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Abstract:



Strap-down inertial navigation system/celestial navigation system (SINS/CNS) integrated navigation is a high precision navigation technique for ballistic missiles. The traditional navigation method has a divergence in the position error. A deeply integrated mode for SINS/CNS navigation system is proposed to improve the navigation accuracy of ballistic missile. The deeply integrated navigation principle is described and the observability of the navigation system is analyzed. The nonlinearity, as well as the large outliers and the Gaussian mixture noises, often exists during the actual navigation process, leading to the divergence phenomenon of the navigation filter. The new nonlinear Kalman filter on the basis of the maximum correntropy theory and unscented transformation, named the maximum correntropy unscented Kalman filter, is deduced, and the computational complexity is analyzed. The unscented transformation is used for restricting the nonlinearity of the system equation, and the maximum correntropy theory is used to deal with the non-Gaussian noises. Finally, numerical simulation illustrates the superiority of the proposed filter compared with the traditional unscented Kalman filter. The comparison results show that the large outliers and the influence of non-Gaussian noises for SINS/CNS deeply integrated navigation is significantly reduced through the proposed filter.
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1. Introduction


With the development of missile technology, even higher accuracy of navigation is requested. Single navigation mode cannot satisfy the application requirement. Because of the uncertainty in the actual navigation system, a number of algorithms have been designed to improve the accuracy of state estimation [1]. To sum up, the navigation accuracy of ballistic missile has focused on two parts, navigation system construction and navigation filter algorithm designation.



For navigation system construction, a number of navigation modes have been designed to improve navigation accuracy. Among these modes, the strap-down inertial navigation system (SINS) has been playing an important role among navigation systems for several decades [2,3,4]. It can autonomously achieve a navigation mission completely relying on micro electro mechanical systems (MEMS) and has a strong anti-interference capability. Moreover, the attitude, the velocity, and the position of ballistic missiles can be easily obtained by its output information. However, the accumulated navigation errors caused by the inertial components cannot be avoided, especially in the long-term missile navigation [5]. Therefore, in the practical situations, some other supporting facilities, including the Global Navigation Satellite System (GNSS), BeiDou Navigation Satellite System (BDS), the Doppler Velocity Log (DOL), and the celestial navigation system (CNS), are always integrated with SINS for the purpose of improving navigation accuracy [6,7]. However, GNSS is always susceptible to interference, which will have a strong impact on missile performance. DOL is always used underwater and is limited by the distance, which is not appropriate for long-distance missiles. The CNS is a navigation system that calculates the accurate attitude on the basis of measuring the azimuth of a celestial body through the celestial sensor. Because the source of information in the CNS is a celestial body, it has many merits, such as good concealment, strong autonomy, and high navigation accuracy, but the output frequency is much lower and discontinuous, and the output information can be easily influenced by surroundings [8,9,10]. Hence, the CNS is frequently used for the purpose of assisting the SINS in the aerospace field, utilizing the SINS/CNS integrated navigation system. The SINS/CNS integrated navigation system can correct the attitude error and the gyro drift using the starlight information and greatly improve navigation accuracy [11]. At present, it is an important developing direction for missile, airplane, and spacecraft navigation technology [12]. Nevertheless, the traditional system only makes use of the information of star sensors to reckon the gyro drift, but it cannot estimate the accelerometer bias, which leads to position divergence. Therefore, some improved SINS/CNS integrated navigation systems have been proposed [4,13,14]. They make use of more astronomical observation information to realize SINS/CNS deeply integrated navigation systems and effectively improve their performance.



For navigation filter design, many algorithms have been applied to the navigation system. The Kalman filter (KF) is the most popular optimal state estimation method used for the linear dynamic system [15]. However, for navigation systems, the navigation system equation is always nonlinear [16]. The frequently used nonlinear algorithms for solving nonlinear problems mainly include the extended Kalman filter (EKF) [17] and the unscented Kalman filter (UKF) [18]. EKF is a popular nonlinear extension of the KF, which uses Taylor series expansions to approximate the nonlinear system. However, the Taylor series expansions in many navigation systems are cumbersome and always lead to implementation difficulties [15]. The iterated extened Kalman filter (IEKF) overcomes the problem and improves the accuracy with the Gauss-Newton method [19]. Furthermore, the nonlinear iterated filter (NIF) improves the stability of the Jacobian matrix in the EKF and the IEKF through the Levenberg–Marquardt algorithm [20]. In the UKF, a set of selected sigma points are used to approximate the probability distribution function of the state and propagate through the nonlinear process and the measurement equation. Thus, the UKF saves the trouble of calculating the Taylor series is more accurate than the EKF. The posterior linearization filter (PLF), using statistical linear regression, is a newly proposed algorithm to improve the filter accuracy based on sigma-point approximations [21]. However, the filters above are always used to deal with Gaussian white noise. Nevertheless, owing to the operational error or the complex atmospheric environment, the non-Gaussian noises, such as large outliers and Gaussian mixture noises, often exist during the actual navigation process.



