predicted state covariance to compensate identified model error. This scaling factor is determined
according to the principle of innovation orthogonality to avoid the cumbersome computation of
Jacobian matrix, where the random weighting concept is adopted to improve the estimation accuracy
of innovation covariance. A master-slave robotic indentation system is developed to validate the
performance of the proposed method. Simulation and experimental results as well as comparison
analyses demonstrate that the efficacy of the proposed method for online characterization of soft
tissue parameters in the presence of contact model error.

Keywords: soft tissue characterization; Hunt-Crossley model; unscented Kalman filter; contact model
error; strong tracking; and random weighting

1. Introduction

Soft tissue properties are important for robotic-assisted minimally invasive surgery to achieve
realistic haptic feedback and stable robotic control. However, soft tissue properties are dynamically
changing depending on tissue layers, organs, patients, and physiological conditions. Accordingly,
it is necessary to online characterize dynamic soft tissue properties from tool-tissue interaction
measurements for robotic-assisted minimally invasive surgery [1–3].

The identification of soft tissue properties relies on the knowledge of the contact interaction
between surgical tool and soft tissues. Due to the computational efficiency, various contact models
have been used to describe the mechanical contact with soft tissues. The simple one is the linear elastic
model, which fails to represent the complex behaviour of tool–tissue interaction [4]. The Maxwell (MW)
model is constructed by a spring and damper in serial form [5], while the Kelvin–Voigt (KV) model a
spring and damper in parallel form [6]. The Kelvin–Boltzmann (KB) model adds a spring in serial form
to the Kelvin–Voigt model [7]. However, these three are linear spring-damper models and involves
unnatural forces at start and end points of the contact [8]. The Hunt-Crossley (H-C) model is nonlinear
and solves the unnatural force problem involved in the linear K-V model [8,9]. Its nonlinearity is also
suitable for characterization of nonlinear soft tissue behaviours for robotic-assisted minimally invasive
surgery. However, the use of the nonlinear H-C model for online soft tissue characterization requires
an online nonlinear estimation algorithm, which is more complicated than an online linear estimation
algorithm. Thus, there has been limited research on using the nonlinear H-C model for soft tissue
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characterization. Although finite element model (FEM) [10] provides an accurate description of the
force interaction between surgical tool and soft tissues using continuum mechanics, it is difficult to
achieve the real-time performance due to expensive computations [3,11].

In addition to a dynamic contact model, an online estimation algorithm is also required for
real-time soft tissue characterization. The recursive least square (RLS) is an online estimation algorithm
for soft tissue characterization [8,9]. However, its performance is sensitive to initial conditions [9].
The Kalman filter (KF) is an improvement to RLS. It can provide estimations in accuracy of minimum
mean-square error. However, both RLS and KF are a linear estimation algorithm, unsuitable for the
use with the nonlinear H-C model for soft tissue characterization [8].

Various nonlinear versions of KF were reported by extending the concept of KF to nonlinear
systems. The extended Kalman filter (EKF) is a commonly used nonlinear estimation algorithm.
However, due to the involvement of model linearization, it can only achieve first-order accuracy [12,13].
EKF also requires the cumbersome computation of Jacobian matrix at each time point. The unscented
Kalman filter (UKF) improves EKF by approximating state mean and covariance via unscented
transformation [10,14]. It can achieve third-order accuracy. Further, it does not require the cumbersome
calculation of Jacobian matrix. However, UKF requires an accurate system model. In robotic-assisted
minimally invasive surgery, the system model always involve uncertainties such as inappropriate initial
conditions, modelling error due to model simplification for the purpose of computational efficiency,
unexpected system noises and stochastic drifts, leading to the deteriorated UKF solution [15,16].
Currently, there has been limited research focusing on the use of UKF for nonlinear soft tissue
characterization. Xi et al. reported a method by combining UKF with a FEM to estimate myocardial
material parameters [10]. However, the FEM is under the quasi-static assumption, which does not
hold for a dynamic contact system. Further, the UKF estimation performance is degraded due to
the reduced size for state vector’s error covariance. Recently, the authors also studied a method by
combing UKF with the H-C model for soft tissue characterization [17]. However, the UKF problem in
requirement of accurate system model was not addressed.

