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Abstract: Hemiplegia is a symptom that is caused by reduced sensory and motor ability on one side
of the body due to stroke-related neural defects. Muscular weakness and abnormal sensation that is
induced by hemiplegia usually lead to motor impairments, such as difficulty in controlling the trunk,
unstable balance, and poor walking ability. Therefore, most hemiplegia patients show defective and
asymmetric gait pattern. The purpose of this study is to distinguish hemiplegic gait by extracting
simple characteristics of acceleration signals that are caused by asymmetry during walking using a
wearable system. The devised wearable system was equipped with a three-axis accelerometer and a
three-axis gyroscope. We selected 165 candidate features without step detection. A random forest
algorithm was used for the classification, and the forward search algorithm was also used for optimal
feature selection. The developed system and algorithms were verified clinically in 15 normal subjects
and 20 hemiplegia patients that were undergoing stroke treatment, and 26 subject’s data was used
for training, including validation, and nine subject’s data used for test. As a result of test set, the
accuracy, sensitivity, specificity and positive predictive value were 100.0%, with the two classification
attributes of standard deviation of points perpendicular to the axis of line of identity of Poincaré
plot of angular velocity around vertical axis and kurtosis of frequency of angular velocity around
longitudinal axis.
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1. Introduction

Stroke is the general term for cerebrovascular disease that is caused by cerebral artery occlusion or
cerebral hemorrhage. Twenty percent of stroke patients recover completely from physical and mental
impairment, 60% are affected by disorders of movement, speech, sensory, and cognitive systems, and
the remaining 20% die [1]. Hemiplegia is a symptom that is caused by decreased sensory and motor
ability on one side of the body due to stroke-related neurological defect. Therefore, a hemiplegic gait
is characterized by muscular weakness and poor sensation inducing a movement disorder, such as
difficulty in controlling the trunk or unstable balance [2]. Patients with hemiplegia have a tendency
to move the center of gravity rapidly to the non-paralyzed side [3], to increase the walking speed
and cadence per unit time or decrease the stride length and gait cycle to compensate for motor
dysfunction [4]. There are three major differences in the hemiplegic gait when compared with the gait
cycle of normal persons [5]. First, the duration of the stance phase is increased in both the paralyzed
and non-paralyzed sides as compared with the normal gait. Second, the stance is more in the whole
gait cycle than in the normal gait. Third, in the case of hemiplegic walking, the stance on the paralyzed
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side is noticeably shorter than on the paralyzed side, and the double support predominates the whole
gait cycle. In paralysis and non-paralysis, there is a clear difference in the angle and position between
the body segments during the stance, initial contact, swing phase, and toe-off.