For non-Gaussian process, many nonlinear filters do not perform satisfactorily [22]. However, the filter robustness can be improved through the approaches as follows:

	
A classical method involves creating filters directly for the systems under the conditions of non-Gaussian noises to deal with noises with different heavy-tailed distributions [23,24]. However, it is difficult to take effect in multidimensional situations, which limits its applicability [25].



	
There are two efficient methods to handle non-Gaussian noises based on estimating the a posteriori probability density with a series of samples. The UKF approximates the mean and the covariance of the state estimation using unscented transformation (UT) through sigma points [26]. The ensemble Kalman filter (EnKF) is another algorithm to capture state estimation using samples set for the purpose of handling non-Gaussian noises [27].



	
Another popular method is the Huber-based Kalman filter. It is a robust state estimator to handle the non-Gaussian noises based on the robust estimation theory [28]. Many navigation and target problems were often handled through it under the conditions of non-Gaussian noises in the past few years [29,30,31,32].



	
Chang [33] proposed a new robust Kalman filter in recent years. He defined a judging index calculating the difference between the observation and the prediction based on Mahalanobis distance to solve the outliers, which can also successfully solve the observation noises that obey the thick-tailed distribution during the actual observation process.








Maximum correntropy criterion (MCC) is an information theoretic method proposed in recent years. It has been applied to the Bayesian estimation and the error analysis [34,35]. The maximum correntropy Kalman filter (MCKF), which is an improved Kalman filter algorithm using the MCC theory, is one of the latest designed estimators for the purpose of solving non-Gaussian noises. In addition, the maximum correntropy extended Kalman filter (MCEKF) and the maximum correntropy unscented Kalman filter (MCUKF) are proposed for the nonlinear system [36], and the MCUKF has been proven to show a better performance than MCEKF [37]. However, its robustness is not analyzed and it has not been applied to SINS/CNS deeply integrated navigation.



The key contributions of this paper are expressed as follows. First of all, the observability of the new deeply integrated navigation system is analyzed. The MCUKF is then deduced on the basis of maximum correntropy theory and unscented transformation to deal with the nonlinearity and non-Gaussian noises in the navigation system. The computational complexity of it is also analyzed. Furthermore, the robustness of the MCUKF is discussed under the condition of the non-Gaussian noises. Finally, the conditions of non-Gaussian noise, mainly including the large outliers and the Gaussian mixture noises, existing in SINS/CNS deeply integrated navigation are effectively handled by the MCUKF.



The organization of this paper proceeds as follows. SINS/CNS deeply integrated navigation is briefly reviewed and the observability is analyzed in Section 1. In Section 2, the algorithm steps are designed for the MCUKF and the robustness performance is analyzed compared with a Huber-based filter. In Section 3, simulations are demonstrated to compare the performances using several filter methods under the conditions of different kinds of noises. Finally, we draw conclusions in Section 4.




2. SINS/CNS Deeply Integrated Navigation System


2.1. Integrated Navigation Principle


The traditional SINS/CNS integrated navigation system outputs the attitude, the velocity, and the position information of a missile through the IMU (including a gyro and an accelerometer). The star sensor of the CNS outputs the attitude information of the missile after star capturing and star identification. The attitude information calculated by the star sensor and the gyro is then integrated, and the integrated information is served as the measurement equation. The optimal estimation methods are then used to estimate the gyro drift to correct the gyro. Figure 1 shows the traditional SINS/CNS integrated navigation principle.


Figure 1. Traditional strap-down inertial navigation system/celestial navigation system (SINS/CNS) integrated navigation principle.
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Although SINS/CNS integrated navigation system can correct the gyro drift to some extent, the error of the state variables still has a divergence [4,13,14,16]. SINS/CNS deeply integrated navigation can solve the problem. Based on the traditional integrated navigation system, the height, the pitching angle, and the azimuth angle are added as the measurement information according to the altimeter and the astronomical information. In fact, these three new measurements are the function of the position of the navigation target. Therefore, the estimation of the gyro drift and the accelerometer bias can be gained to correct the acceleration information of SINS. Figure 2 shows the navigation principle of the SINS/CNS deeply integrated mode.


Figure 2. SINS/CNS deeply integrated navigation principle.
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The deeply integrated SINS/CNS integrated navigation system has not yet been realized in real scenarios. When it is applied on the missile, the star sensor measures not only the attitude information but also the partial position information of the missile. The attitude can be calculated through star identification. The position can be calculated by measuring the height angle and the azimuth angle of the star. An altimeter needs to be installed on the system to measure the height information of the missile. The altimeter can be a radar altimeter [38], a pressure altimeter [39], or a laser altimeter [40], decided according to the specific case. Combined with the position information from the star sensor, the position of the missile can be obtained. In this way, the deeply SINS/CNS integrated navigation system can be realized and applied to practical situations. The detailed principle of the system is introduced in the next section.