Adaptive filtering is a strategy to handle the disturbance of system model error on state estimation.
It has been used with UKF, leading to the adaptive UKF to inhibit the influence of system model error
on the filtering solution [18]. The innovation based adaptive estimation and residual based adaptive
estimation are two typical methods for adaptive filtering [19], where the innovation or residual at
present time point is adaptively estimated from all historical innovations or residuals within a small
time window [20]. However, due to the use of equal weighting for all historical innovations within the
time window, each historical innovation or residual within the time window equally contributes to the
current innovation or residual, leading to limited estimation accuracy. The random weighting method
overcomes this problem by taking into account different precision levels of historical innovations or
residuals in the current innovation or residual via random weights, leading to improved estimation
accuracy [15,21].

The strong tracking (ST) is a relatively new concept in adaptive filtering. It incorporates a scaling
factor into predicted state covariance to compensate system model error [22–24]. In addition to the
strong robustness against system model error, ST is also able to online track system state. However,
ST requires the cumbersome evaluations of Jacobian matrix to calculate the scaling factor, leading to
an extra computational burden.

This paper presents a new nonlinear filtering method based on the nonlinear H-C contact
model by combining the concepts of ST and random weighting into UKF for online soft tissue
characterization. This method adopts the ST concept to address the UKF problem of performance
degradation due to contact model error. It identifies contact model error using the Mahalanobis
distance. Subsequently, a scaling factor is introduced into predicted state covariance to account
for identified contact model error. To avoid the cumbersome calculation of Jacobian matrix, this
scaling factor is determined according to the orthogonality principle, where the random weighting
concept is adopted to enhance the estimation accuracy of innovation covariance. Simulations, practical
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experiments, and comparison analysis with UKF have been conducted to comprehensively evaluate
the performance of the proposed method.

2. Nonlinear Hunt-Crossley Contact Model

The nonlinear H-C contact model describes the dynamics of the contact between surgical tool and
soft tissues via the following nonlinear equation [25]:

F = Kdn + Bdn
.
d

p
(1)

where F, K, B, d,
.
d, n, and p are the contact force, stiffness coefficient, damping coefficient, displacement,

displacement velocity, power of displacement, and power of displacement velocity, respectively.
Define the state vector as:

xk =
[
d(t)k,

.
d(t)k, Fk, Kk, Bk, nk, pk

]
. (2)

Based on Equation (1), the system state equation can be formulated as:

xk = f (xk−1) + qk−1 =



dk−1 +
.
dk−1 × ∆tk−1.
dk−1

Kk−1dnk−1
k−1 + Bk−1dnk−1

k−1

.
d

pk−1
k−1

Kk−1
Bk−1
nk−1
pk−1


+ qk−1 (3)

where xk =
[
d(t)k,

.
d(t)k, Fk, Kk, Bk, nk, pk

]
is the system state at time point tk, f (·) is the system

function, and qk ∼ (0, Qk) is a white Gaussian noise with zero mean and covariance Qk.
The measurement equation is defined as:

yk = h(xk) + rk =

(
dk
Fk

)
+ rk (4)

where yk is the measurement at time point tk, h(·) is the measurement function which describes the
relation between the measurement and system state, and rk ∼ (0, Rk) is a white Gaussian noise with
zero mean and covariance Rk.

It should be noted that in robotic-assisted minimally invasive surgery, the accuracy of the
measurement model can be guaranteed, since force data can be obtained from a high-accurate force
sensor and displacement data can be obtained from precise robotic encoder.

3. Analysis of Unscented Kalman Filter

The conventional UKF procedure can be described as follows:

Step 1. Initialization:
x̂0 = E(x0) (5)

P̂0 = E
[
(x0 − x̂0)(x0 − x̂0)

T
]
. (6)

Step 2. Time update with unscented transformation:

Select sigma points:
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x̂(i)k−1 = x̂k−1 + x̂(i) (i = 1, · · · , 2N)

x̂(i) =
(√

(N + λ)P̂k−1

)T

i
(i = 1, · · · , N)

x̂(N+i) = −
(√

(N + λ)P̂k−1

)T

i
(i = 1, · · · , N)

(7)

where N is the dimension of state vector x, the parameter λ is defined as λ = α2(N + k)− N with
constant α, and P̂k−1 is the estimated state covariance at time point tk−1 (k = 1, 2, . . . ).