In clinical practice, physical therapists use the manual muscle test (MMT), modified Ashworth
scale (MAS), and range of motion (ROM) to evaluate motor function. The MMT divides the muscular
strength into six levels according to the presence or absence of gravity, and the degree of resistance
from the level without muscle movement to the level where it encounters a strong resistance of
the examinee [6]. Each level is represented using a proposed alphabet or is scored from 0 to 5, as
proposed by the Medical Research Council (MRC) [7]. The modified Ashworth scale (MAS) [8] is
used to determine the degree of severity of rigidity at the six levels [9]. MMT, MAS, and ROM, which
are mainly performed in clinical studies, involve naked eye observations of the degree of functional
recovery. However, the disadvantage is that the detailed numerical result of the joint ROM cannot
be recorded, and the subjective thought of the evaluator is reflected. In addition, since it does not
consider the deterioration of the body according to aging, quantitative measurements and evaluation
of the body movement have been actively studied. Representative methods include the measurement
of the joint angle during walking using an electronic protractor, taking an action trace using a light
emitter marker, and the use of a force plate [10–12]. The Vicon Motion Capture System (Oxford
Metrics, Oxford, UK) is widely used in conventional gait analysis. The system records gait without
constraining the body and yields accurate numerical records. However, disadvantages of the system
include the need for large installation space and a high price [13]. Therefore, quantitative evaluation of
walking ability in clinical practice is mainly performed in a place with specialized facilities. To address
the limitations of quantitative evaluation, motion analysis using an accelerometer instead of the
conventional three-dimensional (3D) motion analysis using a marker and video has been studied.
The gait analysis system using the accelerometer is lightweight and portable, has no spatial limitations,
and facilitates the analysis of spatial and temporal characteristics of walking. Studies analyzed the
change in acceleration at the center of gravity with and without back pain [14]. Another study
measured the acceleration in the fibular heads of hemiplegic patients and compared the acceleration
at the paralyzed and non-paralyzed sides using the Brunnstrom stage, which measures the recovery
phase of the arm [15]. Gait was measured using an accelerometer in 282 healthy adults and elderly
subjects, and the effects of gender and age were assessed by measuring gait velocities, stride lengths,
gait frequencies, and patterns of vertical acceleration signals during gait [16]. Vertical acceleration
signal is a key feature in the evaluation of step symmetry and step regularity. These studies measured
the acceleration and angular velocity signals that were generated by walking on the body center of
gravity, legs, ankles, and feet, and separated the measured signals into steps to determine the abnormal
gait pattern. In the study, walking was usually analyzed by the shape of the repeated waveform,
peak, or frequency components [15,17–19]. The results were very similar to the results derived from
the three-dimensional (3D) motion analyzer [20]. However, the acceleration and the angular velocity
signals that were generated during walking are greatly influenced by individual walking characteristics,
and even when diagnosed with hemiplegia, the waveform morphology varies greatly depending on
the severity and age. Therefore, as in the previous study, the detection of abnormal gait via precise
analysis of the waveform of each step requires substantial effort that is based on the detection process
of the step and is limited by large-scale analytical errors associated with inaccurate step detection.
More robust classification based on effective attributes are required to determine uncontrolled daily
environments. In recent years, research is being conducted to classify gait patterns using accelerometer
and pattern recognition techniques. In previous researches, classifier based on hidden Markov model
and on support vector machine shows 90.5% accuracy with 90 probability and spatiotemporal features
of inertial signal in distinguishing gait of the elderly, post-stroke patient and subjects with Huntington’s
disease [21].

This study aims to simplify the characteristics of the acceleration signal that was measured during
walking without step detection, instead of the current method that is associated with a high probability



Sensors 2018, 18, 1736 3 of 12

of false detection, to distinguish hemiplegic walking pattern. Particularly, this study intends to improve
the accuracy of hemiplegic gait classification using inertial signals and pattern classification techniques.

2. Methods

A wearable measurement system that was equipped with an inertial sensor and wireless
communication module was designed to measure and to distinguish hemiplegic gait from normal
gait. Gait classification was based on attributes extracted from inertial signals of wearable sensing
module without step detection. The type of walking was classified according to pattern recognition,
and random forest (RF) algorithm. A forward search algorithm was used to determine the optimal
classification attributes among the selected items. The proposed method was verified clinically.

2.1. Participants

The study was approved by the institutional review board (IRB) of the St. Carrolo Hospital
(Suncheon, Jeollanam-do, South Korea) and all of the subjects signed informed consent before the
experiment (IRB No. SCH2016-130). The participants included 20 normal subjects (10 males and 10
females; mean age 52.6 ± 16.3 years) and 20 hemiplegic patients (13 males and seven females, mean
age 63.2 ± 8.9 years). The normal subjects were selected among volunteers who obtained normal
scores (grade 5) in all of the MMT measurements that were performed by the rehabilitation therapist.
Hemiplegic subjects were selected from patients diagnosed with stroke, who underwent rehabilitation,
who did not have orthopedic disease, had a clear consciousness level, were able to understand the
experiment, and were able to walk more than 20 m in the flat area without the help of a walker or an
assistant. Among hemiplegia patients, 7, 10, and three patients had left-side hemiplegia, right-side
hemiplegia, and bilateral hemiplegia, respectively. Five patients under the age of 40 were excluded
from the analysis, when considering the effect of age on gait patterns. Therefore, data analysis was
performed with a total of 35 subject’s data. Subject’s profile is shown in Table 1.

Table 1. Subject’s profile.

Hemiplegia Normal

Subject
No.

Paralyzed
Side

(L/R/B)

Gender
(M/F)

Age
(years)

Height
(cm)

Weight
(kg)

Subject
No.