2.2. System Model


2.2.1. State Equation


Suppose that the navigation frame is the launch point frame (l-frame) and the SINS is strapdown-installed along the three axles of the missile. Then the state equation is identical to the traditional algorithm:


[image: ]



(1)




where [image: ] denotes the system state, [image: ] denotes the platform angles error (the navigation frame misalignment angle) in the l-frame; [image: ] denotes the velocity error in the l-frame; [image: ] denotes the position error in the l-frame; [image: ] denotes the gyro constant drift; [image: ] denotes the accelerometer constant bias; [image: ] denotes the process noise vector, including the random noises of the gyro and the accelerometer; [image: ] denotes the process noise input matrix; [image: ] denotes the process input matrix. The detailed information of [image: ] and [image: ] can be found in [41]— Equations (6-5) and (6-6), respectively. The solution of the differential Equation (1) for the discrete mode can be expressed as:


[image: ]



(2)




Equation (2) can be obtained through the Laplace transformation which is introduced in Chapter 2 of Reference [41]. In simulation, the equation is solved through Runge-Kutta algorithm.



And the linear version for Equation (2), which is used for MCEKF [36] can be expressed as:


[image: ]



(3)




where k denotes the epoch, [image: ] and [image: ] are the discrete versions of [image: ] and [image: ], respectively, which can be expressed as:


[image: ]



(4)








2.2.2. Measurement Equation


(1) Measurement of Attitude Error



Suppose that the attitude output of the gyro is [image: ], and the attitude output of the star sensor is [image: ]. The three angles are equivalent to the three Euler angles, denoting roll angle, pitch angle, and yaw angle, respectively. The difference between the two sets of attitude angles can be denoted as [image: ], which can be transformed into the error-angles of the platform and can be expressed as the function of the state [image: ]. Denote [image: ] as the attitude error measurement, which can be expressed as:


[image: ]



(5)




where [image: ], and [image: ] denotes the attitude error transition matrix, which can be expressed as:


[image: ]



(6)




where [image: ] denotes the pitch angle, [image: ] denotes the yaw angle, and [image: ] represents the measurement noises of the star sensor. The detailed derivation process of [image: ] can be obtained in [42].



(2) Measurement of Position Error



The measurement information relies on the azimuth angle, the pitch angle of the guide star, and the outputs of the altimeter. The measurement equation of the position error is derived in [4]. The measurement equation is expressed as:


[image: ]



(7)




where [image: ] is the pitch angle difference between the measurement and the computation value; [image: ] is the azimuth angle difference between the measurement and the computation value; [image: ] is the difference between the height measurement of the altimeter and the computation value; [image: ] stands for the rotation matrix from the l-frame (the launching point coordinate frame which is also the navigation frame) to the i-frame (the geocentric inertial coordinate frame), which is a constant matrix and can be expressed as:


[image: ]



(8)




where [image: ] denotes the launching angle of missile, [image: ] and [image: ] denote the longitude and the latitude of the launching point, respectively, [image: ] denotes the rotation matrix from the i-frame to the e-frame (the earth-based frame), which can be expressed as:


[image: ]



(9)




where [image: ] is the earth’s rotation angular velocity, [image: ] denotes the time in the k-th epoch. [image: ] denotes the position error in three directions; [image: ] and [image: ] are the observation noises of the pitch angle and the azimuth angle, respectively; [image: ] is the measurement noise of the altimeter; [image: ] and [image: ] are as follows:


[image: ]



(10)






[image: ]



(11)




where [image: ] is the pitch angle of the guide star, [image: ] is the azimuth angle of the guide star, [image: ] is the height of the missile, [image: ] is the earth radius, [image: ] is the latitude of the missile, and [image: ] is the longitude of the missile. Denote [image: ], that is,


[image: ]



(12)




where [image: ], and [image: ].



Combined with Equations (5) and (12), the total measurement equation can be expressed:


[image: ]



(13)




where the measurement matrix [image: ] is:


[image: ]



(14)




and [image: ] is the zero matrix. The measurement noises [image: ] are expressed as:


[image: ]



(15)




and it is independent of the state noises [image: ] in Equation (3). Compared with the traditional mode, the deeply integrated mode adds the dimension of the measurements. In this way, the computational complexity will increase, which is analyzed in Section 3.3.



In many cases, [image: ] denotes the Gaussian white noises [4,13,14,43,44,45]. However, in practice, due to the sensor faults or the complex environment, the measurement noises may be contaminated noises with different distributions or include large outliers. It can be shown as follows:


[image: ]



(16)




or


[image: ]



(17)




where [image: ] denotes the Gaussian white noises, [image: ] is distributed differently from [image: ], and [image: ] is the outlier.



The non-Gaussian noises can influence the performance of the navigation system; therefore, it is necessary to use the robust filter to solve the problem. The maximum correntropy Kalman filter is newly designed to effectively tackle the non-Gaussian noise.




2.2.3. Observability Analysis


The observability analysis is needed to determine the efficiency of the Kalman filter designed for the purpose of estimating the system state variable [46]. If the system observability is poor, the estimation of the state will be inaccurate. Therefore, it is necessary to analyze the observability of the new integrated navigation system.