Calculate predicted state vector xk based on the selected sigma points:

x(i)k = f (x̂(i)k−1)

xk =
1

2N

2N
∑

i=1
wm

i (x(i)k ).
(8)

Calculate predicted state covariance Pk:

Pk =
2N
∑

i=1
wc

i

(
x(i)k − xk

)(
x(i)k − xk

)T
+ Qk

wm
0 = λ

n+λ

wc
0 = λ

n+λ +
(
1− α2 + β

)
wm

i = wc
i =

1
2(N+λ)

i = 1, . . . , 2N

(9)

where wm
i and wc

i are the mean and covariance weights, N is the dimension of state vector x, and α

and β are constants.

Step 3. Measurement update:

Calculate predicted measurement yk:

y(i)
k = h(x(i)k )

yk =
1

2N

2N
∑

i=1
wm

i (y
(i)
k )

(10)

Calculate predicted measurement covariance Pyk
:

Pyk
=

2N

∑
i=1

wc
i

(
y(i)

k − yk

)(
y(i)

k − yk

)T
+ Rk (11)

Calculate the cross covariance between xk and yk:

Pxkyk
=

2N

∑
i=1

wc
i

(
x(i)k − xk

)(
y(i)

k − yk

)T
(12)

Calculate the Kalman gain:
Kk = Pxkyk

P−1
yk

(13)

Update the estimated state and associated covariance:

x̂k = xk + KkZI
k (14)

P̂k = Pk −KkPyk
KT

k (15)

where ZI
k = yk − yk is called the innovation vector.
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Now let us analyse the effect of contact model error on the UKF performance. The predicted state
in Equation (8) can be rewritten as:

xk =
1

2N

2N

∑
i=1

wm
i

(
f
(

x(i)k−1

))
. (16)

Since the contact state Equation (3) involves error fe(·), state prediction error x̌k can be
represented as:

x̌k =
1

2N

2N

∑
i=1

wm
i fe

(
x(i)k−1

)
. (17)

The predicted state in the presence of model error fe(·) can be represented as:

x̌ = xk + x̌k =
1

2N

2N

∑
i=1

wm
i

(
f
(

x(i)k−1

))
+

1
2N

2N

∑
i=1

wm
i fe

(
x(i)k−1

)
. (18)

Using unscented transformation, the predicted state covariance in the presence of model error
fe(·) can be calculated as:

P̌k =
2N

∑
i=1

wc
i

(
x(i)k − xk + x̌(i)k − x̌k

)(
x(i)k − xk + x̌(i)k − x̌k

)T
+ Qk. (19)

where x̌(i)k and x(i)k are the sigma points selected from x̌k and xk, respectively.
Denote:

X(i)
k = x(i)k − xk

X̌(i)
k = x̌(i)k − x̌k.

(20)

Thus, Equation (19) can be further written as:

P̌k =
2N
∑

i=1
wc

i

(
X(i)

k + X̌(i)
k

)(
X(i)

k + X̌(i)
k

)T
+ Qk

=
2N
∑

i=1
wc

i

(
X(i)

k X(i)
k

T + X(i)
k X̌(i)

k + X̌(i)
k X(i)

k
T + X̌(i)

k X̌(i)
k

T
)
+ Qk.

(21)

Define the error P̌k of predicted state covariance:

P̌k =
2N

∑
i=1

wc
i

(
X(i)

k X̌(i)
k + X̌(i)

k X(i)
k

T + X̌(i)
k X̌(i)

k
T
)

. (22)

Substituting Equation (20) into Equation (21) yields:

Pk =
2N

∑
i=1

wc
i

(
X(i)

k X(i)
k

T
)
+ Qk. (23)

Considering Equations (22) and (23), Equation (21) can be further written as:

P̌k =
2N
∑

i=1
wc

i

(
X(i)

k X(i)
k

T
)
+ Qk +

2N
∑

i=1
wc

i

(
X(i)

k X̌(i)
k + X̌(i)

k X(i)
k

T + X̌(i)
k X̌(i)

k
T
)

= Pk + P̌k.
(24)

It can be seen from Equation (24) that model error fe(·) causes predicted state covariance’s error
P̌k, leading to the inaccurate Kalman gain. Therefore, the state estimate will be degraded when the
contact model involves error.
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4. Random Weighting Strong Tracking Unscented Kalman Filter

This paper presents a random weighting strong tracking unscented Kalman filter (RWSTUKF) to
address the UKF problem of performance degradation in the presence of model error for nonlinear
soft tissue characterization. This method corrects predicted state covariance using the ST concept to
restrain the disturbance of model error on state estimation, and also adopts the random weighting
concept to improve the estimation accuracy of innovation covariance.