Gender
(M/F)

Age
(years)

Height
(cm)

Weight
(kg)

1 L M 54 174 80 21 M 48 168 63
2 R M 65 173 74 22 M 45 167 65
3 R M 76 170 90 23 M 44 170 75
4 L M 59 167 73 24 F 57 159 54
5 R M 72 177 75 25 F 68 150 51
6 R M 63 172 70 26 F 58 163 80
7 L M 75 175 70 27 M 71 165 68
8 B M 63 176 64 28 F 71 158 62
9 B F 64 150 45 29 F 71 157 68
10 R M 60 178 79 30 F 64 156 54
11 R M 78 170 67 31 M 77 168 80
12 R F 63 163 67 32 F 69 155 66
13 L F 60 150 38 33 F 64 162 72
14 L M 68 168 58 34 M 46 171 82
15 L F 64 152 50 35 M 42 173 69
16 B M 47 175 75
17 R F 49 162 90
18 L F 73 145 50
19 R F 62 150 45
20 R M 49 171 75

Mean ± SD L: 7,
R: 10, B: 3

M: 13,
F: 7 63.2 ± 8.9 165.9 ± 10.7 66.8 ± 14.8 Mean ± SD M: 7,

F: 8 59.7 ± 11.9 162.8 ± 6.8 67.3 ± 9.6

2.2. Development of Wearable System

In this study, we developed a wearable system to measure the acceleration that is caused by gait
and a PC application for data display and storage. The wearable system consists of an inertial sensor
module (MPU9250; InvenSense, San Jose, CA, USA) that is equipped with a three-axis accelerometer
and three-axis gyroscope, microcontroller (MSP430G2553; Texas Instruments, Dallas, TX, USA),
Bluetooth module (FB155BC; Firmtech, Sungnam, South Korea), and a rechargeable Li-Pol battery. The
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system was assembled as a printed circuit board (PCB) to minimize its size, with an inertial sensor
located in the center of the PCB to prevent directional or rotational error. Specifications of MPU9250,
MSP430G2553, and FB155BC are presented in Tables 2–4, respectively. A three-axis magnetometer was
included in MPU9250; however, the specification of magnetometer was omitted in Table 2 because it
was not used in this study.

Table 2. Specification of the accelerometer and gyroscope in MPU9250.

Type Feature Value

Accelerometer

Full-scale range ±16 g
ADC word length 16 bits

Sensitivity scale factor 16,384 LSB/g
Sensitivity change vs. temperature ±0.026%/◦C

Cross-axis sensitivity ±2%
Noise power spectral density 300 µg/

√
Hz

Total RMS noise 8 mg-rms
Maximum output data rate 4000 Hz

Gyroscope

Full-scale range ±2000◦/s
ADC word length 16 bits

Sensitivity scale factor 131 LSB/(◦/s)
Sensitivity scale factor variation

over temperature ±4%

Cross-axis sensitivity ±2%
Total RMS noise 0.1◦/s-rms

Rate noise spectral density 0.01◦/s/
√

Hz
Maximum output data rate 8000 Hz

Communication I2C operating frequency
400 kHz (Fast-mode)

100 kHz (Standard-mode)

Table 3. Specification of the microcontroller unit, MSP430G2553.

Feature Description

Supply-voltage range 1.8 V to 3.6 V

Power consumption
Active Mode: 230 µA at 1 MHz, 2.2 V

Standby Mode: 0.5 µA
Off Mode (RAM Retention): 0.1 µA

Analog-to-digital (A/D) converter 10-Bit 200-ksps

Universal Serial Communication Interface (USCI)

Enhanced UART Supporting Auto Baud Rate Detection (LIN)
IrDA Encoder and Decoder

Synchronous SPI
I2C

Wake-up time from standby mode <1 us

Frequency up to 16 MHz

Timer 2 16-Bit Timer_A With 3 Capture/Compare Registers

Table 4. Specification of the Bluetooth module, FB155BC.