Considering the state Equation (3) and the measurement Equation (13), according to [47], the observability matrix [image: ] of the deeply integrated navigation system is as follows:


[image: ]



(18)




where [image: ] is the measurement matrix of the deeply integrated method, [image: ] denotes the discrete version of the state transition matrix, [image: ] is the dimension of state variable, which is 15 in the deeply integrated navigation system, as described in Equation (1), so [image: ]. Hence, the SINS/CNS deeply integrated navigation mode is observable. For comparison, the observability matrix of the traditional navigation mode [image: ] is analyzed as follows:


[image: ]



(19)




where [image: ] is the measurement matrix of the traditional method. Thus, [image: ]. Therefore, the traditional integrated navigation system is unobservable. In other words, the new navigation system, compared with the traditional one, will have a more precise estimation.






3. The Maximum Correntropy Unscented Kalman Filter


3.1. Maximum Correntropy Criterion


Correntropy [48] denotes the measure of an information entropy field, which defines the novel metric in the sample space, using the information available in the higher-order statistics of the signals. Given two random variables with the joint probability density function (PDF) [image: ], the definition of correntropy is expressed as follows.



Definition 1.

Given two random variables [image: ] and [image: ], the correntropy is defined as:


[image: ]



(20)




where [image: ] denotes the expectation, [image: ] denotes a real-valued continuous, symmetric, and nonnegative definite kernel function [image: ] denotes the kernel bandwidth.





The Gaussian kernel, which is expressed as follows, is used as the kernel function in Definition 1:


[image: ]



(21)




where [image: ].



In many practical cases, there are a finite amount of samples to estimate the unknown joint PDF [image: ]. Hence, the sample mean estimator can calculate the correntropy as follows:


[image: ]



(22)




where


[image: ]



(23)




[image: ] denotes N samples, which are drawn from [image: ].



Assuming [image: ], [image: ], [image: ], and [image: ]. The current correntropy value is depicted in Figure 3.


Figure 3. Correntropy when [image: ].
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According to Figure 3, correntropy is considered a correlation scale in the joint space, which reaches maximum under the conditions that [image: ]. Based on this, the cost function can be defined to represent the maximum correntropy criterion (MCC) as follows:


[image: ]



(24)







From Figure 3, it is manifest that MCC represents a local similarity criterion that reflects the maximum error probability density from the view of probabilistic meaning [48]. Non-Gaussian noises, such as large outliers and Gaussian mixture noises, can be handled effectively on the basis of the property [49]. That is to say, MCC reaches the maximum value on the joint space’s bisector because the value of Gaussian kernel maximizes on the line [image: ], which is different from the mean square error (MSE) estimation [50]. Based on this, MCC has been used for parameter estimation in recent years [34,35,51].




3.2. The Maximum Correntropy Unscented Kalman Filter


The MCUKF is a novel algorithm combined with a UKF framework based on the MCC, and can perform better for nonlinear systems in non-Gaussian noise environments [37].



Consider the state equation and the measurement equation described in Equations (2) and (13) in Section 2:


[image: ]



(25)




[image: ] and [image: ] are mutually uncorrelated process noises and measurement noises, respectively. The mean of both noises are zero and the covariances of them are expressed as:


[image: ]



(26)







Similar to the Kalman filter, the MCUKF includes the time update and the measurement update.



3.2.1. Time Update


The sigma points set are generated from the estimated state [image: ] and the covariance matrix [image: ] at the previous step [image: ].


[image: ]



(27)




where [image: ] denotes the dimension number of the state, [image: ] denotes the i-th column of [image: ] , and the composite scaling factor [image: ] is expressed as:


[image: ]



(28)




where [image: ] is a parameter that is set to [image: ] [37], and [image: ] controls the distribution conditions of the sigma points.



The unscented transformed points are given as:


[image: ]



(29)







The predicted state and the covariance matrix are estimated as:


[image: ]



(30)






[image: ]



(31)




where the weights of the sigma points are as follows:


[image: ]



(32)




where [image: ] is expressed in Equation (28) and [image: ] is a weighted parameter that is non-negative. When the measurement data are not avaliable, [image: ] can replace the current state estimation.



The sigma points of the prior state mean and the predicted covariance are set as:


[image: ]



(33)







The sigma points are then transferred using the measurement equation as:


[image: ]



(34)







The predicted measurement mean can be estimated as:


[image: ]



(35)








3.2.2. Measurement Update


Next, the measurement update is calculated based on the MCC. For the model described in the previous section, we have


[image: ]



(36)




where [image: ] denotes the unit matrix, and [image: ] , with


[image: ]



(37)




where [image: ], [image: ], and [image: ] is calculated on the basis of Cholesky decomposition of [image: ], the predicted covariance [image: ] , and the covariance of the measurement noises [image: ], respectively. In fact, [image: ] denotes a random variable matrix, which consists of the prior estimation error of the state and the measurements prediction error. Equation (36) is multiplied by [image: ] on the left of both sides, and we get


[image: ]



(38)




where [image: ] , [image: ] , and [image: ]. In this way, [image: ] denotes a new random variable matrix, which is just multiplied by a matrix [image: ].