4.1. Correction of Predicted State Covariance

As analysed above, the predicted state covariance has the deviation P̌k due to model error fe(·).
Using the deviation to correct the state covariance described by Equation (9) yields:

P∗k =
2N

∑
i=1

wc
i

(
x(i)k − xk

)(
x(i)k − xk

)T
+ Qk + P̌k (25)

where P∗k denotes the corrected predicted state covariance.
Equation (25) can be further written as:

P∗k = γk

(
2N
∑

i=1
wc

i

(
x(i)k − xk

)(
x(i)k − xk

)T
+ Qk

)
= γkPk

(26)

where γk is called the scaling factor, which is defined as:

γkI = I +
P̌k

∑2N
i=1 wc

i

(
x(i)k − xk

)(
x(i)k − xk

)T
+ Qk

(27)

where I is a unit matrix.
If we know the deviation P̌k in Equation (27) we can determine the scaling factor and calculate

the corrected predicted state covariance P∗k directly. However, the deviation P̌k is defined by the state
prediction error x̌k = xk − xk. Since the true state xk is generally unknown, it is difficult to directly
calculate the deviation P̌k. In order to solve this problem, this paper extracts all useful information in
the innovation sequence via the orthogonality principle [26] to determine the scaling factor.

Theorem 1. Under the condition of innovation orthogonality, i.e.:

Bj,k = E
[
ZI

k
T ·ZI

k+j

]
= 0, j = 1, 2, · · · . (28)

γk can be determined as:

γk =
tr
(

∑M
j=1 vjZI

k−jZ
I
k−j

T
)
− tr(Rk)

tr
(
HkPkHk

T
) (29)

where Hk = ∂h(x)
∂x

∣∣∣
x=xk

, tr(·) denotes the trace of a matrix, M is the window size, and vj is the random weighting

factor which meets the condition ∑m
j=1 vj = 1.

Proof. Define the estimation error as:
êk = xk − x̂k. (30)

Define the prediction error as:
ek = xk − xk. (31)
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Substituting Equations (3) and (8) into Equation (31) and expanding f (·) by a Taylor series about
x̂k−1, the prediction error becomes:

ek = Fk êk−1 + qk (32)

where Fk = ∂ f (x)
∂x

∣∣∣
x=x̂k−1

.

By considering model error fe(·), Equation (32) becomes:

ek = (Fk + Fe
k) êk−1 + qk (33)

where Fe
k = ∂ fe(x)

∂x

∣∣∣
x=x̂k−1

.

Similar to Equation(32), innovation vector ZI
k can be represented as:

ZI
k = Hk ek + rk (34)

where Hk = ∂h(x)
∂x

∣∣∣
x=xk

.

Pk is defined by:
Pk = E

[
(xk − xk)(xk − xk)

T
]
. (35)

Pxkyk
is defined by:

Pxkyk
= E

[
(xk − xk)(yk − yk)

T
]
= E

[
(xk − xk)Z

I
k

T
]
. (36)

Substituting (34) into (36) and considering (35) and E(rk) = 0, we have:

Pxkyk
= E

[
(xk − xk)(Hk(xk − xk) + rk)

T
]

= E
[
(xk − xk)(xk − xk)

THk
T + rk

T
]

= PkHk
T .

(37)

Substituting (33) into (34) yields:

ZI
k = Hk[(Fk + Fe

k)êk−1 + qk] + rk. (38)

Substituting (38) into (28) leads to:

Bj,k = E
{[

Hk+j

((
Fk+j + Fe

k+j

)
êk+j−1 + qk+j

)
+ rk+j

]
×
[
Hk
((

Fk + Fe
k
)
êk−1 + qk

)
+ rk

]T
}

= E
{[

Hk+j

(
Fk+j + Fe

k+j

)(
xk+j−1 − xk+j−1 −Kk+j−1

(
yk+j−1 − yk+j−1

))]
×
[
Hk
((

Fk + Fe
k
)
êk−1 + qk

)
+ rk

]T
}

= E
{[

Hk+j

(
Fk+j + Fe

k+j

)((
Fk+j−1 + Fe

k+j−1

)
êk+j−2 −Kk+j−1

(
Hk

[(
Fk + Fe

k
)
êk+j−2

]))]
×
[
Hk
((

Fk + Fe
k
)
êk−1 + qk

)
+ rk

]T
}

= E
{[

Hk+j

(
Fk+j + Fe

k+j

)(
I −Kk+j−1Hk

(
Fk + Fe

k
)
êk+j−2

)]
×
[
Hk
((

Fk + Fe
k
)
êk−1 + qk

)
+ rk

]T
}

= Hk+j

(
Fk+j + Fe

k+j

)
×
(

k+j−1
∏

i=k+1
(I −KiHi)