Feature Description

Power Class Class2
RF Range Up to 30 m

Power Voltage DC 3.3 V
Serial Interface UART
Flow Control RTS, CTS Support

Bluetooth Profile Serial Port Profile
Bluetooth Version 1.2

Applicable Antenna Included Chip Antenna
Certification MIC
Dimension 18 × 20 mm
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The circuit board measured 43 × 33 × 8.6 mm (W × H × D) in size, and the total system size,
including cover was 47 × 44 × 20.5 mm (W × H × D). The system cover was created with free 3D
modeling software (Autodesk 123D Design; Autodesk Inc., San-Rafael, CA, USA), and printed using a
fused deposition modeling (FDM) (Makerbot Replicator 2; ABS filament; Stratasys Dimension 1200,
ABS filament). The wearable system was worn on the body using a stretchable rubber belt (900 mm
width× 38 mm in height). Figure 1a,b display the circuit board and the developed system, respectively.
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Figure 1. (a) Circuit board assembly and (b) developed system.

2.3. Experimental Protocol

The wearable device was worn between lumbar 3 (L3) and 4 (L4), which is the body’s center of
gravity (Figure 2a). The direction of acceleration was in the vertical (+y-axis), lateral (+x-axis), and
longitudinal (−z-axis) axes (Figure 2b). The experiment was performed in a straight corridor lacking
barriers to walking. The experimental procedure for data acquisition started with an explanation of
the purpose and the experiment protocol to the candidate. Once informed consent was provided,
the subjects wore the module on their waist and wait at the start line in a standing position. After
the first start sign, each subject walked down the corridor for 20 m at a normal walking speed, and
turned around to wait for the next start sign. After the second start sign, each subject walked back to
the starting point at the same speed, which allowed two gait data per experiment, and 80 gait data
were recorded in the 40 subjects.
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2.4. Classification Attributes

In the case of hemiplegic walking, the center of gravity of the body deviates from the supporting
plane. As a consequence, 60–80% of the body weight is based on the lower limb of the non-paralyzed
side. Therefore, generally, the hemiplegic gait shows imbalance [22]. Furthermore, the gait of
a hemiplegic patient is unstable compared with the normal gait due to muscle weakness and
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sensory degradation. To overcome unstable gait, abrupt compensation movement usually occurs.
Compensation movement refers to a rapid movement in any direction, which generates large
un-organized acceleration in every axis, contrary to the regular acceleration pattern that was observed
in the normal gait.

Based on these characteristics of hemiplegic gait, we derived 165 attributes of hemiplegic
and normal gait classification. The selected attributes include the average and maximum value
of acceleration and angular rate in each axis, and the standard deviation of acceleration and angular
rate in each axis that reflect irregular and unbalanced gait cycle. Moreover, attributes that may reflect
gait frequency, regularity, and symmetry, such as kurtosis, skewness, and number of zero-crossing
were also selected. Each attribute was not calculated for each step, but it was calculated using the 20 m
walking signal as a whole. Details of the selected attributes are described in Table S1.

2.5. Attribute Selection

The accuracy of classification varies with the attribute set. Determination of the optimal
combination of attributes is very important for the highest accuracy of classification. In this study, we
used a sequential forward search algorithm for attribute selection [23], as outlined in Figure 3. In the
sequential forward search algorithm, a set containing all attributes (F) and an empty set containing
optimized attribute (S) were created at the initialization stage. Then, one attribute (α) was extracted
from the F and was transferred to the S, and the classification using the S was repeated to select
the S with the best classification accuracy or the lowest false classification rate. The process was
reiterated until there was an improvement in accuracy or an error reduction based on a specific
criterion, termination tolerance, as an additional attribute. As a result, the attribute set having the
highest accuracy is found through a combination of specific attributes among the entire candidate
attribute. In this study, we used random forest algorithm as a classifier, and the termination tolerance
value was set to 10−6. In every procedure of extraction and selection of attributes with classification,
we used MATLAB R2016a (Mathworks, Natick, MA, USA) and MATLAB function sequentialfs was
used to implement sequential forward search algorithm.Sensors 2018, 18, x FOR PEER REVIEW  7 of 12 
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2.6. Random Forest Classification

RF is a regression technique that combines the performance of numerous decision tree algorithms
to classify or to predict the value of a variable [24]. Input vector into the random forest leads to multiple
regression trees and averages of the results. To avoid the correlation of the different trees, RF increases
the diversity of the trees using different training datasets by bagging. Bagging is a technique used to
create training data via random resampling of the original dataset with replacement. For example,
bagging generates the next subset using independent random vectors with the same distribution
without deletion of the data selected from the input sample. Therefore, a few data may be used more
than once in the training, while others might never be used. This procedure renders the classifier more
robust when facing slight variations in input data, and increases prediction accuracy [24]. Samples that
are not selected in the bagging process are included as part of another subset, called out-of-bag (OOB).
These OOB elements can be used by the k-th tree to evaluate performance [25]. Thus, RF computes
an unbiased estimation of the generalization error without using an external text data subset [24].
Figure 4 shows the flowchart of the random forest regression. In this research, we produce a forest
with a maximum of 50 trees.
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2.7. Statistical Analysis