Now the MCC for Equation (24) based on the cost function can be rewritten as follows:


[image: ]



(39)




where [image: ] denotes the i-th unit of [image: ], [image: ] denotes the i-th unit of [image: ], [image: ] denotes the i-th row of [image: ], and [image: ] denotes the entire dimension of [image: ], which represents the sum of the dimension of state variable [image: ] and the measurement [image: ]. In fact, [image: ] is equivalent to [image: ] in Equation (23), and [image: ] is equivalent to [image: ] in Equation (23). That is, [image: ] is equivalent to [image: ] in Equations (22) and (23), and [image: ] is equivalent to [image: ] in Equation (22).



In particular, according to Figure 3, when the error [image: ] reaches the minimum, the correntropy reaches its maximum value. In other words, the optimal estimation of the state can minimize the error and maximize the correntropy as well. In this way, the optimal estimate of [image: ] is considered with respect to MCC.



Then, the optimal estimate under the MCC criterion of [image: ] is


[image: ]



(40)







The optimal solution can thus be obtained by solving


[image: ]



(41)







It follows that




[image: ]



(42)





The optimal solution expressed by Equation (42) is actually a fixed-point equation of [image: ] and can be rewritten as:


[image: ]



(43)




with


[image: ]











A fixed-point iterative algorithm can be readily obtained as [51]:


[image: ]



(44)




where [image: ] denotes the solution at the fixed-point iteration [image: ].



The fixed-point Equation (42) can also be expressed in matrix form as:


[image: ]



(45)




where [image: ] , and




[image: ]
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Equation (45) can be further expressed as follows (the detailed derivation is in [52]):


[image: ]



(46)








[image: ]



(47)





With the above derivations, we summarize the proposed MCUKF algorithm as follows:

	
Step 1: Choose a proper kernel bandwidth [image: ] and a small positive number [image: ]; the estimate [image: ] and the covariance matrix [image: ] are initialized; let [image: ].



	
Step 2: Use Equations (27)–(32) to obtain [image: ] and [image: ], and make use of Cholesky decomposition to calculate [image: ].



	
Step 3: According to Equations (32)–(35), compute the predicted measurement [image: ] and use Equations (25) and (30) to construct the model (36).



	
Step 4: Transform Equation (36) in to Equation (38). Let [image: ] and [image: ], where [image: ] denotes the estimated state at the fixed-point iteration [image: ].



	
Step 5: Use Equations (48)–(54) to compute [image: ]:


[image: ]



(48)




and


[image: ]



(49)






[image: ]



(50)






[image: ]



(51)






[image: ]



(52)






[image: ]



(53)






[image: ]



(54)







	
Step 6: Compare the estimation of the current step and the estimation of the last step. If Equation (55) holds, set [image: ] and continue to Step 6. Otherwise, go back to Step 4.


[image: ]



(55)







	
Step 7: Update the estimation covariance matrix, make [image: ], and go back to Step 2.


[image: ]



(56)












For obtaining the optimal solution in Equation (42), the MCUKF updates the state estimation through a fixed-point algorithm, which is shown as Equation (55). Therefore, the small positive number [image: ] provides a threshold for the fixed-point iteration. When the result of the iteration is in the threshold range, we call it convergence and the solution is optimal. The convergence of the solution will be fast because of the predicted state [image: ] [52].





3.3. Computational Complexity


For the future implementation on real hardware, it is necessary to analyze the computational complexity of the proposed approach in the article. In terms of the floating points operations, the computation complexity of the basic equations of the MCUKF is analyzed in Table 1.


Table 1. Computational complexities of some equations, where n denotes the dimension of the state variable, m denotes the dimension of the measurements.











	Equation
	Addition/Subtraction and Multiplication
	Equation
	Addition/Subtraction and Multiplication





	(25)
	[image: ]
	(47)
	[image: ]



	(27)
	[image: ]
	(48)
	[image: ]



	(28)
	[image: ]
	(49)
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	(29)
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	(50)
	[image: ]



	(31)
	[image: ]
	(51)
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	(32)
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	(52)
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	(33)
	[image: ]
	(54)
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	(46)
	[image: ]
	
	









The traditional unscented Kalman filter is analyzed in [53]. The computation complexity of it is




[image: ]



(57)





In fact, Equations (27)–(35) in the MCUKF are the same as that in the UKF. Equations (48)–(56) in the MCUKF mainly involves the different equations expressed by Equations (48)–(56). Equation (55) gives a fixed-point algorithm to update the posterior estimate of the state that can provide a stop condition in several steps. Assuming that the fixed-point iteration number is T, then the computation complexity of MCUKF is




[image: ]



(58)





According to Equations (57) and (58), the computational complexity of the MCUKF is much higher than that of the UKF because of the fixed-point algorithm and more matrix inverse problems.



According to the complexity analysis above, the increasing dimension of the measurements of the deeply integrated mode has a higher computational complexity than the traditional mode.