(
Fi + Fe

i
))
×
(
Pxkyk

−KkB0,k
)

(39)

where the system and measurement noise covariances are Gaussian white noises, i.e.,
(
rirj

T) = 0,

E
(

qiqj
T
)
= 0 and E

(
qirj

T) = 0 (i 6= j), and B0,k is the covariance of innovation vector ZI
k.

To satisfy the condition (28), (39) is required to be zero, leading to:

Pxkyk
−KkB0,k = 0. (40)

By Taylor series, the predicted measurement covariance given by (11) can be further written as:
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Pyk
=

2N
∑

i=1
wc

i

(
y(i)

k − yk

)(
y(i)

k − yk

)T
+ Rk

= HkPkHk
T + Rk.

(41)

Replacing Pk with the corrected state covariance P∗k in (26) yields:

P∗yk
=
[
HkγkPkHT

k
]
+ Rk

= γk
[
HkPkHk

T]+ Rk
(42)

where P∗yk
denotes the corrected predicted measurement covariance.

Replacing Pk with the corrected state covariance P∗k in (37) yields:

Pxkyk
= γkPkHk

T . (43)

Substituting (42) and (43) into (40), we have:

γk

[
HkPkHk

T
]
= B0,k −Rk. (44)

To determine γk, we need to know innovation covariance B0,k of innovation vector ZI
k, which is

defined by:
B0,k = E

(
ZI

k ZI
k

T
)

. (45)

Consider a time window of width M, i.e., there are M time points tk−1, tk−2, . . . , tk−M in the time
window. Thus, (45) can be further written as:

B0,k =
1
M

M

∑
j=1

ZI
k−jZ

I
k−j

T . (46)

Applying the random weighting concept [21] to (46), the random weighting estimation of B0,k can
be obtained as:

B0,k =
M

∑
j=1

vjZI
k−jZ

I
k−j

T . (47)

where vj is the random weighting factor which meets the condition ∑M
j=1 vj = 1.

Substituting (47) into (44) yields:

γk

[
HkPkHk

T
]
=

M

∑
j=1

vjZI
k−jZ

I
k−j

T −Rk (48)

Thus, γk is determined as:

γk =
tr
(

∑M
j=1 vjZI

k−jZ
I
k−j

T
)
− tr(Rk)

tr
(
HkPkHk

T
) . (49)

The proof of Theorem 1 is completed. �

According to Theorem 1, the corrected predicted state covariance can be calculated as:

P∗k =

 tr
(

∑M
j=1 vjZI

k−jZ
I
k−j

T
)
− tr(Rk)

tr
(
HkPkHk

T
)

Pk. (50)
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From the above, we can see that the proposed RWSTUKF takes into account model error by
correcting the predicted state covariance. Further, the determination process of the scaling factor γk
does not involve the calculation of Jacobian matrix.

4.2. Identification of Model Error

Mahalanobis distance is a popular means to detect an uncertain condition [27–29]. In this paper,
the concept of Mahalanobis distance is adopted to identify contact model error. The Mahalanobis
distance θk is defined by the innovation and predicted measurement covariance as:

θk = ZI
k

TP−1
yk

ZI
k. (51)

θk is calculated during the standard UKF procedure to identify contact model error. A contact
model error is identified according to the following conditions:{

i f θk ≤ θT Inexistence o f model error
i f θk > θT Existence o f model error

(52)

where θT denotes the predefined threshold value.

4.3. Algorithm

The detailed procedure of the proposed method is illustrated in Figure 1. In the absence of model
error, the proposed method just follows the standard UKF procedure. In the presence of model error,
the predicted state covariance is corrected to compensate contact model error and further re-estimate
the system state. It can be seen from Figure 1, the proposed method only repeats the process of
measurement update (i.e., Step 3), thus maintaining the computational efficiency.
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5. Performance Evaluation and Discussions

Simulations and experiments were conducted to comprehensively evaluate the proposed method
(i.e., RWSTUKF). Simulation analysis was conducted to evaluate the performance of RWSTUKF under
three different kinds of contact model error, i.e., initial state estimation error, model simplification
error, and local modelling error. Monte Carlo simulations were carried out 100 times. A master-slave
robotic indentation system was also developed to conduct experiments for the performance evaluation.
In both simulation and experimental analyses, the input force signals are generated based on the
nonlinear H-C contact model. The contact forces are reconstructed from the estimated parameters
of the nonlinear H-C model and further compared with the input forces as reference to calculate the
estimation error. Comparison analysis of the proposed RWSTUKF with the conventional UKF [17] is
also discussed in this section.