We divided the data into 75% of training and verification sets (52 data) and 25% test sets (18 data)
for gait classification using a random forest classifier. At the time, the ratio of normal and hemiplegic
patients in each data set was kept constant, therefore, 30 of hemiplegic data and 26 of normal data,
and 10 of hemiplegic data and eight of normal data were included in training set and in test set,
respectively. In the training and validation stage, we used four-fold cross validation, which is a model
validation technique to determine the generalization of the statistical analysis to an independent
data set, and secure the reliability of the validation. The k-fold cross-validation is efficient in the
absence of adequate data available for partition into separate training and test sets without losing
significant modeling or testing capability. In four-fold cross-validation, the original dataset is randomly
partitioned into four equal size sub-datasets. Of the four sub-datasets, a single sub-dataset is retained
as the validation data for testing the model, and the remaining three sub-datasets are used as training
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data. The cross-validation process is then repeated four times, with each of the four sub-datasets being
used exactly once as the validation data. Every result from the folds be averaged to produce a single
estimation. The results were statistically analyzed with accuracy (AC), sensitivity (SE), specificity (SP),
and positive predictive value (PPV). Here, AC is a probability of correct decision in every class, which
can be interpreted in the same sense as the probability of detection of both normal and hemiplegic gait.
SE, SP, and PPV are the abilities to correctly determine hemiplegic gait, the ability to determine normal
gait correctly, and the percentage of hemiplegia patients with a positive test who actually manifest
hemiplegia, respectively. Equations of measures are represented in Equations (1)–(4).

Sensitivity(SE) =
TP

TP + FN
× 100 (1)

Speci f icity(SP) =
TN

FP + TN
× 100 (2)

Accuracy(AC) =
TP + TN

TP + FP ++TN + FN
× 100 (3)

Positive Predictivity Value(PPV) =
TP

TP + FP
× 100 (4)

3. Results

3.1. Signal Acquisition

The signal that was acquired by the wearable system includes both the signal in the standby state
and the signal in the walking state. In this study, the signals that are generated during non-reporting
were used only for calibration and excluded from the analysis. Figure 5 shows an example of a
measured signal with a normal subject (Figure 5a) and with a hemiplegic subject (Figure 5b) during the
20-m corridor walk. As shown in the figure, the acceleration and the angular velocity were recorded
correctly. Moreover, we intuitively observed the difference between normal and hemiplegic gait. The
normal gait displayed fewer steps and a neat waveform when compared with hemiplegic gait signal.
In the case of normal walk, regular gait patterns were observed when walking bilaterally.
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3.2. Classification Results

According to the sequential forward search algorithm with 10−6 termination tolerance, we
obtained classification accuracy according to the combination of classification attributes and the
number of trees. Changes of probability of detection error, in the training stage, according to the
number of attributes and the number of trees are presented in Figure 6. This result shows that the
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detection error is reduced by growth of tree, however, no significant improvement in accuracy was
observed when the number of trees exceeded around 10. For the number of classification attributes,
no outstanding difference in accuracy was observed when the number of combined classification
attributes exceeded two when the number of trees was 10 or more.
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We found an optimal set of attributes using a sequential forward search from a randomized
training set. At this time, the number of optimal attributes varied from 2 to 4, according to the
training set, and the most frequently selected attributes after 100 iterations were determined as optimal
attributes. Top four classification attribute that were evaluated as having the highest classification
contribution by sequential forward search are the standard deviation of points perpendicular to the
axis of line of identity of Poincaré plot of angular velocity around vertical axis (SD1GYROY), kurtosis of
frequency of angular velocity around longitudinal axis (KurGYROZ), skewness of frequency of angular
velocity around longitudinal axis (SkewGYROZ), and standard deviation of time interval of adjacent
local maxima of acceleration on longitudinal axis (SDZCILACCZ). For a test, we generated forest using
1 to 4 selected attributed, and then calculated the classification accuracy that was based on test set.
Figure 7 shows the probability of detection error of classification. The result of test shows that the
probability of classification error is 0 when we use 2 or more classification attributes with 50 trees.
Therefore, we finally selected two classification attributes that were evaluated as having the highest
classification contribution by sequential forward search. Selected attributes are the standard deviation
of points perpendicular to the axis of line of identity of Poincaré plot of angular velocity around vertical
axis (SD1GYROY) and kurtosis of frequency of angular velocity around longitudinal axis (KurGYROZ).