3.4. Robustness Analysis


The robustness is a very important feature for the navigation filter algorithm, especially in the complex space environment. One of the most significant advantages of MCC is robustness that can tackle non-Gaussian noises. In fact, it uses a method similar to the Huber-based filter (HF) to improve the robustness [54]. Both of them use the weighted function to tackle the non-Gaussian noises. HF is a classical method to tackle the non-Gaussian noises, and it has been proved in detail [55]. Additionally, some articles have demonstrated the ability of MCC in accommodating non-Gaussian noises, especially outliers and Gaussian mixture noises [56,57]. Next, the algorithm robustness is compared with HF through the weighting function.



HF is created based on the concept of the robustness through the maximum likelihood method. Assume that the maximum likelihood estimator (MLE) stems from the data observation [image: ] and the state variable [image: ]. Then [image: ] is drawn from the distribution [image: ], which is known apart from the parameters [image: ]. In this way, the MLE of [image: ] can be defined as:


[image: ]



(59)







Assuming that [image: ] are i.i.d. observations, then it can be rewritten as:


[image: ]



(60)







Let [image: ], where [image: ] and b is uncorrelated with [image: ]. Thus, [image: ] obeys




[image: ]



(61)





In fact, the errors in the target track model are always considered as pure Gaussian white noises with zero mean and constant variance [image: ] in some parametric models. In these cases, the maximum likelihood estimation can be solved. However, in practice, the external environment influences the measurement equipment and causes the filter algorithm to break down. Hence, the non-Gaussian noises in the measurements cannot be avoided. A typical non-Gaussian noises are Gaussian mixture noises, which obey the Gaussian distributions with different mean values and variances with most errors. For instance, assume that the distribution is expressed as:


[image: ]



(62)




where [image: ], [image: ], and [image: ] denote the Gaussian mixture distribution, the known normal Gaussian distribution, and an unknown contaminated distribution, respectively, and [image: ] is the contamination ratio. It is much smaller than 1. For Equation (62), it is of necessity to solve the maximum likelihood estimation through Equation (61).



For the purpose of solving the problem, Huber proposed that [image: ] can change freely within limits, leading to the birth of M-estimation, which is an effective way of solving Equation (61).



M-estimator is defined as a generalization of MLE as:


[image: ]



(63)




where [image: ] denotes the cost or penalty function.



Let


[image: ]



(64)




where [image: ] denotes the kernel bandwidth.



Then




[image: ]



(65)





Therefore, MCC is equivalent to Equation (64):


[image: ]











According to the M-estimation problem, [image: ], as well as the weighting function of MCC, can be rewritten as:


[image: ]



(66)




where [image: ]. Therefore,




[image: ]



(67)





On the basis of analysis of the weighting function above, we will compare it with the Huber filter to prove the superiority of MCC.



The weighted functions of them are shown in Table 2.


Table 2. The weighted functions of two methods.





	Item
	Penalty Function
	Weighted Function





	Huber
	[image: ]
	[image: ]



	MCC
	[image: ]
	[image: ]









Some researchers have performed robustness analysis of MCC in theory. The robustness of two methods are shown through Figure 4 to intuitively analyze the robustness of MCC.


Figure 4. The weight comparison with the error growth of two methods where [image: ].



[image: Sensors 18 01724 g004]






In Figure 4, the weight of HF decreases rapidly as the estimate residual grows. However, the weight of MCC approaches zero faster compared with that of the Huber method. In addition, with the growth of the error, the weight of the Huber method is not zero. In other words, Huber-based methods can select more measurements containing large errors than MCC-based methods, which may cause large errors to the filter algorithm, although with small weights. Therefore, the filter based on the MCC is more robust than the Huber-based filter.





4. Simulation Results


In this section, the superiority of SINS/CNS deeply integrated navigation is proved firstly. The performances of the MCUKF are then illustrated under the conditions of the Gaussian noises, the large outliers, and the Gaussian mixture noises, respectively. The estimation performance are compared on the basis of the following indices:


[image: ]



(68)






[image: ]



(69)




where m is the simulation time steps and L represents the total simulation numbers. In addition, the time cost of every method is given to compare the computational complexity. All methods are implemented in the same precision (64-point floating point) in MATLAB running on a PC with processor Intel(R) Core(TM) i7-7500U CPU 2.70GHz and with 8 GB of installed memory (RAM).



The simulation parameters are as Table 3.


Table 3. Simulation conditions.





	Parameter
	Values
	Parameter
	Values





	Initial latitude
	39.98[image: ]
	Random noise of altimeter
	50 m



	Initial longitude
	116.34[image: ]
	Random noise of star sensor
	[image: ]



	Initial velocity
	[image: ]
	Time of the vertical rise
	10 s



	Initial pitch angle (Launching angle)
	90[image: ]
	Filter start time
	40 s



	Gravity acceleration
	[image: ]
	Ending time of the powered phase turn
	60 s



	Constant drifts of the gyro
	[image: ]
	Time of the engine shutting off
	160 s



	Random noise of the gyro
	[image: ]
	Total flying time
	1110 s



	Constant biases of the accelerometers
	[image: ]
	Filter period
	1 s



	Random noise of the accelerometers
	[image: ]
	Gyro Sample period
	0.01 s



	Monte Carlo times
	L =10
	Star Sensor Sampling period
	1 s









The missile trajectory is shown in Figure 5.