5.1. Initial State Estimation Error

Consider the nonlinear H-C contact model described by (1) with the following constant parameters:

Kk = 10, Bk = 1, nk = 2, pk = 1.05 (53)

by which the input forces are generated from continuously increased displacements. In order to
simulate the initial state error, the initial values of the H-C model parameters are set to:

K0 = 150, B0 = 2, n0 = 1, p0 = 1. (54)

By comparing (54) with (53), it is obvious that the initial value of state estimation involves a
large error.

Trials were conducted by both UKF and RWSTUKF under the same conditions to analyse the
effect of the initial state estimation error. The displacement velocity was set to

.
d(tk) = 0.1 mm, and the

window size m = 4. Qk was set to diag(0.01 mN)7×7, and Rk diag(0.01mN)2×2.
Figure 2 shows the estimation errors by both UKF and RWSTUKF under the initial state estimation

error. Due to the influence of the initial error, the estimation error by UKF is rapidly increased and
then converged after 150 time steps, leading to the maximum estimation error of 74.265 mN. However,
the estimation error by RWSTUKF is converged only after 50 time steps, showing that the convergence
speed of RWSTUKF is three times faster than that of UKF. The resultant maximum estimation error by
RWSTUKF is 13.887 mN, which is about six times smaller than that by UKF. This is because RWSTUKF
can dynamically adjust predicted state covariance to restrain the disturbance of the initial error on
the filtering solution, leading to the improved estimation accuracy than UKF. Table 1 summarizes the
estimation errors by both UKF and RWSTUKF. The mean error and RMSE (root mean square error) are
1.8092 mN and 2.9133 mN for RWSTUKF, whereas they are 2.9133 mN and 30.2395 mN for UKF.
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Table 1. Estimation errors by both UKF and RWSTUKF under the initial state estimation error.

Errors (mN) UKF RWSTUKF

Mean error 16.8818 1.8092
Max error 74.2650 13.8870

RMSE 30.2395 2.9133

5.2. Model Simplification Error

Consider the error of model simplification. By letting the parameter p = 1, the nonlinear H-C
contact model given by (1) is simplified as:

F = Kdn + Bdn
.
d (55)

The input forces are still generated according to (1) under the same conditions as the simulation
case in Section 5.1 except that the initial parameter values are set to:

K0 = 10, B0 = 1, n0 = 2, p0 = 1.05 (56)

Trials were conducted by both UKF and RWSTUKF under the same conditions to analyse the
effect of the model simplification error. The displacement velocity was

.
d(t)k = 0.01, and the window

size m = 4. Qk was set to diag(0.1 mN)7×7 and Rk to diag(0.1mN)2×2.
Figure 3 shows the estimation errors by both UKF and RWSTUKF under the error of model

simplification. The estimation error of UKF is bounded by the maximum of 0.4582 mN within 200 time
steps. However, after 200 time steps, due to the disturbance by the error of model simplification, the
estimation error of UKF is drastically increased, leading to the maximum error of 1.4844 mN at the
end of the test time period. In contrast, within 40 time steps, the estimation error of RWSTUKF is very
small, leading to the maximum of 0.0444 mN. After 40 time steps, in spite of a relatively large increase,
the estimation error of RWSTUKF is bounded by the maximum of 0.3039 mN, which is still smaller
than the maximum error of UKF within 200 time steps. This demonstrates RWSTUKF can restrain
the disturbance due to the error of model simplification. Table 2 shows the estimation errors by both
UKF and RWSTUKF. The mean error and RMSE are 0.4068 mN and 0.5394 mN for UKF, while they are
0.08977 mN and 0.1063 mN for RWSTUKF. Thus, it is clear that RWSTUKF outperforms UKF.
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Table 2. Estimation errors by both UKF and RWSTUKF under the error of model simplification.