Table 5 shows the confusion matrix as a result of the classification using test set. In the case of
normal gait, eight out of eight normal gait data sets were classified as normal gait and a 100.0% of
AC was obtained. In the case of hemiplegic gait, 10 out of 10 hemiplegic gait data sets were correctly
classified (100.0% of AC). The total AC for both normal and hemiplegia was 100.0% (18 of 18), and SE,
SP, and PPV were 100.0%, 100.0%, and 100.0%, respectively. This test result suggests that at least two
features—SD1GYROY and KurGYROZ—are required for classifying hemiplegic gait reliably for a given
data set. Robustness might be improved by adding proper other features.
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Table 5. Confusion matrix of the classification using test set.

Estimated

Hemiplegic Gait Normal Gait

Actual
hemiplegic gait 10 0

normal gait 0 8

4. Discussion

A simple characteristic of the acceleration signal that is caused by asymmetry in walking can be
used to classify hemiplegic gait. In the case of hemiplegic patients, the left and the right sides are not in
equilibrium and the paralyzed side is unstable because of excessive reflexes, muscle spasms, muscular
resistance, and muscular rigidity. Therefore, several body movements occur in the left and right axis
during walking [16], which are effective in distinguishing the presence of hemiplegia. Furthermore,
in patients with hemiplegia, a discontinuous gait is caused by an increase in the bilateral support
period [26].

Among the selected classification attributes, SD1GYROY, as the acceleration or the rotational
angular velocity signal, abruptly changes due to the nature of the Poincaré plot; the SD1 value
becomes larger because the data is distributed at a distance from the identity function. In patients
with hemiplegia, asymmetry of the left- and right-side is higher than that of the normal subjects, and
the change of the angular velocity signal is sharpened, so it is expected that the value of SD1GYROY

is different. The classification attribute KurGYROZ, which indicates the center frequency kurtosis of
the rotational angular velocity around the longitudinal-axis, has a moderate kurtosis when compared
with the normal person distinguishing the paralyzed gait based on differences in stride or lifting
period [5,26]. Therefore, it is presumed that this attribute reflects the difference between hemiplegic
and normal gait patterns.

5. Conclusions

The present classification of hemiplegic gait using wearable devices was based on simple
characteristics of the acceleration signal that is caused by asymmetric gait. The proposed technique
provides a rough screening tool for the detection of hemiparesis. The proposed method is only based
on raw inertial signal that is measured during walking. In other words, it can be applied without
preprocessing with a high degree of error probability, such as step detection. In terms of attribute,
SD1GYROY and KurGYROZ is a minimal attribute set for optimal result. However, the accuracy can
be increased by adding a classification attribute with high significance, which reflects the reliable
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operation characteristics and future patterns of hemiplegic walking. Acquisition and analysis of
signals over an extended period of time are also necessary to monitor the progress and the recovery
of hemiplegic gait. Therefore, long-term follow-up studies are needed to determine the severity of
hemiplegia. There are some limitations of this study due to the population. Since this study is not based
on Big Data, we did not apply the more advanced classification technique, such as Deep Learning. If
we accumulate data continuously, we can get improved results by applying deep running and so on.
Moreover, this study is only designed for older (>40 years) subjects. Therefore, in order to obtain more
reliable results, extended experimentation and evaluation should be conducted for a large number of
subjects with various age, sex, and symptom severity. Further, for more general use, it is necessary to
be considered to measurement technology independent of the mounting position of the system.

Supplementary Materials: The following is available online at http://www.mdpi.com/1424-8220/18/6/1736/s1,
Table S1: List of attribute candidates.
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