Figure 5. Missile flight trajectory.
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To prove the high performance of the new integrated navigation system, a simulation is done only under the condition of the Gaussian white noises. Compared with the traditional integrated mode, the position and the attitude angle residual are shown in Figure 6 and Figure 7.


Figure 6. The position residual.



[image: Sensors 18 01724 g006]





Figure 7. The attitude angle residual.



[image: Sensors 18 01724 g007]






The RMSE of the position and attitude angle and the time cost of every filter are shown in Table 4.


Table 4. RMSE of the position, attitude, and time cost of the two navigation methods.





	

	
Position (m)

	
Attitude ([image: ])

	
Time (min)




	

	
x

	
y

	
z

	
Yaw

	
Pitch

	
Roll






	
Traditional Method

	
114.4777

	
434.0437

	
245.1516

	
27.4501

	
65.9759

	
6.1114

	
0.738




	
Deeply Integrated Mode

	
30.9459

	
67.5309

	
184.4883

	
27.4490

	
65.9718

	
6.1009

	
0.934










From the Figures and the table above, the navigation position error has evidently improved when constructing the measurement [image: ] in Equation (12). In addition, the SINS/CNS deeply integrated navigation mode for the ballistic missile can tackle the divergence of the position error effectively, which obeys the observability analysis results. However, the newly proposed navigation system needs more time to gain the results.



Next, we will compare the MCUKF performance with other algorithms under the conditions of the Gaussian noises, the large outliers, and the Gaussian mixture noises for SINS/CNS deeply integrated navigation.



4.1. Case 1: Gaussian Noises


In this section, we will apply the MCUKF on SINS/CNS deeply integrated navigation under the conditions of the Gaussian noises to compare performances with other filter algorithms including the HKF [55], the IEKF, the NIF, the PLF, the UKF, and the MCEKF [36]. The simulation parameters are set as Table 1. The simulation results are shown in Figure 8 and Figure 9, and Table 5.


Figure 8. The position residual under the condition of Gaussian noise.



[image: Sensors 18 01724 g008]





Figure 9. The attitude angle residual under the condition of Gaussian noise.
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Table 5. RMSE of position, attitude, and time cost of different methods in the presence of Gaussian noise for SINS/CNS deeply integrated navigation.





	

	
Position (m)

	
Attitude ([image: ])

	
Time (min)




	

	
x

	
y

	
z

	
Yaw

	
Pitch

	
Roll






	
IEKF

	
29.5693

	
66.0529

	
184.5749

	
27.4483

	
66.0447

	
6.0555

	
0.9748




	
NIF

	
29.5635

	
66.0312

	
184.2973

	
27.4483

	
66.0447

	
6.0555

	
1.3277




	
PLF

	
25.5944

	
66.6029

	
172.7334

	
27.4425

	
66.0406

	
6.0086

	
1.4536




	
HKF

	
29.6274

	
66.2252

	
186.4335

	
27.4483

	
66.0447

	
6.0555

	
0.5878




	
UKF

	
29.5598

	
66.0247

	
184.2777

	
27.4483

	
66.0447

	
6.0555

	
0.1124




	
MCEKF

	
29.5841

	
66.0968

	
185.0428

	
27.4483

	
66.0447

	
6.0555

	
0.2280




	
MCUKF

	
29.5659

	
66.0427

	
184.4676

	
27.4483

	
66.0447

	
6.0555

	
0.3230










According to Table 5, PLF demonstrates the highest accuracy among the seven filters in this condition because of the a posteriori estimation and the iteration. It can be observed that robust filters cannot always perform as well as the PLF, the NIF, or the UKF under the condition of the Gaussian noises.




4.2. Case 2: Large Outliers


In this section, the case in which the measurement value including large outliers is considered. The attitude outliers are added artificially to the attitude angle data at the 5000th and 9000th epochs, respectively. The position outliers are also added artificially to the position data at the 5000th epochs. The constant outliers are added to all epochs between the 4001th to the 4005th to the attitude angle data. The constant outliers are added to all epochs between 4001th and the 4005th to the position data. The obtained position errors and the attitude angle errors are displayed in Figure 10 and Figure 11, and Table 6.


Figure 10. The position residual under the condition of the large outliers.
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Figure 11. The attitude angle residual under the condition of the large outliers.
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Table 6. RMSE of position, attitude, and time cost of different methods in the presence of large outliers for SINS/CNS deeply integrated navigation.