Errors (mN) UKF RWSTUKF

Mean error 0.4068 0.0897
Max error 1.4844 0.3039

RMSE 0.5394 0.1063

5.3. Local Modelling Error

To simulate local modelling error, a constant prediction error of [0 0 0 0.8 0.8 0 0] is added to the
predicted state described by (8) for the time period (200~220 time steps). The other parameters are
the same as the simulation case in Section 5.1, except that the initial parameter values are set to be the
same as the true values.

Figure 4 shows the estimation errors by both UKF and RWSTUKF in the presence of the local
modelling error. It is clear that the estimation error of UKF is increased dramatically during the time
period (200~220 time steps) with the added constant error, leading to the maximum estimation error
of 6.7853 mN. In contrast, the estimation error curve of RWSTUKF does not involve a significant
change during the entire test time period, especially for the time period with the added constant
error. This demonstrates that RWSTUKF can handle the local modelling error. As shown in Table 3,
the maximum estimation error is 6.7853 mN for UKF, while it is only 2.588 mN for RWSTUKF, which
is about three times smaller than that of UKF. The mean error and RMSE are 0.9531 mN and 1.42 mN
for UKF, while they are 0.6911 mN and 0.8590 mN for RWSTUKF.
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5.4. Robotic Indentation

A master-slave robotic indentation system was developed for the purpose of experimental
verification. As shown in Figure 5, the master robot is a Phantom Omni haptic device. The slave
robot consists of a linear magnetic motor (LM2070_08011_FMM, FAULHABER) and an indenter of
diameter 5 mm, together with a six-axis force sensor (Nano 17 and FTIFPS1) attached between the
linear motor and indenter to measure the contact force with the phantom tissue sample. The slave
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robot can be moved back and forth by manipulating the master robot. With the master-slave robotic
system, users can conduct mechanical indentation test on soft material samples to record the contact
force and displacement.Sensors 2018, 18, x FOR PEER REVIEW  13 of 15 
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Figure 5. System configuration for robotic indentation.

A phantom cubic-shape (3 cm × 8 cm × 6 cm) soft tissue was produced from silicone rubber
(Ecoflex 0030), which has similar characteristics with human tissues [30]. For the comparison analysis
purpose, trials were conducted by both conventional UKF and proposed RWSTUKF under the same
conditions. The size of window m was 5, x0 = [0.1, 0.1, 0.01, 0.0001, 0.0001, 1 1], Qk was set to
diag(0.01 mN)7×7, and Rk was set to diag(0.1mN)2×2.

Figure 6 shows the reconstructed forces by both UKF and RWSTUKF with reference to the
measured contact force. It can be seen that the UKF estimation involves a large error, leading to the
maximum error of 9.6501 N. In contrast, the RWSTUKF estimation follows the reference force curve
more closely, leading to the maximum error of 3.3760 N, which is almost three times smaller than that
of UKF. This is because RWSTUKF has the capability to handle system model error by online correction
of predicted state covariance. Table 4 lists the estimation errors of UKF and RWSTUKF. It can be seen
that in addition to the maximum error, the mean error and RMSE of RWSTUKF are also much smaller
than those of UKF.
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Table 4. Estimation errors of both UKF and RWSTUKF for robotic indentation.

Errors (N) UKF RWSTUKF

Mean error 0.4131 0.2624
Max error 9.6501 3.3760

RMSE 0.9332 0.5088
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6. Conclusions

This paper presents a new method based on the nonlinear H-C contact model for nonlinear soft
tissue characterization in the presence of model error. This method identifies model error using the
Mahalanobis distance and further incorporates a dynamic scaling factor in predicted state covariance to
online compensate identified model error. This scaling factor is determined by combining the principle
of innovation orthogonality with the random weighting concept to avoid the cumbersome computation
of Jacobian matrix and provide reliable estimation for innovation covariance. The proposed method
not only outperforms UKF in the presence of model error, but it also maintains the computational
efficiency by correcting predicted state covariance only in the time segments with contact model
error. Simulation and experimental results as well as comparison analysis demonstrate that the
proposed method can effectively restrain the disturbance of contact model error for online soft
tissue characterization.

Future work will focus on the improvement of the proposed method for online soft tissue
characterization. It is expected to combine the proposed with artificial intelligence techniques such
as genetic algorithms, neural network, pattern recognition and machine learning to automatically
determine optimal random weights for the covariance of innovation vector according to the disturbance
of abnormal measurements, thus automatically handling contact model error from various sources.
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