	

	
Position (m)

	
Attitude ([image: ])

	
Time (min)




	

	
x

	
y

	
z

	
Yaw

	
Pitch

	
Roll






	

	
x

	
y

	
z

	
p

	
ph

	
g

	
time




	
IEKF

	
34.9042

	
70.5450

	
186.9381

	
27.5917

	
66.1098

	
6.2019

	
0.4629




	
NIF

	
34.8999

	
70.5382

	
186.9179

	
27.5918

	
66.1098

	
6.2021

	
0.8702




	
PLF

	
36.1497

	
73.6876

	
176.1497

	
27.5687

	
66.1091

	
6.1272

	
0.9432




	
HKF

	
31.5010

	
68.6713

	
185.1142

	
27.5874

	
66.1095

	
6.1775

	
0.2228




	
UKF

	
29.6882

	
67.6938

	
184.3485

	
27.5715

	
66.1088

	
6.1275

	
0.1332




	
MCEKF

	
30.8100

	
68.2925

	
184.7478

	
27.5852

	
66.1093

	
6.1657

	
0.2257




	
MCUKF

	
29.3169

	
67.5903

	
184.3414

	
27.5579

	
66.1081

	
6.0574

	
0.2665










According to the presented results, it can be concluded that, in the presence of outliers, the filter results mostly depend on the outliers. In addition, Figure 10 and Figure 11 show that the HKF, the MCEKF, and the MCUKF can resist the influence of the outliers to some extent. Furthermore, the two figures show that the MCUKF has better performance than the other algorithms, so the influence of the single and the constant outliers is reduced using the MCUKF algorithm. The RMSE values and time cost of all used filters are presented in Table 6.



Compared with other filters, the filtering algorithm of the MCEKF and the MCUKF is improved to a certain degree, especially for the outliers. The MCUKF has better performance than other filters and lower time cost than the iterated filters.




4.3. Case 3: Gaussian Mixture Noises


In this section, the case in which the measurement noises are the Gaussian mixture noises, whose distributions are as follows:



Star Sensor Noise: [image: ].



Altimeter Noise: [image: ].



The obtained position errors and the attitude angle errors are displayed in Figure 12 and Figure 13, and Table 7.


Figure 12. The position residual under the condition of the Gaussian mixture noises.
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Figure 13. The attitude angle residual under the condition of the Gaussian mixture noises.
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Table 7. RMSE of position, attitude, and time cost of different message under the condition of the Gaussian mixture noises for SINS/CNS deeply integrated navigation.





	

	
Position (m)

	
Attitude ([image: ])

	
Time (min)




	

	
x

	
y

	
z

	
Yaw

	
Pitch

	
Roll






	

	
x

	
y

	
z

	
p

	
ph

	
g

	
time




	
IEKF

	
30.1388

	
67.7275

	
185.7022

	
26.6707

	
66.0896

	
6.6902

	
0.8293




	
NIF

	
30.0166

	
67.4352

	
183.6012

	
27.8260

	
67.2466

	
6.6826

	
1.2689




	
PLF

	
30.6610

	
67.5520

	
183.6714

	
27.6757

	
66.0895

	
6.6811

	
2.9075




	
HKF

	
30.0526

	
67.5224

	
184.2160

	
27.6750

	
66.0893

	
6.6787

	
1.3422




	
UKF

	
30.0090

	
67.4125

	
183.4182

	
27.6757

	
66.0869

	
6.6811

	
0.1277




	
MCEKF

	
30.0233

	
67.4515

	
183.7159

	
27.6750

	
66.0893

	
6.6787

	
0.3502




	
MCUKF

	
30.0049

	
67.4062

	
183.3980

	
27.6679

	
66.0696

	
6.6521

	
0.3889










Figure 12 and Figure 13 reveal the residual using different filters under the conditions of the Gaussian mixture noises. In addition, Table 7 illustrates the RMSE of the position, the attitude angle, and the time cost of every method. It can be observed that the MCUKF achieves better performance than other filters.





5. Conclusions


SINS/CNS deeply integrated navigation, which consists in modified SINS/CNS navigation, is introduced, and the observability of the navigation system was analyzed. However, the simulation results demonstrate that the new system needs more time. Measurement noises are often the research focus with regard to navigation systems. The non-Gaussian noises, including the large outliers and the Gaussian mixture noises, always exist during the measurement process. On the basis of the maximum correntropy theory, the maximum correntropy unscented Kalman filter (MCUKF) is a newly designed robust unscented Kalman filter (UKF). The robustness for state estimation, which can resist the effects of non-Gaussian noises effectively, is also analyzed and compared with a Huber-based filter. Simulated experimental results demonstrate that the MCC-based filter provides much better performance when tackling the non-Gaussian noises of SINS/CNS deeply integrated navigation, but with a higher computational complexity than the traditional UKF.



In practical applications, the added star sensors and the altimeter of the deeply integrated system will increase the load of the missile. Future work will focus on the installation method of the measurement facilities and applications in real scenarios. The coupled problem of multiple sensors may also need to be solved.
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	Strap-Down Inertial Navigation System
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	Celestial Navigation System



	MCC
	Maximum Correntropy Criterion



	MCUKF
	Maximum Correntropy Unscented Kalman Filter



	MCEKF
	Maximum Correntropy Extended Kalman Filter
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	Unscented Kalman Filter



	HKF
	Huber Kalman Filter
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